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Self-organized critical forest-fire model on large scales
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We discuss the scaling behavior of the self-organized critical forest-fire model on large length scales. As
indicated in earlier publications, the forest-fire model does not show conventional critical scaling, but has two
qualitatively different types of fires that superimpose to give the effective exponents typically measured in
simulations. We show that this explains not only why the exponent characterizing the fire-size distribution
changes with increasing correlation length, but allows us also to predict its asymptotic value. We support our
arguments by computer simulations of a coarse-grained model, by scaling arguments and by analyzing states
that are created artificially by superimposing the two types of fires.
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I. INTRODUCTION During recent years, evidence has accumulated that the
two-dimensional SOC forest-fire model does not show
During the past years, systems that exhibit self-organizedimple scaling either. Instead, there are more than one di-
criticality (SOQ have attracted much attention, since theyverging length scalg14], the behavior of the model for tree
might explain part of the abundance of fractal structures indensities just above the critical density is completely differ-
nature[1]. Their common features are slow driving or energyent from that of conventional critical systerfis5,16), and
input and rare dissipation events that are instantaneous on tgijte-size scaling is violatefiL7]. A scaling collapse based
time scale of driving. In the stationary state, the size distri-yp, Eq.(1) gives a good overlap of the tails of the distribu-
bution of dissipation events obeys a power law, irrespectiVgion phut not so much of the first part, where the slgpe.,
of initial conditions and without the need to fine tune param-,o exponentr) seems to increase slightly with increasing
eters. Examples of such systems are the sandpile mayel ., o|ation lengthsee, e.g.[4], and Fig. 2 below We have
:ah;rtizllfj-:ligarggggl %r;lt'g?;rfr?ireégg;? Zr?gécl:iwit[ezrﬁ_@%rézz suggested17] that _aII _these features are due.to the fact that
the Bak-Sneppen modgT g ’A rece'nt review on the litera- there are two quahtau_vely different types of_ﬁres in the sys-
T tem: smaller, fractal fires that occur in regions of low tree

ture on SOC can be found, for instance[#]. i db ¢ luster that bl lati
The study of SOC models is usually based on the assumrg-ens' y and burn a tree cluster that resembles a percolation

tion that the size distribution(s) of dissipation event&va- luster, and larger compact fires that burn a patch of a tree

lanches, fires, earthquakeshows the scaling behavior famil- density above the percolation threshold.
iar from equilibrium critical systems, The purpose of this paper is to show how these two types

of fires add up to give the distributions typically seen in

B computer simulations, and to derive the asymptotic proper-
n(s)=s""C(S/Smax), (D ties of the fire size distribution in the limit of very large
correlation length. In particular, we will derive the

with a cutoff functionC that is constant for small arguments asymptotic value of the exponent of the fire size distribution,
and decays exponentially fast when the argument is considoward which it should converge for sufficiently large corre-
erably larger than 1. The cutoff cluster sizg,, is related to  lation length. We support our arguments by three different
the correlation lengtl via s, £°, with D being the fractal  types of evidence that all lead to the same conclusiips:
dimension of the dissipation eventsf the cutoff is set by Scaling arguments based on the superposition of the men-
the system sizé, £ must be replaced witlh.) This holds  tioned two types of firesii) The fire size distributions re-
indeed for some self organized critical systems, like the Baksulting from the (artificial) superposition of the fires of
Sneppen model, but it has been known for some time that patches of different tree densities and different siZ@s);
does not hold for the two-dimensional Abelian sandpileComputer simulations of a coarse-grained model that allow
model[10]. Very recent work has shown that this violation of us to numerically study systems with much larger correlation
simple scaling in the sandpile model is due to the existencength than has been possible so far. The outline of the paper
of multiple waves of topplings, and some features of theis as follows: In the next section, we will derive scaling laws
correct scaling behavior have been worked [dit12. Vio-  and analytical expressions for the fire size distribution result-
lation of finite-size scaling is also seen in the above-ing from the assumption that the forest-fire model is com-
mentioned earthquake modél3]. posed of patches of different sizes and different tree densi-
ties. Then, in Sec. 1l we will show numerical data that result
from the superposition of fires from artificially generated
*Present address: Technischen Univetsidunchen, James patches of different sizes and densities. In Sec. IV, we will
Franck Strasse, D-85747 Garching, Germany present and study a coarse-grained forest-fire model where
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growth and burning down of forest clusters produces the
patchy structure seen in Fig. 1, which is characterized by the
following properties.

