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Synchronization on small-world networks
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We investigate collective synchronization in a system of coupled oscillators on small-world networks. The
order parameters that measure synchronization of phases and frequencies are introduced and analyzed by
means of dynamic simulations and finite-size scaling. Phase synchronization is observed to emerge in the
presence of even a tiny fractionP of shortcuts and to display saturated behavior forP*0.5. This indicates that
the same synchronizability as the random network (P51) can be achieved with relatively small number of
shortcuts. The transient behavior of the synchronization, obtained from the measurement of the relaxation time,
is also discussed.
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Systems of coupled nonlinear oscillators, which serve
prototype models for various oscillatory systems in natu
have attracted much attention. Those systems exhibit rem
able phenomena of collective synchronization, which ha
been observed in a variety of physical, biological, a
chemical systems@1#. Up to date, existing studies on colle
tive synchronization have mostly been performed either
the local regular networks such asd-dimensional cubic lat-
tices or on the globally connected geometry. In recent ye
there has been suggested the possibility that a numbe
diverse systems in nature may have the same topolog
structure as the small-world networks@2#, which are interme-
diate of the local regular networks and the fully random n
works. Such small-world networks are usually characteri
by two interesting features: high clustering, which is a ch
acteristic of regular networks, and the short path leng
which is typically observed in random networks@2#. Most
studies on small-world networks have been focused on
geometrical and topological characterization of the netwo
with little attention paid to dynamics defined on them. R
cently, some studies have considered dynamical system
on small-world networks@3,4#, where such desirable feature
as faster propagation of information, better computatio
power, and stronger synchronizability have been observed
Ref. @3#, frequency synchronization on the small-world ne
work has been noticed in the presence of a small amoun
randomly rewired connections and the possibility of the tr
sition to global entrainment with the mean-field nature h
been pointed out. However, quantitative analysis has
been performed and proper understanding is still lacking.
example, the critical rewiring probability beyond which tru
long-range order is present at finite coupling strength has
been addressed.

In this paper we study the detailed aspects of the col
tive synchronizations on small-world networks, as the rew
ing probability and the coupling strength are varied. In ge
eral, frequency synchronization can be attained with
synchronization of phases, and we explore both to inve
gate the synchronization-desynchronization transition.
careful finite-size sealing, we find the following:~i! Phase
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synchronization as well as frequency one, which is absen
one-dimensional regular networks, energies in the prese
of even a very small fraction of shortcuts.~ii ! The phase
synchronization transition is of the mean-field type, the sa
as the Kuramoto model@5#. ~iii ! The relaxation time mono-
tonically decreases with the rewiring probabilityP up to P
50.5 and apparently saturates forP*0.5. This indicates tha
the time required to synchronize the small-world network
P*0.5 is almost the same as that for a random networkP
51).

According to Ref.@2#, the small-world network is con-
structed in the following way: First, a one-dimensional reg
lar network with only local connections~of rangek! between
the N nodes is constructed. Each local link is visited on
and then with the rewiring probabilityP it is removed and
reconnected to a randomly chosen node. After the wh
sweep of the entire network, the total number of shortcuts
the network is given byNPk for sufficiently largeN. At each
node of this small-world network is located an oscillator,
link connecting two nodes represents coupling between
two oscillators at those two nodes. Describing the state of
i th oscillator, i.e., the one at nodei by its phasef i , we write
the set of equations of motion governing the dynamics of
N oscillator system (i 51,2,...,N) @5#,

ḟ i~ t !1
K

2k (
j PL i

sin~f i2f j !5v i , ~1!

whereL i denotes the set of nodes connected to nodei ~via
either local links or shortcuts! andK is the coupling strength
suitably normalized with respect to the average number
connections per node. On the right-hand sidev i represents
the intrinsic frequency of thei th oscillator. They are
quenched random variables with the distribution functi
g(v).

On the small-world network built in this manner wit
given k andP, we investigate the collective synchronizatio
behavior of the coupled oscillators at various values of
coupling strengthK. For convenience the rangek53 is taken
and the Gaussian distribution with unit variance (s25 l ) for
©2002 The American Physical Society39-1
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g(v) is used@6#. We then use the Heun’s method@7# with
the discrete time stepDt50.05, to integrate numerically Eq
~1!. Typically, while the equations of motion are integrat
for Nt543103 time steps, the data from the firstNt/2 steps
are discarded in measuring quantities of interest. BothDt
andNt have been varied to verify that the measured qua
ties are precise enough and the networks of various sizes
to N53200, have been considered. For each network s
we have performed one hundred independent runs with
ferent configurations of the intrinsic frequencies as well
different network realizations, over which averages ha
been taken.

