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Anomalous diffusion in the nonasymptotic regime
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We analyze some properties of the one-dimensional Le´vy flights, assuming that the one-step transition rates
depend on the flight lengthx aspa(x);x2(a12). For flights on a finite, (2M11)-site lattice, we can define an
effective, size-dependent, diffusion coefficientDa(M );@M12a21#/(12a) if a,1, with D1(M ); ln(M).
Using the generalization of statistical mechanics given by Tsallis, we show that for flights on infinite systems,
the generalized displacement moments^xR& are well defined provided thata.R23. These moments exhibit
a power-law singularity ifa→12 andR.2/3. The short- and intermediate-time properties of the generalized
mean-square displacement are then studied numerically. This work suggests the conditions under which the
asymptotic analytical formulas~obtained in the literature by the use of the generalized central limit theorem!
could be applied to finite-time experiments. These formulas should work much better ifa is close to zero than
in the a→12 neighborhood.
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I. INTRODUCTION

The beauty of the concept of Le´vy flights has attracted the
attention of mathematicians and theorists for many years@1#,
but it has been only recently that it has proved useful
further our understanding of experimental situations@2–14#.
A distinctive feature of Le´vy flights is the divergence of the
displacement moments. In practical problems this diverge
may be eliminated by either considering a finite diffusi
domain~truncated Le´vy flights have been successfully use
to model market fluctuations@9,11#!, or assuming that the
flyer has a finite translational speed. This last case is o
referred to as a ‘‘Le´vy walk,’’ and has been exhaustivel
studied by Weeks, Urbach, and Swinney@6,7#. A new way of
looking at the moments has been recently introduced
workers that applied Tsallis’ nonextensive statistical mech
ics ~TNSM! @15–17#. TNSM has been fruitfully used in a
host of physical problems@18–20#. In particular, the result-
ing nonextensive thermodynamics has shed new light
problems involving long-range interactions@21#. Despite
these successes, however, no causal connection has yet
found, in general, between the value of the parameterq that
characterizes Tsallis’ theory and the properties of the lo
range interactions. Therefore, the only test of the validity
the theory remains its ability to correctly explain and pred
experimental results, whileq is often used only as a fitting
parameter@22#.

The papers by Zanette and Alemany@15# and by Tsallis,
Levy, Souza, and Maynard@16# showed that it is possible to
use the TNSM to consistently define the second momen
the displacement for Le´vy flights. This is an interesting de
velopment, not only because concrete predictions can
made, but also because the value ofq can be directly related
to the flight properties. Thus, the interplay between TNS
and Lévy flights may not only open the way to a bett
understanding of the connections between Le´vy flights and
physical reality but they may also help us to strengthen
foundations of the TNSM.
1063-651X/2002/65~2!/026138~9!/$20.00 65 0261
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It is clear that precise, reliable predictions are needed
order to either verify or falsify the TNSM. For this reason,
seems appropriate to perform a careful study for a mode
simple as possible of a Le´vy flight using the ideas of Tsallis
In this paper we analyze an elementary model for a Le´vy
flight on a lattice, obtaining concrete predictions for the ge
eralized displacements. Due to computational requireme
our numerical work is necessarily restricted to the short- a
intermediate-time regimes. But it is precisely these regim
that are usually accessible to the experimentalist. Furt
more, our analysis completes the picture presented in
@16#, where the generalized central limit theorem was use
investigate the large jump number~i.e., the long-time! limit.
Our calculations show that, for certain values of the para
eters, the range of validity of the dependence of the me
square displacement on jump number obtained in Ref.@16#
can be extended to finite times. They also indicate that th
is a parameter region in which marked differences arise
tween the short- and long-time forms. We will suggest
explanation for this behavior.

The rest of this paper is organized as follows: In Sec
we summarize the results predicted by the standard the
for long-jump diffusion in finite and infinite lattices. In Sec
III, we review the application of TNSM to anomalous diffu
sion and discuss some properties of the generalized disp
ment moments. In Sec. IV we investigate the mean-squ
displacement numerically. We start with a brief explanati
of the methods used in the simulations and then examine
results. The paper closes in Sec. V with the conclusions
some suggestions for future work.