(a) The patches are almost homogeneously covered with
trees. This is because a fire that burns a patch usually leaves
only a few trees behindWe found that the local tree density
within a patch immediately after a fire is typically 0.078 for
the 2D square lattice and 0.062 for the 2D triangular laktice
Thus the random tree growth leads to a uniform tree density
within the patch. The size distribution of tree clusters within
a patch is therefore similar to the size distribution of clusters
in a percolation system of the same dens(iBy “percola-
tion” we mean “uncorrelated percolation” throughout this
paper. For an introduction to percolation theory, §&8].)

The fact that several patches contain larger dense tree clus-
ters indicates that some fires leave behind small clusters that
can become seeds of new patches. This process of birth and
death of patches, which happens on a slower time scale, does

FIG. 1. Snapshot of the SOC forest-fire model for=p, not affect our main argument.
=0.408 and system siZe=4096. Trees are black and empty sites  (b) It can be assumed that the distribution of patch sizes is
are white. independent of their tree density, because a fire in most cases

hardly changes the size of a patch. Thus, the size of most
each lattice site stands for a group of several sites in thgatches is the same for high and low tree density.
original model. Finally, we will discuss our findings. (c) Some patches have a tree density above the percola-
tion threshold. These patches contain a spanning cluster that
is compact, i.e., has the fractal dimension 2. When such a
patch is struck by lightning, a compact fire occurs that burns
the spanning cluster. If lightning strikes a patch of low tree
A. The definition of the model density(below the percolation threshgldnly a small, frac-
The SOC forest-fire model is usually studied on a squaréa:clf clus(;ek; ofr;[refe;s b:;rnhs down, ef\_nd o_nIy _pa}rt (.)f th.ﬁi ]E)/atch IS
lattice with L? sites. Each site is either occupied by a tree, o ected by the fire. If the mean fire size is lage., if /p

is empty. At each time step, all sites are updated in paralle'ls smal), most trees burn down during large fires, and most

. . . . of the empty sites are created during the large compact fires,
according to the following ruledi) An empty site becomes L : I

. : A . resulting in the above-mentioned low local tree density im-
occupied by a tree with probabilify, (ii) A tree is struck by mediatelv after a fire
lightning with probabilityf. This tree and the whole cluster y X

of trees connected to {by nearest-neighbor couplingurn () The size of the Iarggst patch d|ve'r.ges fijp—>0,
: suggesting that the system is close to a critical point and can
down and become empty sites.

be characterized by power laws. Several such power laws
will be mentioned further below.
The two types of fires mentioned add up to give the dis-
tributions typically seen in computer simulations, and ex-
As long asp andf are so small that fires do not interfere plain the unconventional behavior of the forest fire model
with each other or with tree growth, the stationary behaviormentioned in the previous section. The left part of the fire
of the model depends only on the rafitp, but not on the size distribution of the forest fire modésee Fig. )] is
two parameters separately. After some time, the systermainly due to fires burning fractal percolation clusters, and
reaches a stationary state with a mean tree depsityd a  the cutoff part is due to large compact fires. In contrast, in
mean fire sizés. A snapshot of the two-dimensionéD)  conventional critical systems the power-law part and the cut-
system in the stationary state is shown in Fig. 1. One can se@ff part are due to the same type of critical fluctuations.
that it consists of patches of different tree densities and difSince the two parts of the distribution become clearly sepa-
ferent sizes. Some of the patches have a high tree densitigted only for very largef, as we will show below, the
and if they are struck by lightning, the entire patch burnsasymptotic exponent of the fire-size distribution is not visible
down, with only few trees being left. After the fire, the tree in present-day computer simulations.
density ppaie(t) Of the patch grows again according to