Collective behavior of the oscillator system is conv
niently described by the order parameters

m[F K U1

N (
j 51

N

eif jU L G , ~2!

q[F K 2

N~N21! (i , j

N

exp$2c~f i2f j !
2%L G , ~3!

where^¯& and@¯# denote the averages over time and ov
different realizations of the intrinsic frequencies, resp
tively, and c is a sufficiently large number. Since the fr
quency resolution is given by (NtDt)21 in numerical simu-
lations, two oscillators should be regarded as mutua
entrained if the difference in frequency is smaller th
(NtDt)21. The order parameterq in Eq. ~3! does not depend
sensitively on the value ofc, and we thus choosec5106,
which turns out to be sufficient for perceiving the differenc
For comparison, we have also considered a different ver
of the frequency order parameterr[ limN2`(Ns /N), where
Ns is the number of mutually entrained oscillators in t
largest cluster@8#, only to find no essential difference.

Figures 1 and 2 display the obtained phase and freque
order parameters~m and q! vs the coupling strengthK at
various values of the rewiring probability. In the weak co
pling limit (K→0), phases of the oscillators are distribut
uniformly on the interval@0, 2p#, yielding m5O(1/AN) and
the absence of macroscopic coherence. On the other han
the strong coupling limit (K→`) all phase of the oscillators
become synchronized, to givem51 and accordinglyq51,
regardless of the detailed structure of the network@9#.

An important observation from Figs. 1 and 2 is that sy
chronization of the phase as well as of the frequency exhi
strong dependence on the rewiring probabilityP. In particu-
lar, both of them do not show synchronization in the abse
of shortcuts (P50), which is consistent with the know
result in a one-dimensional system@8#. When a tiny fraction
of the shortcuts comes into the system, on the other hand
dynamics of the system changes dramatically, giving rise
phase and frequency synchronization~compare curves for
P50 and forP50.05 in Fig. 1 and 2!. Another interesting
feature found in Fig. 1 is that asP grows, phase synchroni
zation, measured bym(K) in Fig. 1, saturates and does n
show significant difference forP.Pm'0.5. It is thus indi-
cated that phase synchronization almost the same as tha
P51.0 can be achieved with relatively small amount
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shortcuts (P'0.5). This may have some practical impo
tance in network systems where making long-ranged sh
cuts has a high cost of resources. From an economical p
of view, small-world networks withP'Pm is favorable:
Global coherence is attained with resources spent as les
possible. Similar behavior may also be expected for the
quency synchronization measured byq(K) in Fig. 2, al-
though rather large finite-size effects, particularly for sm
P, tend to obscure such saturation behavior ofq.

For comparison, the synchronization behavior in the g
bally connected network is also displayed in Figs. 1 and
where good agreement with the analytic expressionm'1

FIG. 1. Phase synchronization order parameterm as a function
of the coupling strengthK for various values of the rewiring prob
ability P in the small-world network with sizeN5800. For com-
parison, obtained data and known analytic results for the glob
connected network, labeled as ‘‘GL’’ and ‘‘AN’’ respectively, ar
also plotted. The error bars estimated by the standard deviation
approximately the sizes of the symbols. It is shown that phase
chronization appears at all nonzero values ofP.

FIG. 2. Frequency synchronization order parameterq̃ vs K for
various values ofP in the small-world network with sizeN5800.
The results of the globally connected network are also plotted
comparison. The sizes of the error bars are about the same as
of symbols. Frequency synchronization appears for any value oP
including P50.
9-2
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2s2/2K2 found in Ref.@10# for large K is shown~see the
thick solid line labeled by ‘‘AN’’ in Fig. 1!. Noting that the
number of connections in a small-world network isO(N), in
sharp contrast withO(N2) valid in the globally connected
network, we naturally expect that the phase synchroniza
on a small-world network sets in at the coupling stren
larger than the critical valueKc52/pg(0)'1.60 in a glo-
bally connected network@for the Gaussian distributiong(v)
with unit variance# @5#. Indeed such features are shown
Figs. 1 and 2. Furthermore, it is noteworthy that qualitativ
the same synchronization behavior is observed for the
bally coupled network and the small-world network, whi
implies that strong synchronization can be achieved w
only O(N) connections instead ofO(N2).

