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Anomalous diffusion in the nonasymptotic regime
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We analyze some properties of the one-dimensionay lfights, assuming that the one-step transition rates
depend on the flight lengthasp,(x) ~x~(¢*2), For flights on a finite, (&1 + 1)-site lattice, we can define an
effective, size-dependent, diffusion coefficiDf,(M)~[M1 *—1]/(1—a) if a<1, with D{(M)~In(M).

Using the generalization of statistical mechanics given by Tsallis, we show that for flights on infinite systems,
the generalized displacement momex8) are well defined provided that>R— 3. These moments exhibit

a power-law singularity itk— 1~ andR>2/3. The short- and intermediate-time properties of the generalized
mean-square displacement are then studied numerically. This work suggests the conditions under which the
asymptotic analytical formula@btained in the literature by the use of the generalized central limit theorem
could be applied to finite-time experiments. These formulas should work much bettés dlose to zero than

in the a— 1~ neighborhood.
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[. INTRODUCTION It is clear that precise, reliable predictions are needed in
order to either verify or falsify the TNSM. For this reason, it
The beauty of the concept of g flights has attracted the Seems appropriate to p,erform a careful study for a model as
attention of mathematicians and theorists for many ygrs ~ simple as possible of a g flight using the ideas of Tsallis.
but it has been only recently that it has proved useful tdn this paper we analyze an elementary model for ayLe
further our understanding of experimental situatif®s14). flight on a lattice, obtaining concrete predictions for the gen-
A distinctive feature of Ley flights is the divergence of the e€ralized displacements. Due to computational requirements,
displacement moments. In practical problems this divergenc@ur numerical work is necessarily restricted to the short- and
may be eliminated by either considering a finite diffusionintermediate-time regimes. But it is precisely these regimes
domain (truncated Ley flights have been successfully used that are usually accessible to the experimentalist. Further-
to model market fluctuationf9,11]), or assuming that the More, our analysis completes the picture presented in Ref.
flyer has a finite translational speed. This last case is oftehl6l, where the generalized central limit theorem was used to
referred to as a “Ley walk,” and has been exhaustively investigate the large jump numbgre., the long-time limit.
studied by Weeks, Urbach, and Swinriéy7]. A new way of ~ Our calculations show _that, for certain values of the param-
looking at the moments has been recently introduced bgters, the range of validity of the dependence of the mean-
workers that applied Tsallis’ nonextensive statistical mechansquare displacement on jump number obtained in R
ics (TNSM) [15-17. TNSM has been fruitfully used in a can be extended to finite times. They also indicate that there
host of physical problemgL8—20. In particular, the result- is a parameter region in which marked differences arise be-
ing nonextensive thermodynamics has shed new light ofiveen the short- and long-time forms. We will suggest an
problems involving long-range interactioj@1]. Despite  explanation for this behavior.
these successes, however, no causal connection has yet beenf he rest of this paper is organized as follows: In Sec. II
found, in general, between the value of the paramgtiiat ~ We summarize the results predicted by the standard theory
characterizes Tsallis’ theory and the properties of the |0ngf0r long-jump diffusion in finite and infinite lattices. In Sec.
range interactions. Therefore, the only test of the validity oflll, we review the application of TNSM to anomalous diffu-
the theory remains its ability to correctly explain and predictsion and discuss some properties of the generalized displace-
experimental results, whilg is often used only as a fitting Ment moments. In Sec. IV we investigate the mean-square
parametef22]. displacement numerically. We start with a brief explanation
The papers by Zanette and Alemalyp] and by Tsallis, of the methods used in the simulations and then examine the
Levy, Souza, and Maynaid.6] showed that it is possible to results. The paper closes in Sec. V with the conclusions and
use the TNSM to consistently define the second moment gfome suggestions for future work.
the displacement for Twy flights. This is an interesting de-
velopment, not only because concrete predictions can be Il. STANDARD DIFFUSION: ANALYTICAL RESULTS
made, but also because the valuegyafan be directly related
to the flight properties. Thus, the interplay between TNSM
and Levy flights may not only open the way to a better  First, consider an infinite one-dimensional lattice. For
understanding of the connections betweemylLéights and  simplicity, we will take the lattice constant to be unity. A
physical reality but they may also help us to strengthen thearticle is deposited at the origin at timhe 0 and is allowed
foundations of the TNSM. to jump to any other lattice site; the jump rates to the left and