II. SCALING PROPERTIES OF THE SOC FOREST-FIRE
MODEL

B. Two types of fires determine the dynamics of the SOC
forest fire model

C. The scaling behavior

Ppatc ) =P(1 = ppatci( 1)) 2) In the stationary state, the mean number of growing trees
must equal the mean number of trees burning down, leading
until it is hit by the next lightning stroke. This mechanism of to [2]
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. L, s’ (This is obtained from the conditios= [sn(s)ds/p and is
o . 10 10 given in many earlier publicationsHowever, since we have
two different types of fires, we cannot expect this relation to
hold. Figure 2b) shows the size distribution of fires for dif-
ferent values off/p. (The system sizé. was chosen large
enough to avoid finite-size effectOne can see in this figure
that fors between 100 and 1000(s) becomes steeper with
decreasingf/p, while for smallers values the twon(s)
curves coincide(The reason that they are not on top of each
other in the figure is that we have multiplied one of the
curves by 10 for better visibility Taking all available data
together, one finds that for largey the value off/p below
which the asymptotic value ai(s) (i.e., the value seen for
f/p—0) becomes visible, is smaller. One can expect that the
FIG. 2. (a) Superposition of the fire size distributionés) ofthe  slope will grow beyond the values visible in the figure, and
SOC forest fire model fot. =1300 andf/p=0.000 118(dashed  that only for sufficiently larges and sufficiently smallf/p,
Iine), 0.000 169(SO||d Iine), 0.00 236(SO||d Iine), and 0.000 394 its asymptotic limit value becomes visible. The Steepest
(dotted ling. In order to makeaghe curves collapse, the vertical axis.s|Ope occurring in this figure has the absolute vateel.3,
had to be scaled withf(p) ", using the effective exponenf”  which should be a lower bound to the asymptotic value:of
=1.14, which can be interpreted as an average exponent over [@he valuer=1.14 given in many earlier publications was
certain range ofs values. (b) Fire size distributionsn(s) for L obtained by taking some average value alar{g), which
=1300 andf/p=0.000 118 3(upper curvg and f/p=0.001183 |55 |ess than its steepest sidpescaling collapsdsee Fig.
(lower c_urve. The upper curve was shifted vertically by a fa_ct_or 2(a)] shows that the cutoff parts of the curves superimpose
C=10, in order to make the shapes of the two curves better V'S'blenicely, allowing us to derive a value=1.1, which does not
fit together with the scaling relation, E@). The same result
for X was obtained by Pastor-Satorras and Vespighh®ij
using a moment analysis, confirming that the cutoff shows
simple scaling behavior.
s diverges according to a power law in the linfitp— 0, Next, let us discuss the properties f(s). As f/p de-
implying that the sizes,,, of the largest fires also diverges, creases, the first part of's) does not change any more. This
and with it the correlation length which we define to be the indicates thatn,(s) reaches an asymptotic formy (s) as
radius of the largest fires. The cutoff fire sigg,, can be f/p—0, with a cutoff that depends ofYp. We therefore
expected to scale as write

_ p(1-p)
S=—F".

p )

Smax~ (f/p) 7, (4) N1(8) = N7 (S)C1(S/Smax fractal = N3 (S)Ca(s(f/p)™), (7)

with an exponent [3—5], which has a value close to 1.1. introducing the cutoff functioi®; (S/Smax fracta) fOr the distri-

This leads toe~ (f/p) ~M? since the fractal dimension of the bution of the fractal fires and assuming that the maximum
large fires is 2(In contrast, earlier work was based on the ffactal firé Size€Syay fractas SCalEs with an exponemt; . For

assumption that large and small fires have the same fractgfficiently larges, ni(s) will reach an asymptotic power
dimension, which was found to H2=1.96[5], with some  1aw with the “true” exponentr. We can estimate the value of

authors not ruling out the valug =2 [4,3].) 7 from the following argument: The large fractal fires stem
Let s be the number of trees burnt during a fire, ar{g) from the percolation clusters in those patches that have a tree

the size distribution of fires in the system, normalized suctfl€nsity close to the percolation threshqige.. Thus the
that fn(s)ds=p. Since each tree is struck by lightning with probability density of finding a cluster of sizeis propor-

the same probability, the size distribution of tree clusters idional to the probability thappacn of a large patch is large
proportional ton(s)/s. We write enough that percolation clusters of siexist, multiplied by

