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Synchronization on small-world networks
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We investigate collective synchronization in a system of coupled oscillators on small-world networks. The
order parameters that measure synchronization of phases and frequencies are introduced and analyzed by
means of dynamic simulations and finite-size scaling. Phase synchronization is observed to emerge in the
presence of even a tiny fractidhof shortcuts and to display saturated behaviorier0.5. This indicates that
the same synchronizability as the random netwd?k=(L) can be achieved with relatively small number of
shortcuts. The transient behavior of the synchronization, obtained from the measurement of the relaxation time,
is also discussed.
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Systems of coupled nonlinear oscillators, which serve asynchronization as well as frequency one, which is absent in
prototype models for various oscillatory systems in naturepne-dimensional regular networks, energies in the presence
have attracted much attention. Those systems exhibit remarkf even a very small fraction of shortcut§i) The phase
able phenomena of collective synchronization, which havesynchronization transition is of the mean-field type, the same
been observed in a variety of physical, biological, andas the Kuramoto modgb]. (ii) The relaxation time mono-
chemical systemfl]. Up to date, existing studies on collec- tonically decreases with the rewiring probabilyup to P
tive synchronization have mostly been performed either ori=0.5 and apparently saturates f&0.5. This indicates that
the local regular networks such dsdimensional cubic lat- the time required to synchronize the small-world network for
tices or on the globally connected geometry. In recent yeard?=0.5 is almost the same as that for a random netwék (
there has been suggested the possibility that a number of1)-
diverse systems in nature may have the same topological According to Ref.[2], the small-world network is con-
structure as the small-world networl&], which are interme- structed in the following way: First, a one-dimensional regu-
diate of the local regular networks and the fully random netJar network with only local connection®f rangek) between
works. Such small-world networks are usually characterizedhe N nodes is constructed. Each local link is visited once,
by two interesting features: high clustering, which is a charand then with the rewiring probabilit it is removed and
acteristic of regular networks, and the short path lengthfeconnected to a randomly chosen node. After the whole
which is typically observed in random networkd]. Most ~ sweep of the entire network, the total number of shortcuts in
studies on small-world networks have been focused on thE&e network is given bjNPkfor sufficiently largeN. At each
geometrical and topological characterization of the networksfode of this small-world network is located an oscillator, a
with little attention paid to dynamics defined on them. Re-link connecting two nodes represents coupling between the
cently, some studies have considered dynamical systems pif0 oscillators at those two nodes. Describing the state of the
on small-world network§3,4], where such desirable features ith oscillator, i.e., the one at nodéy its phasep; , we write
as faster propagation of information, better computationathe set of equations of motion governing the dynamics of the
power, and stronger synchronizability have been observed. IN oscillator systemi(=1,2,...N) [5],

Ref. [3], frequency synchronization on the small-world net- K

work has been noticed in the presence of a small amount of " -~ N

randomly rewired connections and the possibility of the tran- PO+ 2kJ-EEAi SIn(i = ) = @i, @
sition to global entrainment with the mean-field nature has

been pointed out. However, quantitative analysis has nowvhereA; denotes the set of nodes connected to nogéa
been performed and proper understanding is still lacking. Foeither local links or shortcutsandK is the coupling strength
example, the critical rewiring probability beyond which true suitably normalized with respect to the average number of
long-range order is present at finite coupling strength has natonnections per node. On the right-hand siglerepresents
been addressed. the intrinsic frequency of theith oscillator. They are

In this paper we study the detailed aspects of the collecquenched random variables with the distribution function
tive synchronizations on small-world networks, as the rewir-g().
ing probability and the coupling strength are varied. In gen- On the small-world network built in this manner with
eral, frequency synchronization can be attained withougivenk andP, we investigate the collective synchronization
synchronization of phases, and we explore both to investibehavior of the coupled oscillators at various values of the
gate the synchronization-desynchronization transition. Viacoupling strengthK. For convenience the rangie= 3 is taken
careful finite-size sealing, we find the following) Phase and the Gaussian distribution with unit varianeg €1) for
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g(w) is used[6]. We then use the Heun's methgd] with
the discrete time stept=0.05, to integrate numerically Eq.
(1). Typically, while the equations of motion are integrated
for N;=4x 10 time steps, the data from the fifst/2 steps
are discarded in measuring quantities of interest. Bbth
andN; have been varied to verify that the measured quanti-
ties are precise enough and the networks of various sizes, um
to N=3200, have been considered. For each network size
we have performed one hundred independent runs with dif-
ferent configurations of the intrinsic frequencies as well as
different network realizations, over which averages have
been taken.