A. Long jumps on an infinite lattice
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to the right will be denoted by\, and I',, respectively,

PHYSICAL REVIEW BB5 026138

Note that in thew— o limit, I',=0.58, ;, we recover the

wherek, a positive integer, is the distance between the deusual random walk resulD,.,=1/2. If «—17, on the other
parture and arrival sites. The system is assumed to be homband, the diffusion coefficient diverges.
geneous, i.e., the jump rates do not depend on the location of

the departure site. The probabiliy;(t) that thejth site is

occupied at time can be obtained from the master equation

I':’j(t): > [T Pi«—Pp)+ AP «—Ppl, (2.0
=)

subject to the initial conditiorP;(0)= 5; o.

B. Long jumps on a finite lattice

What happens if long jumps are allowed but the diffusion
space is finite? The finite lattice problem with long jumps is
not only interesting in itselfall real lattices are finife but it
is also the one we actually investigate using numerical simu-
lations. In this context, we note that few years ago, Mantegna

The displacement moments can be calculated using thgnd Stanley studied the slow convergence of truncateg Le

generating function

o

G(t,z)= > ZP)(1), (2.2
J [ee)

which satisfiesG(0,z) =1. Taking the time derivative oG
and using Eq(2.1), we find

G(t,z)=exp(t2 [rkzk+Akzk—(rk—Ak)]]. (2.3
k>0
The displacement moments are now
[? n
nt)y=||z—
(x(0)=||z &Z) G(ta)| (2.4

flights to the Gaussian attractf24]. A numerical analysis
using a finite lattice can give useful information about diffu-
sion on infinite lattices if we restrict the processes to shorter

times compared witf,, , a time for which a non-negligible
proportion of the particles in the ensemble have reached the
boundaries. This characteristic time will depend not only on
the form of the distribution’y and on the number (4

+1) of lattice sites, but also on the order of the moment we
are calculating: The weight of distant particles increases for

higher moments, which reduces the valuetgf For times

shorter thant,, the results should be independent of our
choice of the boundary conditiofBC'’s). We will now ob-

tain some results using reflecting BC'’s, where by “reflect-
ing” we mean simply that jumps leading outside of the in-
terval[ —M,M] are forbidden. The environment recorded by
a jumping particle will then depend on the jump departure

Of course, these quantities are well defined only as longite.
as all series involved converge. If this is the case, it is easy to By suitably restricting the sums in E(.6), we can cal-

show that(x(t)) =Vt and(x?(t)) — (x(t))>=2Dt, where the
drift velocity V and the diffusion coefficiend are given by

V=2 ([\—Apk (2.5
k>0
and
1
D== D, (I'\tA K2 (2.6)
20

culate an effective “local diffusion function,"D(M,j),
which is the local equivalent of the standard diffusion coef-
ficient for a particle located at a sifes[ —M,M],

M—j M+j

1
D(M.j)=35 > K+ > K. (2.9
k=1 k=1

This dependence dd on the position is due to the trun-
cation of the longest jumps, which is a function of the loca-
tion of the site where the jump originates. The same trunca-

Next we analyze the convergence. Assuming, for simpliction generates an effective local drift

ity, thatI",= A for largek, it suffices to consider jumps to

the right. If I',~k~ ("9 for largek, probability normaliza-
tion demands tha&> —1. Depending on the value of we

have three regimegi) —1<a <0, neitherV nor D is well

defined;(ii) 0<a<1, Vis well defined buD is not; and(iii )

1<a, normal diffusion.