the probability density to find a cluster of sizén a system
(5) at the percolation threshold. The fire size distribution is pro-
portional tos times the cluster distribution, as we mentioned
above. The probability to find a cluster of sigén a perco-
lation system is determined by the size distribution of perco-
lation clusters:

n(s)=ny(s)+ny(s),

with n4(s) being the contribution from the smaller, fractal
fires, andn,(s) being the contribution from the compact fires
that burn an entire patch. If there was no qualitative differ-

ence between the two types of fires, the scaling law,(Ex. Ne (S)=s" e C.. (S/S 8
would hold, from which one could derive the scaling relation perd S) perd S/Smax.perd ®
with
A= ! 6
C2—7 © Smax,per(?c(Pperc_ ppatck)_gperc ©)
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and o ;= 91/36~2.528 andrpe,=187/9%2.055[18]. In D. The exponentd

these patches close to the percolation threshold, the tree den- aqgitional support for the picture that the fire size distri-
sity increases with time approximately &Syaci=P(1  pytion is the sum of two qualitatively different contributions
~ Pperd - Therefore, the probability that the density is within ¢omes from the scaling behavior of the tree density. It has

a distanceperc— PpatcnOf the percolation threshold is propor- peen known for a long time that the tree density approaches
tional to pperc— Pparchs @Nd the probability that a patch has jig critical value according to
tree clusters larger thasis proportional tos™ Y“rerc[see Eq.

(9)]. The probability that a fire of size occurs is conse- (pe—p)~(f1p)*,
quently proportional to
with 1/6=0.5 [3-5]. (The most recent and probably most

51— Tperc Uopere~ = 1.45 accurate value is 0.4719].) If the fire size distribution
obeyed the scaling law, E(L), one would expecé to follow
This means from
7=1.45. pc—p=f s "ds.
Smax

Next, let us estimate the cutoff exponent. As we have
seen above, the radigof the largest patches is proportional
to (f/p) M2 The size of the largest fractal tree clusters is
therefore proportional tof(p) ~Prerd’2 with the fractal di-
mension D¢ Of percolation clusters1.56, implying A\, 1/6=
=0.86. Beyond the cutoff size for fractal clusters, propor-

tional to (f/p) ™1, the size distribution of fires must be |, . . .
dominated by the compact fires and therefore by the siZ(\aN'th the apparent value afaround 1.14, this would result in

distribution of patches. Since,<\, the “bump” (which is a value of 16 much smaller than 0.47. With the asymptotic

dominated by the compact fineshould span a larger fraction valuer=1.45(see beloy L/awould have to be much larger
ed by -ompac P '9 than 0.47. It has been pointed out recently that the observed
of the fire size distribution for smallef/p. Figure Zb)

o value of § makes corrections to simple scaling necessary
shows that this is indeed the case. L
Assuming that the patch size distributiop,{s) scales, [19.]’ and a second contribution t(s) has been suggested,
t00, we suggest a scaling form whl_ch has_a Igrger exponent but the same _CL_Jtoff as the.
' main contribution, and which becomes negligible for suffi-
b2 —b ciently smallf/p and sufficiently larges. In contrast to these
Npatet( S) =SmaxS ™~ C2(S/Smax), (100 authors, we argue that there occur not merely corrections to
scaling, but that the scaling behavior of the SOC forest-fire
with s being the number of sites in a patch, asg,x  model is fundamentally different from simple scaling. For
«(f/p) ™ being the area of the largest patch. Since most ofhis reason, there is no relation between the expongaty]
the system is covered by large patchesnust be smaller 7, since there is no single exponentlescribing the entire
than 2, requiring the factt#,ﬂ(ai in EQ. (10) in order to nor- fire size distribution. Whether there exists another relation
malize [sn,,c{S)ds. The size distributionn,(s) for the  betweend and the fire size distributions, andn,, we do
compact clusters depends g (s), but the relation be- not know.
tween the two is nontrivial. The reason is the following:
Assume that a patch is struck by lightning always when its |;| sUPERPOSITION OF DIFFERENT TYPES OF FIRES
density is so far above the percolation threshold that it burns
down completely. In this case, the size distribution of the In order to show that the fire size distribution seen in
large fires would be proportional ®times the size distribu- Simulations can indeed be the result of the superposition of
tion of the patches. However, in this case patches wouldhe two mentioned types of fires, and in order to confirm that
never be destroyed. On the other hand, patches merge frothe asymptotic value of is 1.45, we superimposed the clus-
time to time with neighbors, when the neighbor reaches der size distributions of two-dimensional lattices that were
density above the percolation threshold before lightninghomogeneously covered with trees, and that had tree densi-
strikes the patch with the higher density. In order to obtain dies between pger he fre= 0.078  and pp,,=0.625, with
stationary patch size distribution, patches must therefore beeights derived from Eq2). This kind of superposition was
destroyed from time to time. This can only happen if they aresuggested by Claet al. in [16]. The values forp,ger the fire
hit by lightning with a nonvanishing probability as long as and pn,ox Were measured, for instance, [ib6]. But in addi-
their density is sufficiently close to the percolation thresholdtion to the superposition of the different tree densities we
such that smaller dense clusters of trees are left behind by thdso superimposed different lattice sizedistributed accord-
fire that can develop into small new patches. For this reasoimg to Eq. (10) with |=+/s and cutoffl ,.=&=/Smax The
the size distribution of the large fires is different fratimes  lattices thus represent patches of different sizes and densities.
the size distribution of patches. This will be seen also in thdn order to find the value of the exponemtwe performed
next section. superpositions for 20 different valuesiofrom 0.1 to 2. The