II. STANDARD DIFFUSION: ANALYTICAL RESULTS

A. Long jumps on an infinite lattice

First, consider an infinite one-dimensional lattice. F
simplicity, we will take the lattice constant to be unity.
particle is deposited at the origin at timet50 and is allowed
to jump to any other lattice site; the jump rates to the left a
©2002 The American Physical Society38-1
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to the right will be denoted byLk and Gk , respectively,
wherek, a positive integer, is the distance between the
parture and arrival sites. The system is assumed to be ho
geneous, i.e., the jump rates do not depend on the locatio
the departure site. The probabilityPj (t) that the j th site is
occupied at timet can be obtained from the master equati

Ṗj~ t !5 (
k.0

@Gk~Pj 2k2Pj !1Lk~Pj 1k2Pj !#, ~2.1!

subject to the initial conditionPj (0)5d j ,0 .
The displacement moments can be calculated using

generating function

G~ t,z!5 (
j 52`

`

zj Pj~ t !, ~2.2!

which satisfiesG(0,z)51. Taking the time derivative ofG
and using Eq.~2.1!, we find

G~ t,z!5expH t (
k.0

@Gkz
k1Lkz

2k2~Gk2Lk!#J . ~2.3!

The displacement moments are now

^xn~ t !&5F S z
]

]zD
n

G~ t,z!G
z51

. ~2.4!

Of course, these quantities are well defined only as lo
as all series involved converge. If this is the case, it is eas
show that̂ x(t)&5Vt and^x2(t)&2^x(t)&252Dt, where the
drift velocity V and the diffusion coefficientD are given by

V5 (
k.0

~Gk2Lk!k ~2.5!

and

D5
1

2 (
k.0

~Gk1Lk!k
2. ~2.6!

Next we analyze the convergence. Assuming, for simp
ity, that Gk>Lk for largek, it suffices to consider jumps to
the right. If Gk;k2(21a) for largek, probability normaliza-
tion demands thata.21. Depending on the value ofa we
have three regimes.~i! 21,a,0, neitherV nor D is well
defined;~ii ! 0,a,1, V is well defined butD is not; and~iii !
1,a, normal diffusion.

In the remainder of this work, we consider only symm
ric jump probability distributions such thatLk5Gk and V
50. We also chooseGk5gak2(21a). By normalizing the
jump probability distribution, we findga5@2z(21a)#21,
wherez(a)5(k51k2a is Riemann’s zeta function@23#. In
the normal diffusion regime,a.1, the diffusion coefficient
is then given by

Da5
z~a!

2z~21a!
. ~2.7!
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Note that in thea→` limit, Gk50.5dk,1 , we recover the
usual random walk result,D`51/2. If a→11, on the other
hand, the diffusion coefficient diverges.

B. Long jumps on a finite lattice

What happens if long jumps are allowed but the diffusi
space is finite? The finite lattice problem with long jumps
not only interesting in itself~all real lattices are finite!, but it
is also the one we actually investigate using numerical sim
lations. In this context, we note that few years ago, Mante
and Stanley studied the slow convergence of truncated L´vy
flights to the Gaussian attractor@24#. A numerical analysis
using a finite lattice can give useful information about diff
sion on infinite lattices if we restrict the processes to sho
times compared witht̂ M , a time for which a non-negligible
proportion of the particles in the ensemble have reached
boundaries. This characteristic time will depend not only
the form of the distributionGk and on the number (2M
11) of lattice sites, but also on the order of the moment
are calculating: The weight of distant particles increases
higher moments, which reduces the value oft̂ M . For times
shorter thant̂ M the results should be independent of o
choice of the boundary conditions~BC’s!. We will now ob-
tain some results using reflecting BC’s, where by ‘‘refle
ing’’ we mean simply that jumps leading outside of the i
terval@2M ,M # are forbidden. The environment recorded
a jumping particle will then depend on the jump departu
site.

By suitably restricting the sums in Eq.~2.6!, we can cal-
culate an effective ‘‘local diffusion function,’’D(M , j ),
which is the local equivalent of the standard diffusion co
ficient for a particle located at a sitej P@2M ,M #,

D~M , j !5
1

2 S (
k51

M2 j

k2Gk1 (
k51

M1 j

k2GkD . ~2.8!

This dependence ofD on the position is due to the trun
cation of the longest jumps, which is a function of the loc
tion of the site where the jump originates. The same trun
tion generates an effective local drift

V~M , j .0!52 (
k5N2 j 11

N1 j

kGk . ~2.9!