In the remainder of this work, we consider only symmet-

ric jump probability distributions such that,=I", andV
=0. We also choosé&',=vy,k~ ("9 By normalizing the
jump probability distribution, we findy,=[2Z(2+ a)] %,
where {(a)=2-,k™“ is Riemann’s zeta functiof23]. In
the normal diffusion regimeg>1, the diffusion coefficient
is then given by

{(a)

Dazzg(2+a)'

(2.7

N+j

V(M,j>0)=—
k=N—j+1

KT, . (2.9

For sites j<O0 the local drift is positive, satisfying
V(M,j<0)=-V(M,j>0). Of courseV(M,0)=0. The lo-
cal drift is maximum near the lattice ends. Equatid@sd)
and (2.9) can be also obtained by starting with the master
equation for the finite system and then taking the continuum
limit. Since we are considering finite lattices, these equations
remain valid even ifa<—1.

For t<EM, it is enough to considef<M. If I’y
~ vk~ (2% "this immediately yields the leading term in the
size dependence of the diffusion constant
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1-a

o X
Da<M>ED<MJ<M)~y{?+0<m—a>} (x2)= fwd(;)xz[amx)]q:az. (3.3

(2.10
In the work of Tsallis and collaborators, only symmetric
for o<1, and one-jump distributions were considered. Henves 0 and
L there is a single threshold ai=1. Equation(3.2) is the
. . usual normalization condition, while E€3.3) is the condi-
C+ E[\P(M DAY (M l)]] ’ tion for the finiteness of thg expectation value of the square
(2.11)  displacement.

The method of Lagrange multipliers yields the optimum
for the critical valuea=1, whereC=0.577... is Euler's  functional form for the single-step distribution, which has the
constant andl(x) is the digamma functiofi23]. From this  form
expression, it easily follows that

Dl(M,])%')f

D4(X) = A(9)
. (212 T [1+B(g)x YD

Considering this equation for large distances and associ-
The logarithm is also obtained by taking the-1" limit ating x with its discrete counterpak we can find a relation
in Eq. (2.10. As expected, these expressions diverge whemetweena and the corresponding value qf
M —o. Note, in particular, thaDo(M,j)=yM for all j.
In the normal diffusion region@>1, we can use Ri- _at4

(3.9

D,(M)~yIN(M+1)+C—

1
2(M+1)

emann’s zeta functiog(«) to write 9=tz 3.9
M~ (e=1) The N-jump distribution,P ,(x,N), can be calculated by
Do(M)~v {(e)+O| ——— ]|, (213 anN -fold convolution of the one-jump distributiom,,(x)

=pq(x), with itself. Sincep,(x—=)~|x| ~(“*2), the gener-
which for largeM reduces to the standard diffusion coeffi- alized central limit theorem indicates that the corresponding
cient,D=D (=) = y¢(a). This expression exhibits the well- N-Jump d|str|but|oinl/(|ls+a%yven, in the largN limit, by
known divergence of the standard diffusion coefficient wherf a(X:N) ~La+1(N x), where

a—1": 1 (=
= iwyg—|wl*
L L,(y) quf_me e dw (3.6)
D, .1+=7v|C+ Tl) (2.19
@ is a Levy function [1,25,26. Asymptotically, L ,(y)
N L ~|y| 7,
We can now easily estimate the dependenci,ofvith « The generalizedRth-displacement moment can be calcu-

and M for the second moment, by identifying it with the |5ted as
typical diffusion time over the (R +1)-site lattice. We ob-

tain ty,~M?2 for a>1 andty~(1—a)(2y) M for a

<1. For the borderliner=1 casety~M?2/In(M).

(KR(N)) = ffwd(g)xR[am,w, 3.7

ll. TNSM PREDICTIONS FOR LE VY FLIGHTS which yields

. . . . — - a)=2]/[(a a
Tsallis and co-worker$16] considered one-dimensional (XR(N))q= 9 H(C N)REF @ =2lax )ax2)]

diffusion along thex axis and sought the optimum one-jump

distribution py(x) associated with the generalizgcentropy X fw dyyR[L 4 1(y)19, (3.9
S _ ke 1 J’wdx q 3.1) where
q(p)_q__l -] di5 [op()]%, (3.0
TY
wherekg is Boltzmann'’s constant] a real number, and a Co= am 3.9
finite characteristic length. The entropy was optimized sub- INa+ 2)005(7

ject to the constraints

B Herey,=Lim(|x|—%) |x|*“*?p_(x) andI'(x) is the usual
f p(x)dx=1 (3.2) gamma function 23]. ' _
—o From these equations we see that the generalized mo-
ments have the following properties.
and (@) They are finite only if
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a>R-3 (3.10 400 =
a=0.5