Precise determination of the critical coupling strengthKc
separating desynchronized and synchronized states req
careful consideration of the finite-size effects. We exam
finite-size scaling of the phase order parameter to determ
Kc and explore the transition nature around it. In the therm
dynamic limit the order parameter displays the critical b
havior

m;~K2Kc!
b, ~4!

with the critical exponentb. On the other hand, in a finite
system, we expectm5(K2Kc)

b f (j/N,z/N) with a function
f of two scaling argumentsj/N andz/N, where the correla-
tion lengthj diverges atKc , andz([1/kP) is an additional
length scale corresponding to the typical distance betw
the ends of shortcuts in the small-world network@11#. Here
we pay attention to the system with size much larger thanz i
and approximate the above scaling functionf (j/N,z/N) as
f (j/N,0). This leads to the scaling form of the order para
eter

m5N2b/ n̄F@~K2Kc!N
I / n̄#, ~5!

where the critical exponentV̄ describes the divergence of th
correlation volumejv at Kc @12,13#,

jV;uK2Kcu2 n̄. ~6!

Since atK5Kc the functionF in Eq. ~5! has a value inde-
pendent ofN, one can determineKc by means of the stan
dard finite-size scaling analysis. Namely, plottingmNb/ v̄ vs
K for various sizes, one can find the value ofb/ v̄ that gives
a well-defined crossing point atKc . After b/ v̄ and Kc are
determined, one then use

lnFdm

dKG
Kc

5
12b

n̄
ln N1const ~7!

in order to obtain the value of (12b)/ v̄, which combined
with the known value ofb/ v̄, gives the values ofb and v̄.

Figure 3 shows the determination ofKc for the globally
connected network through the use of the finite-size sca
form in Eq. ~5!. Varying the value ofb/ v̄, we find that
b/ v̄'0.25 gives the well-defined crossing point atKc
'1.61, which is in a good agreement with the analyti
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result Kc52/pg(0)'1.60 @5#. In the inset of Fig. 3, the
least-square fit to Eq.~7! gives (12b)/ v̄'0.27, which,
combined with b/ v̄'0.25 yields b'0.48 and v̄'1.92.
These results are certainly consistent with the fact that
globally connected network is a mean-field system, wh
hasb51/2 andv51/2 @5#; in particular, the obtained value
of v̄ close to 2 indicates that the upper critical dimension
the synchronization transition is four@12#. Similarly, the
transition behavior on the small-world network may be
vestigated. Shown in Fig. 4 is the determination of expone
andKc for the small-world network with the rewiring prob
ability P50.2. From the same analysis as in Fig. 3, we o

FIG. 3. Phase synchronization order parameterm for the glo-
bally coupled network plotted asmNb/ n̄ with b/ n̄50.25 vsK for
the network sizeN5100, 200, 400, 800, 1600, and 3200~from
bottom to top on the right side!. There is given a unique crossin
point atKc'1.61. Inset: From Eq.~7!, the slope (12b)/ n̄'0.27 is
obtained, which, combined withb/ n̄'0.25 found in the main
panel, results inb'0.48 andn̄'1.92.

FIG. 4. Phase synchronization order parameterm for the small-
world network withP50.2 plotted asmNb/ n̄ with b/ n̄50.25 vsK,
displaying one unique crossing point atKc'2.88 @N5100, 200,
400, 800, 1600, and 3200 from bottom to top on the right sid#.
Inset: (12b)/ n̄'0.24 is found from the slope. Analysis similar t
that in Fig. 3 leads to the same mean-field exponentsb'0.5 and
n̄'2.0.
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tain Kc'2.88 together with exponentsb'0.51 and v̄
'2.04, which are essentially the same as those in the
bally coupled network. This concludes that the coupled
cillator system on a small-world network with the number
connections given byO(N) displays a mean-field synchron
zation transition, like the system on a globally connec
network with the much larger number of connectionsO(N2).

Figure 5 displays the phase diagram on the plane ofK and
P. The data points on the phase boundary separating
chronized~S! and desynchronized~D! states have been ob
tained from the finite-size scaling analysis described abo
The nature of the synchronization transition has always b
found to be the mean-field type for all values ofP used in
this work. We find that the phase boundary in Fig. 5 is w
described by the equationKc51.64(4)10.28(1)P21. As
P→`, this form predictsKc51.64(4), in good agreemen
with Kc'1.61 found in Fig. 3 and the known analytic resu
Kc52/pg(0)'1.60 for the globally coupled network. Thi
agreement is somehow expected since the globally cou
network, where the number of long-ranged connectio
~shortcuts! is O(N2), corresponds toP'N. Straightforward
extrapolation of the estimated form of the phase bound
predicts thatKc is finite only if PÞ0. Assuming its validity,
one expects to have synchronization on the small-world
work at finite coupling strength unlessP is zero. This has
close resemblance to the existing studies on the small-w
phenomena: The characteristic path length in the small-w
network behaves very differently forP50 and for PÞ0
@14#. Thus supported is the view that the small-world tran
tion and the order-disorder transition are intimately rela
@15#.