For sites j ,0 the local drift is positive, satisfying
V(M , j ,0)52V(M , j .0). Of course,V(M ,0)50. The lo-
cal drift is maximum near the lattice ends. Equations~2.8!
and ~2.9! can be also obtained by starting with the mas
equation for the finite system and then taking the continu
limit. Since we are considering finite lattices, these equati
remain valid even ifa<21.

For t! t̂ M , it is enough to considerj !M . If Gk
;gk2(21a), this immediately yields the leading term in th
size dependence of the diffusion constant
8-2
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Da~M ![D~M , j !M !'gFM12a21

12a
1O~M 2a!G

~2.10!

for a,1, and

D1~M , j !'gH C1
1

2
@C~M2 j 11!1C~M1 j 11!#J ,

~2.11!

for the critical valuea51, whereC50.577 . . . is Euler’s
constant andC(x) is the digamma function@23#. From this
expression, it easily follows that

D1~M !'gF ln~M11!1C2
1

2~M11!G . ~2.12!

The logarithm is also obtained by taking thea→12 limit
in Eq. ~2.10!. As expected, these expressions diverge w
M→`. Note, in particular, thatD0(M , j )5gM for all j.

In the normal diffusion region,a.1, we can use Ri-
emann’s zeta functionz(a) to write

Da~M !'gFz~a!1OS M 2(a21)

a21 D G , ~2.13!

which for largeM reduces to the standard diffusion coef
cient,D5Da(`)5gz(a). This expression exhibits the wel
known divergence of the standard diffusion coefficient wh
a→11:

Da→115gS C1
1

a21D . ~2.14!

We can now easily estimate the dependence oft̂ M with a
and M for the second moment, by identifying it with th
typical diffusion time over the (2M11)-site lattice. We ob-
tain t̂ M;M2 for a.1 and t̂ M;(12a)(2g)21M11a for a

,1. For the borderlinea51 case,t̂ M;M2/ln(M).

III. TNSM PREDICTIONS FOR LE´ VY FLIGHTS

Tsallis and co-workers@16# considered one-dimensiona
diffusion along thex axis and sought the optimum one-jum
distributionpq(x) associated with the generalizedq entropy

Sq~p!5
kB

q21 H 12E
2`

`

dS x

s D @sp~x!#qJ , ~3.1!

wherekB is Boltzmann’s constant,q a real number, ands a
finite characteristic length. The entropy was optimized s
ject to the constraints

E
2`

`

p~x!dx51 ~3.2!

and
02613
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^x2&q[E
2`

`

dS x

s D x2@sp~x!#q5s2. ~3.3!

In the work of Tsallis and collaborators, only symmetr
one-jump distributions were considered. Hence,V50 and
there is a single threshold ata51. Equation~3.2! is the
usual normalization condition, while Eq.~3.3! is the condi-
tion for the finiteness of theq expectation value of the squar
displacement.

The method of Lagrange multipliers yields the optimu
functional form for the single-step distribution, which has t
form

pq~x!5
A~q!

@11B~q!x2#1/(q21)
. ~3.4!

Considering this equation for large distances and ass
ating x with its discrete counterpartk, we can find a relation
betweena and the corresponding value ofq:

q5
a14

a12
. ~3.5!

The N-jump distribution,Pa(x,N), can be calculated by
an N -fold convolution of the one-jump distribution,pa(x)
5pq(x), with itself. Sincepa(x→`);uxu2(a12), the gener-
alized central limit theorem indicates that the correspond
N-jump distribution is given, in the largeN limit, by
Pa(x,N);La11(N21/(11a)x), where

Lm~y!5
1

2pE2`

`

eivye2uvumdv ~3.6!

is a Lévy function @1,25,26#. Asymptotically, Lm(y)
;uyu2(m11).

The generalizedRth-displacement moment can be calc
lated as

^xR~N!&q[E
2`

`

dS x

s D xR@sPa~x,N!#q, ~3.7!

which yields

^xR~N!&q5sq21~CaN! [R(21a)22]/[(a11)(a12)]

3E
2`

`

dyyR@La11~y!#q, ~3.8!

where

Ca5
pga

G~a12!cosS ap

2 D . ~3.9!

Herega5Lim( uxu→`) uxu(a12)pa(x) andG(x) is the usual
gamma function@23#.