(a simple calculation shows that the conventional moments // 2500
are finite if a>R—1). Of course, normalization always re- ’
quiresa>—1. Note that the generalized zeroth order mo-  3gg 4 7 A
ment R=0) does not coincide with the probability normal- o // 1500
ization. ,

(b) If R=2, we recover the result due to Tsallis and co- e ‘/
workers[16], (x*(N))q~ N2 ), A

(o) If R>2/3, they have a power law singularity when ¥ 200 1

a—1"

(XR(N))q~ (1= a)@~3RE, (3.11)
This singularity gets stronger for higher moments.

(d) If o decreaseg increases anflP,(x,N)]9 decreases
faster withx for largex. For this reason, we expect the gen-
eralized moments to be increasing functionsvofA detailed
curve for theR=2 moment and larg&l is shown in Ref.

[16]. 0 2
(e) We stress that Eq(3.8) is valid only in theN—oo
limit. The generalized central limit theorem says nothing 554
about the behavior oP,(x,N) for small and intermediate
values ofN. To obtain information in that case a simulation 200 4 (0.5
is required. e
180
IV. NUMERICAL RESULTS AND DISCUSSION
160
Two methods were used for the numerical evaluation of =
the moments: The first was a direct time discretization of the > 140
master equation. The time-discretized form of E21) for =
symmetric flights in the latticé —M,M] and reflecting (in 2 120
the sense defined abgvBC's is given by 2
100
M—j
M +j 60 — (b)
+ 2 Fk[PHk(t)—Pj(t)]}, (4.
k=1 40 T T T T T T
10 20 30 40 50 60 70 80

wherer is the time-discretization interval length. The second

M1/2
and third terms on the right-hand side stand for jumps to and

from the right and the left of sitg respectively. We remark FIG. 1. (a) Time dependencéa.u) of the standard mean-square
that, for the sake of clarity, we are using slightly different displacement forr=0.5 (= 1.8) on the lattice sizes as indicated in
notations for the continuum distribution and its lattice coun-the figure.(b) Slopes of the straight lines ife) as functions of
terpart. The correspondence is defined throypghk)—T'; M= e=M*2
andP ,(x,N)« P;(N) [or P;(t)]. _ _

For absorbingBC's, we can embed the lattice in a much The second method was a Monte Carlo simulation. In-
bigger one(thus relaxing the upper limits of the suyrend stead of starting from a master equation, we divided the in-

fix P;=0 at each stel/j/|j|>M. The time-discretized itera- t€rval (0,1) in juxtaposed “windows” whose widths/ are
tion equat|on is proportional to the jump probabilities for jumps of lendth
For largeM we can take, to a good approximation,
M+j

Pi(t+17)= P<t>+72 TP k(D)0 _yim 1

Wk:2ka+2<jzl ja+2) ’

Next, a number is chosen at random in the interval (0,1).
The length of the resulting jump depends on the window the

4.3

TP k()OO k—2Pj(1)], 4.2
where®, is Heaviside step function.
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FIG. 2. (a) Time dependencéa.u) of the standard mean-square ~ FIG. 3. Mean square displacement as a function of time for
displacement for=1 (q=5/3) on the lattice sizes as indicated on @=0 (4=2) and the lattice sizes indicated on the figue Stan-
the figure.(b) Slopes of the straight lines ife) as functions of ~dard MSD: the slope increases monotonically with lattice siize.
In(M). Generalized MSD: the curves converge to a finite-slope straight
line. Note that the slopes for the cadés=400 andM =750 are
selected number falls into. A new random number is nowndistinguishable.
chosen, which determines the length of the second j(thip

jump starts from the new positipnAfter repeatingN times . . , o
the process we obtain the final position for the particle in one (b) While for reflecting BC's the probability is conserved,

particular experiment. By repeating the experiment a largd®r @bsorbing BC’s we must compute the displacement mo-
number of times we obtain a histogram that provides us witdnents considering only the contribution of thervivingpar-

the distributionP;(N). ticles.
Some remarks are in order. (c) We have used both reflecting and absorbing BC's, ob-