Meanwhile, the frequency order parameterq is observed
to shift toward larger values of the coupling strengthK with
the increase of the system sizeN, sustaining its shape an
eventually converging. Such peculiar behavior, which
pears more conspicuous at small values ofP, makes the stan
dard finite-size scaling analysis inadequate, leaving the

FIG. 5. Phase diagram of the oscillator system on a small-w
network. The data points on the phase boundary have been obt
from the finite-size scaling form of the order parameter in Eq.~5!.
The phase boundary, separating the synchronized~S! state from the
desynchronized~D! one, is well described by the equationKc

51.64(4)10.28(1)P21, represented by the dotted line.
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cise value of the critical coupling strength for the frequen
synchronization rather difficult to determine. In particular,
is not clear whether phase synchronization and freque
synchronization emerge simultaneously~at the same critical
coupling strength! for all values of the rewiring probability
P. The rather limited data appear to favor a slightly smal
value of the critical coupling strength for frequency synch
nization ~at small values ofP!, suggesting the interestin
possibility of frequency synchronization without phase sy
chronization for intermediate values of the couplingK. For
conclusive results, however, more extensive simulations
required.

From the point of view of information transfer, the re
markably short path length observed in a small-world n
work may imply that information flow through all elemen
in the network is quite fast. In the present work, this can
rephrased as follows: The time it takes to establish glo
synchronization should decrease substantially as sm
amounts of shortcuts are introduced. To investigate s
transient behavior, we start from random initial conditio
and measure the phase order parameterm as a function of
time. The average relaxation time@16#

tm[E
0

`

dt8m̄~ t8! ~8!

is then computed, where the normalized order paramete

m̄[
m~ t !2meq

m02meq ~9!

with the initial valuem0[m(t50) and the equilibrium value
meq[m(t→`) satisfiesm̄(0)51 andm̄(t→`)50. The av-
erage relaxation time defined in this way is very useful
the systems with many relaxation time scales. Here, foP
.0, we observe thatm̄(t) at long times does not fit well to
the exponential decay form based on a single relaxation t
scale. In Fig. 6 we show the relaxation timetm vs P at K

ld
ed

FIG. 6. Relaxation timetm of the phase synchronization orde
parameter~in arbitrary units! vs P for K510. It is manifested that
tm→` as P→0. Error bars represent standard deviations and
line is merely a guide to the eye. Inset: relaxation timetq for fre-
quency synchronization~in arbitrary units! vs P for K510.
9-4
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SYNCHRONIZATION ON SMALL-WORLD NETWORKS PHYSICAL REVIEW E65 026139
510. As P is increased,tm is shown to decrease up toP
'0.5, and then it appears to saturate forP*0.5. The simi-
larity between the phase boundary in Fig. 5 and the re
ation time in Fig. 6 is striking and suggests almost the sa
synchronization behavior~in both transient and stationar
aspects! for all values ofP*0.5. We have also investigate
the relaxation timetq for frequency synchronization an
found that similar saturation appears, as shown in the inse
Fig. 6. This reflects the overall similarity in achieving bo
types of synchronization.

In summary, we have examined collective synchroni
tion in the system of coupled oscillators on small-world n
works. Both the phase and frequency synchronization h
been found to exhibit strong dependence on the rewir
probability P, asP is raised from zero. In particular, for an
nonzero value ofP considered here, both types of synchr
nization emerge at finite coupling strengths while they
absent atP50. This apparently suggests that the critic
value of P, below which synchronization does not set in
any finite coupling strength, vanishes, although more ex
sive simulations nearP50 are necessary for conclusive r
sults. The phase boundary for the~phase! synchronization
transition, which is of the mean-field type at anyP, has been
ce

J

-

A.

m

t.

in

02613
x-
e

of

-
-
ve
g

-
e
l
t
n-

obtained from the finite-size scaling analysis of the ph
order parameter. The transient behavior of synchroniza
has also been investigated through the relaxation time of
system, i.e., the time taken by the system in the desync
nized initial state to reach the final synchronized state. B
the phase diagram and the relaxation time, measuring
stationary and transient features of synchronization, resp
tively, display similar saturation behavior forP*0.5. From a
practical point of view, this saturation behavior has a use
implication on building networks: Since the long-range co
nection usually costs more than the local connection, i
advantageous to tuneP to the value at which the saturatio
begins and to establish globally connected behavior with
consumption of resources. Finally, the possibility of succ
sive transitions with the coupling strength, one for frequen
synchronization and the other for phase synchronization,
been raised at small values ofP, the detailed investigation o
which is left for future study.
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