From these equations we see that the generalized
ments have the following properties.

~a! They are finite only if
8-3
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a.R23 ~3.10!

~a simple calculation shows that the conventional mome
are finite if a.R21). Of course, normalization always re
quiresa.21. Note that the generalized zeroth order m
ment (R50) does not coincide with the probability norma
ization.

~b! If R52, we recover the result due to Tsallis and c
workers@16#, ^x2(N)&q;N2/(21a).

~c! If R.2/3, they have a power law singularity whe
a→12

^xR~N!&q;~12a!(223R)/6. ~3.11!

This singularity gets stronger for higher moments.
~d! If a decreases,q increases and@Pa(x,N)#q decreases

faster withx for largex. For this reason, we expect the ge
eralized moments to be increasing functions ofa. A detailed
curve for theR52 moment and largeN is shown in Ref.
@16#.

~e! We stress that Eq.~3.8! is valid only in theN→`
limit. The generalized central limit theorem says nothi
about the behavior ofPa(x,N) for small and intermediate
values ofN. To obtain information in that case a simulatio
is required.

IV. NUMERICAL RESULTS AND DISCUSSION

Two methods were used for the numerical evaluation
the moments: The first was a direct time discretization of
master equation. The time-discretized form of Eq.~2.1! for
symmetric flights in the lattice@2M ,M # and reflecting ~in
the sense defined above! BC’s is given by

Pj~ t1t!5Pj~ t !1tH (
k51

M2 j

Gk@Pj 1k~ t !2Pj~ t !#

1 (
k51

M1 j

Gk@Pj 1k~ t !2Pj~ t !#J , ~4.1!

wheret is the time-discretization interval length. The seco
and third terms on the right-hand side stand for jumps to
from the right and the left of sitej, respectively. We remark
that, for the sake of clarity, we are using slightly differe
notations for the continuum distribution and its lattice cou
terpart. The correspondence is defined throughp(x)↔G j
andPa(x,N)↔Pj (N) @or Pj (t)#.

For absorbingBC’s, we can embed the lattice in a muc
bigger one~thus relaxing the upper limits of the sums! and
fix Pj50 at each step; j /u j u.M . The time-discretized itera
tion equation is

Pj~ t1t!5Pj~ t !1t (
k51

M1 j

Gk@Pj 2k~ t !Q j 2k1M

1Pj 1k~ t !QM2 j 2k22Pj~ t !#, ~4.2!

whereQx is Heaviside step function.
02613
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The second method was a Monte Carlo simulation.
stead of starting from a master equation, we divided the
terval (0,1) in juxtaposed ‘‘windows’’ whose widthsWk are
proportional to the jump probabilities for jumps of lengthk.
For largeM we can take, to a good approximation,

Wk5
1

2ka12 S (
j 51

`
1

j a12D 21

. ~4.3!

Next, a number is chosen at random in the interval (0,
The length of the resulting jump depends on the window

FIG. 1. ~a! Time dependence~a.u.! of the standard mean-squar
displacement fora50.5 (q51.8) on the lattice sizes as indicated
the figure.~b! Slopes of the straight lines in~a! as functions of
M12a5M1/2.
8-4
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ANOMALOUS DIFFUSION IN THE NONASYMPTOTIC REGIME PHYSICAL REVIEW E65 026138
selected number falls into. A new random number is n
chosen, which determines the length of the second jump~this
jump starts from the new position!. After repeatingN times
the process we obtain the final position for the particle in o
particular experiment. By repeating the experiment a la
number of times we obtain a histogram that provides us w
the distributionPj (N).

Some remarks are in order.
~a! Since each site is connected to each other site at e

time step, it is easy to see that the required number of op
tions ~and thus the computation time! for a given step num-
ber increases with lattice size asM2.

FIG. 2. ~a! Time dependence~a.u.! of the standard mean-squa
displacement fora51 (q55/3) on the lattice sizes as indicated o
the figure.~b! Slopes of the straight lines in~a! as functions of
ln(M).
02613
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~b! While for reflecting BC’s the probability is conserved
for absorbing BC’s we must compute the displacement m
ments considering only the contribution of thesurvivingpar-
ticles.

~c! We have used both reflecting and absorbing BC’s,
taining consistent results.