Collective behavior of the oscillator system is conve-
niently described by the order parameters

K
L N
m= _2 e ¥ , 2 FIG. 1. Phase synchronization order parameteas a function
N=1 of the coupling strengti for various values of the rewiring prob-

ability P in the small-world network with siz&=800. For com-
2 N parison, obtained data and known analytic results for the globally
<N—Z exp{—c(¢;— ¢j)2}> } (3)  connected network, labeled as “GL" and “AN" respectively, are
(N=1) 15 also plotted. The error bars estimated by the standard deviation have

) approximately the sizes of the symbols. It is shown that phase syn-
where(:--) and[- -] denote the averages over time and overchronization appears at all nonzero valuegof

different realizations of the intrinsic frequencies, respec-

tively, and ¢ is_a s_uffigiently large I‘lumbe“ Since the fre- shortcuts P~0.5). This may have some practical impor-
lql:ierr\]cy rt?/:/‘:'OIu“O?”'St grlvenhby\lKéAtg rm n;;dmzncal Sr'nmltj' " tance in network systems where making long-ranged short-
ations, two - oscifiators shou € regarded as mutually, ;o pas a high cost of resources. From an economical point
entrained if the difference in frequency is smaller thanof view. small-world networks withP~P.. is favorable:

-1 . ] - ~Fm .
(N:At) ™", The order parameterin Eg. (3) does not depend Global coherence is attained with resources spent as less as

Siﬁs;f'fe'y on tﬂ:e k:/ alueﬁ_ort_, atnfd we thuS.Ch?ﬁs%%ﬁloﬁ' possible. Similar behavior may also be expected for the fre-
which turns out to be sufficient for perceiving the difference. uency synchronization measured byK) in Fig. 2, al-

F;):hco;npanson, weijhave also g‘ﬁ'deredﬁ (/jll\fl“ferenr: VETSI%though rather large finite-size effects, particularly for small
of the frequency order parametee=limy._.,(Ns/N), where P, tend to obscure such saturation behaviog.of

N is the number of mutually entrained oscillators in the " ¢ comparison, the synchronization behavior in the glo-
largest clustef8], only to find no essential difference. bally connected network is also displayed in Figs. 1 and 2,

Figures 1 and 2 display the obtained phase and frequen - ; .
order parameterém and ) vs the coupling strengti at Where good agreement with the analytic expressionl

various values of the rewiring probability. In the weak cou-
pling limit (K—0), phases of the oscillators are distributed

qE

uniformly on the interval0, 2], yieldingm=0O(1/\/N) and I PS%?,
the absence of macroscopic coherence. On the other hand, 08 01
the strong coupling limitK— o) all phase of the oscillators L 8:%
become synchronized, to give=1 and accordinglyg=1, 06l 05 |
regardless of the detailed structure of the netw@k 98

An important observation from Figs. 1 and 2 is that syn- q GL %ﬁ%
chronization of the phase as well as of the frequency exhibits 94 | % 7

strong dependence on the rewiring probabiktyln particu-
lar, both of them do not show synchronization in the absence 0.2 |
of shortcuts P=0), which is consistent with the known
result in a one-dimensional systd®]. When a tiny fraction . A
of the shortcuts comes into the system, on the other hand, th 0 o 4 6 8 10
dynamics of the system changes dramatically, giving rise to

phase and frequency synchronizati@ompare curves for K

P=0 and forP=0.05 in Fig. 1 and £ Another interesting FIG. 2. Frequency synchronization order paramgters K for
feature found in Fig. 1 is that & grows, phase synchroni- yarious values of in the small-world network with sizél=800.
zation, measured by(K) in Fig. 1, saturates and does not The results of the globally connected network are also plotted for
show significant difference foP>P,~0.5. It is thus indi-  comparison. The sizes of the error bars are about the same as those
cated that phase synchronization almost the same as that fer symbols. Frequency synchronization appears for any vali of
P=1.0 can be achieved with relatively small amount ofincluding P=0.
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—0%/2K? found in Ref.[10] for large K is shown(see the 8 :

thick solid line labeled by “AN” in Fig. 1. Noting that the |09 T PSR e
number of connections in a small-world networkQg¢N), in % I ] s <~

sharp contrast wittO(N?) valid in the globally connected 6 E 0.3 I /z/”’ 1 57 e
network, we naturally expect that the phase synchronizatior S o3 . Gf“,.r" ageeaaesaTTo]
on a small-world network sets in at the coupling strength& 45 R X —
larger than the critical valu&.=2/7g(0)~1.60 in a glo- = 4r InN ‘”Wzﬁ“*:***“wx

b o
-3
e

bally connected networfor the Gaussian distributiog(w) £
with unit variancé [5]. Indeed such features are shown in
Figs. 1 and 2. Furthermore, it is noteworthy that qualitatively
the same synchronization behavior is observed for the glo-
bally coupled network and the small-world network, which

implies that strong synchronization can be achieved with 0 1 2 3 4
only O(N) connections instead @(N?).
Precise determination of the critical coupling streni§th K