Assuming that conventional scaliigee Eq.(1)] holds and
using Egs.(4) and(6) this leads to

7—1

5.

9

026135-4



SELF-ORGANIZED CRITICAL FOREST-FIRE MODE. . . PHYSICAL REVIEW E 65 026135

n(s)
n(1)s

FIG. 3. (a) Size distribution of tree clustergs)/sn(1) resulting
from the superposition of lattices with,,,=50 andb= 0.6 (solid
line: square lattice; dotted line: triangular latticand a power law
with the exponentr+1=2.14 (dashed ling (b) The same for
I max=2000 andb=0.6, compared to a power law with the exponent  FIG. 4. Snapshot of the coarse-grained forest-fire model for
7+1=2.45. The tree densities we used cover the intef0#)78, p=0.01, r=0.1, f=0.0001, andL=1000. The tree density of a
0.629 for the square lattice anfD.062, 0.53% for the triangular  site is represented by its gray shade, with larger densities being
lattice. darker.

results did not depend very much dnas long asb was

smaller than 1, suggesting that the valuebo$ in the inter- patch. This consideration should hold for any valuesgi,.

val (0,2, but not allowing us to fix it more precisely. The !
results are only reproducible when the statistics are suffiyve expect, therefore, the value pfs to decrease slightly

ciently good. For this reason, we had to superimpogeat0 W'th INCreasinGSmax, such that there is always a nonvanish-
more systems. ing contrlbuthn ton(s) of clusters that are large but do not
The results are shown in Figs(a3 and 3b). Please note cover the entire patch. -
. . . o We conclude that the superposition of homogeneous
that these figures give cluster size distributior(s)/s and : )
. ) oI . patches reproduces important features of the SOC FFM. It is
not fire size distributions(s), i.e., the exponents are larger | ffici f studving th . fl
by 1. Figure 8a) shows that the apparent exponent1.14 also an efficient way oOf studying the regime of large corre-
- L7 : , . lation length, which is not accessible to direct computer
typically found in simulations of the 2D forest fire model is _. :
- imulations.
reproduced by the superposition. The smaller slope for smaﬁ
s, and the bump followed by the cutoff, are reproduced as
well. We have performed this superposition also for a trian- IV. A COARSE-GRAINED FOREST-FIRE MODEL
gular lattice. This lattice is most easily implemented by tak-
ing a square lattice and including next-nearest-neighbor cou-
plings along one of the diagonals in each unit cell. As for the In order to be able to study larger systems, we introduced
square lattice, the range of tree densities was obtained from coarse-grained model where each site stands for a group of
simulations of the SOC model, and was found to cover thesites in the original model. The variable at each site of this
interval [0.062, 0.534 One can see that the apparent expo-coarse-grained model is the local tree dengity,, ranging
nent 7 is the same as for the square lattice, explaining theontinuously from 0 to 1. The rules of our coarse-grained
“universality” of this exponent with respect to a change of model are the following(i) the density at all sites increases
the lattice type found earligb]. (All other figures shown in  per time step by a small amouttpg.=p(1—psie); (ii)
this paper are for the square lattice opligure 3b) shows  Lightning strikes each site with a probabilitylf the density
that the distributions of the two cluster types separate foof this site is below the percolation threshagge,=0.59,
larger correlation lengtld, and that the slope of the part of nothing happens. If the tree density on a site struck by light-
the curve that stems from fractal clusters tends+dl.45 as  ning is above the percolation thresheigl,., this site and the
we calculated in Sec. Il. A similar effect will be found in the entire cluster of sites above the percolation threshold con-
coarse-grained model discussed in the next sefiompare  nected to it burn down. The density on a site after a fire is a
Fig. 5@]. random number between 0 amd The parameter takes
Our results show also that the size distribution of the largshort-range fluctuations in the density into account. The
est fires is related to the size distribution of patches in asmallerr, the smaller the density fluctuations. Smatewon-
nontrivial way, as mentioned in the previous section. If allsequently means that the density at each site is the average of
large fires did burn complete patches, the bump of the fira larger number of sites in the original model. We therefore
size distribution would have a slopeb+1, which is posi- expect the coarse-grained model for snmaib resemble the
tive. Since this is not the case, many tree clusters must beriginal FFM for largeé.