~d! The results obtained by the ‘‘master equation’’ a
Monte Carlo methods can be compared by settingt5Nt.
Their reliability was guaranteed by comparing them and

FIG. 3. Mean square displacement as a function of time
a50 (q52) and the lattice sizes indicated on the figure.~a! Stan-
dard MSD: the slope increases monotonically with lattice size.~b!
Generalized MSD: the curves converge to a finite-slope stra
line. Note that the slopes for the casesM5400 andM5750 are
indistinguishable.
8-5
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manding close agreement. The choicet50.01 proved to be
appropriate in all cases considered.

Once the probability distribution is known, the gener
ized mean square displacement is calculated as

^x2~ t !&q5

(
j 52M

M

j 2@Pj~ t !#q

(
j 52M

M

Pj~ t !

. ~4.4!

FIG. 4. Generalized MSD as a function oft2/(21a). Here
M52500, and we have iterated the master equation 1000 times~a!
a50 (q52); ~b! a50.5 (q51.8). The slopes are, respectivel
0.1537 and 0.296.
02613
-

The denominator is automatically equal to unity in the ca
of reflecting BC’s.

First, we look at finite-size effects. According to Eq
~2.10! and ~2.12!, the effective diffusion coefficient should
have a simple dependence on the lattice size. To verify t
we have calculated the slope of the standard mean-sq
displacement~SMSD! as a function of time for several val
ues of M. The results are depicted in Figs. 1 and 2 f
a50.5 anda51, respectively. They show that the SMS
grows linearly with time in all cases, with a slope that i
creases monotonically with the lattice size. For an infini
size lattice the slope would diverge. Figures 1~b! and 2~b!
confirm that the dependence of the slopes on the lattice
is accurately predicted by Eqs.~2.10! and ~2.12!.

The dependence of the generalized mean-square disp
ment ~GMSD! on lattice size is shown in Fig. 3, where w
chose a50. Upon increasingM, the curves giving the
GMSD converge to a finite-slope straight line. This shou
be compared to the rapid increase in the SMSD slope
evidenced by Fig. 3~a!. The dependence ona is shown in
Fig. 4, where the GMSD is plotted againstt2/(21a) for a
50 anda50.5. Apparently, straight lines with well-define
slopes result, in agreement with the predictions of Ref.@16#
for the dependence on jump number. However, while
slope in Fig. 4~a! coincides precisely with the predictions
the slope in Fig. 4~b! turns out to be about 10% too sma
(0.296 against 0.331). The differences increase as we
a→12. Indeed, in Fig. 5 we see that, for a value ofa close
to unity, the average slope does not grow as (12a)22/3, as
predicted by the largeN theory. A closer look reveals that th
slope in Fig. 5 is slowly increasing at all times considere

What is the reason for this disagreement? It is unlik
that it is due to the difference between diffusion on a co
tinuum and on a discrete lattice; the qualitative properties

FIG. 5. Generalized MSD as a function oft2/(21a) for
a50.985 (q51.67). HereM52500,t50.01 and we have iterated
the master equation 1000 times. The slope increases continuo
8-6
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ANOMALOUS DIFFUSION IN THE NONASYMPTOTIC REGIME PHYSICAL REVIEW E65 026138
the system are controlled by long jumps, for which no su
stantial differences can arise between the continuum and
discrete cases. The excellent agreement obtained fora50
and the progressive disagreement obtained as we move
from this case suggest a different explanation. Ifa50 our
starting jump distribution is a discretized form of the Cauc
distribution, which is a stable law. Consequently, the syst
is already at a fixed point at the start of its evolution. Asuau
grows, the starting distribution differs more and more from
Lévy distribution: the beginning point is then further away
the corresponding attraction basin. Therefore, it takes
representative point longer and longer to reach the attra

FIG. 6. Master equationresults for the asymptotic~dashed
lines! and finite-time distributions as functions of the lattice po
tion. ~a! a50.5 (q51.8); ~b! a50.985 (q51.67). In both cases
N5500 jumps.
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neighborhood. It is this neighborhood that corresponds to
asymptotic regime, for which the generalized central lim
theorem holds.