separating desynchronized and synchronized states requiresgig, 3, phase synchronization order parametefor the glo-
careful consideration of the finite-size effects. We examingyajly coupled network plotted asN?/” with B/v=0.25 vsK for

finite-size scaling of the phase order parameter to determin@e network sizeN =100, 200, 400, 800, 1600, and 320ffom
K¢ and explore the transition nature around it. In the thermonottom to top on the right sideThere is given a unique crossing
dynamic limit the order parameter displays the critical be-point atk ,~1.61. Inset: From Eq(7), the slope (+ 8)/v~0.27 is
havior obtained, which, combined witl8/v~0.25 found in the main
panel, results iB~0.48 andv~1.92.
m~(K—K)”, (4)

; " ; L It K.=2/mg(0)~1.60 [5]. In the inset of Fig. 3, the
with the critical exponenjB. On the other hand, in a finite resuft Be : ! — :
system, we expech= (K — K )#f(&/N,/N) with a function Ieast-_square _f|t to_Eq(7) gives (1~ B)/U~0'27'_ which,

f of two scaling argument&/N and ¢/N, where the correla- cOmbined with f/v~0.25 yields 5~0.48 andv~1.92.

tion length¢ diverges aK ., andZ(=1/kP) is an additional These results are certainly consistent with the fact that the
length scale corresponding to the typical distance betwee lobally connected netwp_rk IS a mean-field sy_stem, which
the ends of shortcuts in the small-world netwéid]. Here ~NasA=1/2 andv =1/2[5]; in particular, the obtained value
we pay attention to the system with size much larger tan of v close to 2 indicates that the upper critical dimension of
and approximate the above scaling functid@/N, ¢/N) as the synchronization transition is fodt2]. Similarly, the

; ; transition behavior on the small-world network may be in-
f(£/N,0). This leads to the scaling form of the order param vestigated. Shown in Fig. 4 is the determination of exponents

t . .
eter andK_ for the small-world network with the rewiring prob-
m=N‘B’7F[(K—KC)N”7] (5) ability P=0.2. From the same analysis as in Fig. 3, we ob-
where the critical expone® describes the divergence of the 8
correlation volumet, at K, [12,13, | 0.2 —
— x ]
£~ |K=Ke| ™", (6) SIE08 .~
Since atk =K the functionF in Eq. (5) has a value inde- (14 B
pendent ofN, one can determin&. by means of the stan- glz 4 '
dard finite-size scaling analysis. Namely, plottimg\®/* vs e
K for various sizes, one can find the valuegt that gives
a well-defined crossing point &.. After /v andK,. are 2r
determined, one then use
- g  ————
Infl—| =——InN+const (7) 0 1 2 3 4 5
dK K v

in order to obtain the value of (18)/v, which combined FIG. 4. Phase synchronization order parametdor the small-
W|th'the known value o3/v, g|.ves.the values 0B andv. world network withP=0.2 plotted asnN?'” with B/=0.25 vsK,

Figure 3 shows the determination K for the globally  gisplaying one unique crossing point it~2.88 [N=100, 200,
connected network through the use of the finite-size scalingoo, 800, 1600, and 3200 from bottom to top on the right Jside
form in Eq. (5). Varying the value ofg/v, we find that Inset: (1 8)/7~0.24 is found from the slope. Analysis similar to
Blv~0.25 gives the well-defined crossing point Kf  that in Fig. 3 leads to the same mean-field expong@0.5 and
~1.61, which is in a good agreement with the analyticalv~2.0.
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FIG. 5. Phase diagram of the oscillator system on a small-world FIG. 6. Relaxation timer,, of the phase synchronization order
network. The data points on the phase boundary have been obtain@dramete(in arbitrary unit$ vs P for K=10. It is manifested that
from the finite-size scaling form of the order parameter in &).  7Tm—% asP—0. Error bars represent standard deviations and the
The phase boundary, separating the synchroniggdtate from the  line is merely a guide to the eye. Inset: relaxation timefor fre-
desynchronizedD) one, is well described by the equatidt, ~ quency synchronizatiofin arbitrary unitg vs P for K=10.
=1.64(4)}+0.28(1)P 1, represented by the dotted line.

) _ __ cise value of the critical coupling strength for the frequency
tain K,~2.88 together with exponent®~0.51 andv  synchronization rather difficult to determine. In particular, it
~2.04, which are essentially the same as those in the glgs not clear whether phase synchronization and frequency
bally coupled network. This concludes that the coupled ossynchronization emerge simultaneougly the same critical
cillator system on a small-world network with the number of Coup”ng Strengt}—]for all values of the rewiring probabmty
connections given b@(N) displays a mean-field synchroni- p_ The rather limited data appear to favor a slightly smaller
zation transition, like the system on a globally connectedyalue of the critical coupling strength for frequency synchro-
network with the much larger number of connecti@@?).  nization (at small values ofP), suggesting the interesting

Figure 5 displays the phase diagram on the plart€ @fid  possibility of frequency synchronization without phase syn-
P. The data points on the phase boundary separating sy@hronization for intermediate values of the coupliigFor
chronized(S) and desynchronize(D) states have been ob- conclusive results, however, more extensive simulations are
tained from the finite-size scaling analysis described aboveequired.