contributing ton(s) that are large but do not cover the entire

A. Definition of the model
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L TR— = = FIG. 6. Fire size distributions of the coarse grained model for
log,(s) A r=0.1 (dashed curve r=0.2 (solid curve, and r=0.5 (dotted
curve. L=1000 andf/p=0.01 for all systems.

FIG. 5. (a) Fire size distributionn(s)/n(1) of the coarse-
grained forest-fire model fof/p=0.0031 (dotted curvg 0.005,  grained model resembles the original model on larger scales.
0.01, 0.0125, 0.025, and 0.Q8ashed curve with the parameters  For smallerr, the cutoff becomes larger. The reason is that
r=0.1 andL=1000. (b) Slopes of the curves shown i@. (©)  for smallerr a site of the coarse-grained model corresponds
Collapse of the fire size distributions ). In order to make the to more sites of the original model. The same lightning prob-
curves collapse, the vertical axis had to be scaled with) "™, ability  per site in the coarse-grained model corresponds to a
using the effective exponent'=1.25, which can be interpreted as gmgller lightning probability in the original model wheris
an average exponent over a certain rangs edlues. smaller.
Let us now estimate how many site§) of the original
B. Properties of the coarse-grained forest fire model model correspond to a site in the coarse-grained model with

Although the coarse-grained model is not exactly theParameter. From Fig. 2a) we find that
same as the original FFM, it shares many of its features.
Figure 4 shows a snapshot of the coarse-grained model for
r=0.1. The figure shows a patchy structure similar to the one
in Fig. 1. In many patches one can see sites of two differenfyith A=30. Similarly, we have for the coarse-grained model
densities. This indicates that lighting often strikes a patch
before all of its sitegwhich cover a range of densities of the
width r) have a local density above the percolation threshold, Smax=B(r)(f/p) ™.
leaving behind some sites with a density just below the per- _ _
colation threshold. If this happens several times within the="om Fig. &c) we estimateB(0.1)=100, and from the data
same patch, one can expect the patch to be destroyed affown in Fig. 6 we then obtaiB(0.2)=66 and B(0.5)
replaced by a set of smaller patches. Such processes of birth44. NOW, Sy, sites in the coarse-grained model correspond
and death of patches are not considered further in this pape® Z(')Smax Sites in the original model, anflin the coarse-
but of course they occur also in the original FFM, as can b&rained model corresponds to a lightning probabifitg(r)
seen in Fig. 1. As we have mentioned above, creation of newer site in the original model. Therefore we have
small patches must occur in order to balance merging and
growth of patches in the stationary state. _ _

Next, let us consider the size distribution of fires in the B(N)(t/p) " =A(f/p2) "z,
coarse-grained model. Figuréab shows our simulation re-