To back the preceding explanation, we examined
probability distributions themselves and compared the p
dictions of the asymptotic theory~i.e., those resulting from
the central limit theorem! @17# with the results of the simu-
lations. In Fig. 6 we compare the numerical and the~analyti-
cal! asymptotic distributions for two values ofa and
N5500. In order to enhance the differences, we have a

FIG. 7. The casea520.4615 (q52.3). ~a! Comparison be-
tween the analytical asymptotic~dashed line! and simulation~solid
line! distributions forN530. ~b! Generalized MSD as a function o
t2/(21a). Here we tookM510 000 and performed up to 1000 itera
tions using the master equation.
8-7
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C. A. CONDAT, J. RANGEL, AND PEDRO W. LAMBERTI PHYSICAL REVIEW E65 026138
ally plotted the function (x21a/N)Pa(x,N). In all cases
these curves tend to unity for largex. This asymptotic form is
responsible for the agreement between numerical and
lytical results for the largeN ~or larget) dependence. How
ever, we also observe that the intermediate-times maxim
is higher for the analytical case~much higher ifa50.985).
The presence of this spuriously high maximum indicates
lack of applicability of the asymptotic theory for intermed
ate times in thea→12 region. A plot~not shown here! for
the a50 case shows that the numerical curve falls alm
exactly on the asymptotic curve, as expected, confirming
in the a'0 neighborhood the asymptotic theory works w
even at short times.

A further argument is provided by a look at thea.1
region. According to the ordinary central limit theorem, t
GaussianG(x) is the attractor for all these distribution
However, the number of steps needed to reach the attra
neighborhood depends strongly ona. This dependence ca
be seen from Chebyshev’s theorem, which reads@1,25#

E
2`

Z

@P~x,N!2G~x!#dx5
1

2p
e2Z2

(
j 51

`
Qj~Z!

Nj /2
, ~4.5!

where P is in the Gaussian basin and theQj (Z)8s are
polynomials in Z whose coefficients involve intege
moments ofx . Since these moments increase ifa decreases
higher values ofN will be required to keep the left-han
side of Eq.~4.5! under a given bound. Therefore, the conv

FIG. 8. Number of Monte Carlo iterations required for the ge
eralized MSD to converge to within 10% of the asymptotic theo
as a function ofa. Each point was obtained by averaging the resu
of 106 experiments on anM55000 lattice.
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gence slows down asa decreases, i.e., as the average ju
length increases. Our runs in the regiona.1 confirm this
behavior.

Because they require the use of larger lattices, relia
intermediate-time simulations in thea,0 regime demand
more computer power. The apparent lack of an intermed
x ‘‘hump’’ in the function (x21a)La11(x) suggests that the
analytical asymptotic results should also hold at finite tim
We have performed runs fora520.4615 (q52.3) and the
results are presented in Fig. 7. There we see that a 30-
simulation already yields very good agreement with t
asymptotic curve. It is, therefore, not surprising that t
GMSD data fall almost exactly on a straight line when plo
ted againstt2/(21a) @see Fig. 7~b!#.

We stated that, asa grows, it takes the representativ
point longer and longer to reach the attractor neighborho
This is clearly seen in Fig. 8, where we have plott
the number of iterationsN* (a) required for the generalized
mean-square displacement to converge to within 10%
the asymptotic theory as a function ofa. Up to a50.2
the required number of iterations is small, growing ve
slowly as a function ofa. Starting froma;0.2, it begins
to grow faster and faster, and it is likely to diverge
a→12.

V. CONCLUSIONS

We investigated some properties of the displacement
ments for Lévy flights on lattices. For finite lattices, we ob
tained the dependence of the diffusion coefficient on latt
size; for infinite lattices, the standard displacement mome
in the anomalous region are not defined and we examined
problem under the light of the approach introduced by Tsa
and collaborators. The properties of the generalized displa
ment moments were discussed and then simulations w
performed in order to obtain their short- and medium-tim
~or jump number! behavior.

We believe that further mathematical work is needed
fully understand the finite-time properties of Le´vy flights, as
well as to relate the properties of continuum and discr
flights. Our numerical results suggest that, if experimen
systems are shown to be describable in terms of genera
displacement moments for Le´vy flights, the robustN2/(21a)

~or t2/(21a)) dependence of the exponent should be appro
mately observed over a large portion of the anomalous ran
The detaileda dependence of the coefficient predicted by t
asymptotic theory should, on the other hand, occur only
the neighborhood ofa50. The size of this neighborhoo
should increase as the experiment probes longer and lo
times.
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