(a) Since each site is connected to each other site at eadBining consistent results.
time step, it is easy to see that the required number of opera- (d) The results obtained by the “master equation” and
tions (and thus the computation timéor a given step num- Monte Carlo methods can be compared by settind\N 7.
ber increases with lattice size M. Their reliability was guaranteed by comparing them and de-
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FIG. 4. Generalized MSD as a function ¢f?*®, Here
M = 2500, and we have iterated the master equation 1000 ti@es.
a=0 (q=2); (b) «=0.5 (q=1.8). The slopes are, respectively,

0.1537 and 0.296.

manding close agreement. The choice0.01 proved to be

appropriate in all cases considered.

PHYSICAL REVIEW B5 026138

0.67
t

FIG. 5. Generalized MSD as a function af®*® for
«=0.985 (@=1.67). HereM = 2500, 7=0.01 and we have iterated
the master equation 1000 times. The slope increases continuously.

The denominator is automatically equal to unity in the case
of reflecting BC’s.

First, we look at finite-size effects. According to Egs.
(2.10 and (2.12, the effective diffusion coefficient should
have a simple dependence on the lattice size. To verify this,
we have calculated the slope of the standard mean-square
displacementSMSD) as a function of time for several val-
ues of M. The results are depicted in Figs. 1 and 2 for
a=0.5 anda=1, respectively. They show that the SMSD
grows linearly with time in all cases, with a slope that in-
creases monotonically with the lattice size. For an infinite-
size lattice the slope would diverge. Figured)land Zb)
confirm that the dependence of the slopes on the lattice size
is accurately predicted by Eg.10 and (2.12.

The dependence of the generalized mean-square displace-
ment (GMSD) on lattice size is shown in Fig. 3, where we
chose a=0. Upon increasingM, the curves giving the
GMSD converge to a finite-slope straight line. This should
be compared to the rapid increase in the SMSD slope, as
evidenced by Fig. @&. The dependence oa is shown in
Fig. 4, where the GMSD is plotted againgt*® for «
=0 anda=0.5. Apparently, straight lines with well-defined
slopes result, in agreement with the predictions of RES)
for the dependence on jump number. However, while the
slope in Fig. 4a) coincides precisely with the predictions,

Once the probability distribution is known, the general-the slope in Fig. %) turns out to be about 10% too small

ized mean square displacement is calculated as

M

DINEOIL

<X2(t)>q:]: M
> P
j=—M

4.9

(0.296 against 0.331). The differences increase as we let
a—1". Indeed, in Fig. 5 we see that, for a valuemtlose
to unity, the average slope does not grow as ¢ ~ 2%, as
predicted by the larghl theory. A closer look reveals that the
slope in Fig. 5 is slowly increasing at all times considered.
What is the reason for this disagreement? It is unlikely
that it is due to the difference between diffusion on a con-
tinuum and on a discrete lattice; the qualitative properties of
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FIG. 6. Master equationresults for the asymptoti¢dashed FIG. 7. The casax=—0.4615 g=2.3). (3 Comparison be-

Ii.nes) and fnite-tim_e dis.tributioBs as fun(itions of the lattice posi- ;\aan the analytical asymptotidashed lingand simulatior(solid
tlo_n. @ _‘”_0'5 @=18); (b) «=0.985 @=1.67). In both cases, line) distributions forN=30. (b) Generalized MSD as a function of
N=500 jumps. t?(2* ) Here we tookM =10 000 and performed up to 1000 itera-

the system are controlled by long jumps, for which no suptions using the master equation.

stantial differences can arise between the continuum and the

discrete cases. The excellent agreement obtainedvfo®  neighborhood. It is this neighborhood that corresponds to the
and the progressive disagreement obtained as we move awagymptotic regime, for which the generalized central limit
from this case suggest a different explanationa#0 our  theorem holds.