The nature of the synchronization transition has always been From the point of view of information transfer, the re-
found to be the mean-field type for all values®fused in  markably short path length observed in a small-world net-
this work. We find that the phase boundary in Fig. 5 is wellwork may imply that information flow through all elements
described by the equatiok,=1.64(4)+0.28(1P 1. As  in the network is quite fast. In the present work, this can be
P—oo, this form predictsK.=1.644), in good agreement rephrased as follows: The time it takes to establish global
with K ~1.61 found in Fig. 3 and the known analytic result synchronization should decrease substantially as small
K.=2/mg(0)~1.60 for the globally coupled network. This amounts of shortcuts are introduced. To investigate such
agreement is somehow expected since the globally couplegiansient behavior, we start from random initial conditions
network, where the number of long-ranged connectiongind measure the phase order parameters a function of
(shortcutg is O(N?), corresponds t®~N. Straightforward time. The average relaxation tini&6]

extrapolation of the estimated form of the phase boundary

predicts thaK. is finite only if P#0. Assuming its validity, - det’ﬁ(t’) )

one expects to have synchronization on the small-world net- ™ o

work at finite coupling strength unle$is zero. This has

close resemblance to the existing studies on the small-worlg then computed, where the normalized order parameter
phenomena: The characteristic path length in the small-world

network behaves very differently foP=0 and for P+0 ___ m(t)—m® ©
[14]. Thus supported is the view that the small-world transi-  myg—m®d

tion and the order-disorder transition are intimately related

[15]. with the initial valuemy=m(t=0) and the equilibrium value

Meanwhile, the frequency order parametgis observed mM°%=m(t—o) satisfiesn(0)=1 andm(t—o)=0. The av-
to shift toward larger values of the coupling strenitlwith ~ erage relaxation time defined in this way is very useful for
the increase of the system sikg sustaining its shape and the systems with many relaxation time scales. Here,Ffor
eventually converging. Such peculiar behavior, which ap->0, we observe than(t) at long times does not fit well to
pears more conspicuous at small value® afnakes the stan- the exponential decay form based on a single relaxation time
dard finite-size scaling analysis inadequate, leaving the prescale. In Fig. 6 we show the relaxation timg vs P at K
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=10. As P is increased;, is shown to decrease up ® obtained from the finite-size scaling analysis of the phase
~0.5, and then it appears to saturate Re0.5. The simi- order parameter. The transient behavior of synchronization
larity between the phase boundary in Fig. 5 and the relaxbas also been investigated through the relaxation time of the
ation time in Fig. 6 is striking and suggests almost the sam&ystem, i.e., the time taken by the system in the desynchro-
synchronization behaviofin both transient and stationary hized initial state to reach the final synchronized state. Both
aspectsfor all values ofP=0.5. We have also investigated the phase diagram and the relaxation time, measuring the
the relaxation timer, for frequency synchronization and stationary and transient features of synchronization, respec-
found that similar saturation appears, as shown in the inset dively, display similar saturation behavior f&*=0.5. From a
Fig. 6. This reflects the overall similarity in achieving both practical point of view, this saturation behavior has a useful
types of synchronization. implication on building networks: Since the long-range con-
In summary, we have examined collective synchronizanection usually costs more than the local connection, it is
tion in the system of coupled oscillators on small-world net-advantageous to turfe to the value at which the saturation
works. Both the phase and frequency synchronization havgegins and to establish globally connected behavior with less
been found to exhibit strong dependence on the rewiringonsumption of resources. Finally, the possibility of succes-
probability P, asP is raised from zero. In particular, for any gjye transitions with the coupling strength, one for frequency
nonzero value of considered here, both types of synchro- qynchronization and the other for phase synchronization, has

nization emerge at finite coupling strengths while they argqen rajsed at small values ®f the detailed investigation of
absent atP=0. This apparently suggests that the critical\ynich is left for future study.

value of P, below which synchronization does not set in at

any finite coupling strength, vanishes, although more exten- This work was supported, in part, by the Ministry of Edu-
sive simulations neaP=0 are necessary for conclusive re- cation of Korea through the BK21 Prograitd. H. and M. Y.
sults. The phase boundary for tifghase synchronization C.), and in part by the Swedish Natural Research Council
transition, which is of the mean-field type at aRyhas been through Contract No. F 5102-659/20(R. J. K)).
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