starting jump distribution is a discretized form of the Cauchy To back the preceding explanation, we examined the
distribution, which is a stable law. Consequently, the systenprobability distributions themselves and compared the pre-
is already at a fixed point at the start of its evolution.|a$  dictions of the asymptotic theorf.e., those resulting from
grows, the starting distribution differs more and more from athe central limit theoremn[17] with the results of the simu-
Levy distribution: the beginning point is then further away in lations. In Fig. 6 we compare the numerical and (#ealyti-

the corresponding attraction basin. Therefore, it takes theal) asymptotic distributions for two values o& and
representative point longer and longer to reach the attractdd=500. In order to enhance the differences, we have actu-
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4 gence slows down as decreases, i.e., as the average jump
length increases. Our runs in the regiap-1 confirm this
behavior.

Because they require the use of larger lattices, reliable

3 intermediate-time simulations in the<O regime demand

more computer power. The apparent lack of an intermediate
x “hump” in the function (x*" %)L, ,(X) suggests that the
analytical asymptotic results should also hold at finite times.
We have performed runs far=—0.4615 q=2.3) and the
results are presented in Fig. 7. There we see that a 30-step
simulation already vyields very good agreement with the
asymptotic curve. It is, therefore, not surprising that the
GMSD data fall almost exactly on a straight line when plot-
14 ted against?(?* %) [see Fig. T)].

We stated that, as grows, it takes the representative
point longer and longer to reach the attractor neighborhood.
This is clearly seen in Fig. 8, where we have plotted
0 : : : : : the number of iterationdl* («) required for the generalized

02 0.0 0.2 0.4 0.6 0.8 1.0 mean-square displacement to converge to within 10% of
the asymptotic theory as a function of. Up to «=0.2
the required number of iterations is small, growing very

FIG. 8. Number of Monte Carlo iterations required for the gen-SIOWIy as a function ofa. Startlng_ fr_om_a~0.2, it _beglns

eralized MSD to converge to within 10% of the asymptotic theory{® 9row faster and faster, and it is likely to diverge as

as a function ofx. Each point was obtained by averaging the resultse—1 .
of 10 experiments on aM =5000 lattice.

log,, N'(c)
N
|

o

V. CONCLUSIONS

. ta We investigated some properties of the displacement mo-
ally plotted the functhn X’ /N)P“.(X'N)' In "’?” Cases  ments for Levy flights on lattices. For finite lattices, we ob-
these curves tend to unity for largeThis asymptot_|c formis tained the dependence of the diffusion coefficient on lattice
responsible for the agreement between numerical and angg,e. for infinite lattices, the standard displacement moments
lytical results for the larg&\ (or larget) dependence. HOW- i the anomalous region are not defined and we examined the
ever, we also observe that the intermediate-times maximurgroplem under the light of the approach introduced by Tsallis
is higher for the analytical casenuch higher ifa=0.985).  and collaborators. The properties of the generalized displace-
The presence of this spuriously high maximum indicates thenent moments were discussed and then simulations were
lack of applicability of the asymptotic theory for intermedi- performed in order to obtain their short- and medium-time
ate times in thex— 1~ region. A plot(not shown hergfor  (or jump number behavior.
the =0 case shows that the numerical curve falls almost We believe that further mathematical work is needed to
exactly on the asymptotic curve, as expected, confirming thatlly understand the finite-time properties of\yeflights, as
in the a~0 neighborhood the asymptotic theory works well well as to relate the properties of continuum and discrete
even at short times. flights. Our numerical results suggest that, if experimental
A further argument is provided by a look at the>1 systems are shown to be describable in terms of generalized

region. According to the ordinary central limit theorem, thedispl?cement moments for kg flights, the robusN?(*«)
GaussianG(x) is the attractor for all these distributions. (or 2+ @)) dependence of the exponent should be approxi-
However, the number of steps needed to reach the attractgately observed over alarge portion of the anomalous range.
neighborhood depends strongly an This dependence can The detailedw dependence of the coefficient predicted by the

the neighborhood otv=0. The size of this neighborhood
should increase as the experiment probes longer and longer
w times.
z 1 (Z
J [P(x,N)—G(x)]Jdx= z—e—222 Q‘(.,Z), (4.5
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