Smax=A(f/p) B

sults forr=0.1 and different values df/p. One can clearly leading to

see that the slope becomes steeper with decredsmgnd

appears to approach a limit slope. Figur@)5shows the z(r)=[B(r)/AJ¥*D=[B(r)/A]™,

slopesd logn(s)/d(logs) as function of log$), indicating

that the predicted limit value 1.45 is indeed correct. resulting in z(0.5)=46, 2z(0.2)=2650, and Zz(0.1)

Figure Jc) shows a collapse of the cutoff parts of the =170 000. The length scales of the coarse-grained model are
curves, givingh=1.1, just as in the original forest-fire reduced by factors of the order 7, 50, and 400 for these three
model. We also performed a moment analysis of the fire-size values, compared to the original model.
distribution, giving the same result=1.1. A direct comparison of a fire size distribution of the origi-

Figure 6 shows the fire size distributior(s) for three  nal model and one of the coarse-grained model wit0.5
different values of, and for the samé&/p=0.01. For smaller confirms these findings. We searched for two fire size distri-
r, the slope becomes steeper and the cutoff bump becomésitions such that the ratios of théivalues and the ratios of
more pronounced, indicating that for smallethe coarse- their s,,, values are similar. This ratio turned out to be
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S~ T IR the artificial superposition of the two types of fires, and by
] the introduction of a coarse-grained FFM.
: E One of our main results is that the asymptotic exponent
2[ ] for the fire size distribution is=1.45, and is visible only at
: 3 length scales not accessible to present-day computer simula-
):— - tions. For values of the correlation length typically seen in
n(1) g ] computer simulations, the exponenhas an apparent value
u 7 that is smaller, and which seems to be insensitive to the
i \ ] lattice type used in the simulations. Furthermore, we found
1071 '\ that the cutoff exponenk has an universal valug=1.1,
P Y which is measured in the original FFM as well as in the
10° 10" 10° 10 coarse-grained FFM for different simulation parameters. The
As robustness of this exponent is additionally supported by our
FIG. 7. Comparison of the fire distributiomgs) obtained for ~ €arlier finding that the correlation length shows nice scaling
the original SOC forest-fire model for=0.00000156p=0.01, behavior in a generalized model where trees can be immune
andL =800 (dashed lineC=41, A=1), and for the coarse grained 1O fire [20].
model forr=0.5, f=0.000 05,p=0.01, andL = 1000 (solid line, We could not find the precise form of the size distribution
C=1, A=44.9%). The ratio between the two cutoff#, is the  of patches, although we presented evidence that it should be
same as the inverse ratio between the two lightning probabifities characterized by an exponebtsmaller than 1. The patch
size distribution is the result of a slow and highly nontrivial

around 45, as shown in Fig. 7, and in agreement with th&rocess of birth and merging and destruction of patches. This

finding of the previous paragraph. Figure 7 shows also th rocess also determines the size distribution of the large
the shapes of the two fire-size distributions, while similar, ar |re|s, for which wehcould not give an anﬁjlyncal ;xpressk:on.
not identical. Identical shapes cannot be expected, since the | n ct;ntr:ast to the efxponervtlwg cl:ou not er\ll\\//e the
coarse-grained model is not completely identical to the origi-Va ue IO the e;:pof‘e“‘ rom Tma yt'fa arggmﬁnts.h € can-
nal model on larger scales. For instance, inhomogeneitie'gOt rule out that its true value is=1, and that there are
arising in the original model within an area of siz¢r) logarithmic corrections that make it appear slightly larger
cannot occur in the coarse-grained model. This explains thg‘an 1. , . o
difference in shape on small scales. On large scales, the dif- S We have shown, several scaling relations familiar from

ference in the shape of the cutoff is probably due to the facrt:_onventional critical systems and in particular from percola-

that the process of slow destruction of large patches idon theory do POt hold ir;_éh_e SOC.'.:F':A' Instead,htherlleM Is
slightly different in the two models. In both cases, lightning® "€W type of nonequilibrium critical system that has no
strokes hitting the patch when its density is only Slightlyequwalent in equmbrlum physics. It is characterized by dif-
above the percolation threshold make the patch more ith_erer_\t p_hen_omena on_d|ffer¢nt sgales, and by a patchy struc-
mogeneous. In the coarse-grained model, this leads to sit dre |nd|_cat|ng that ne_|ghbor|ng sites tend_to be synchronized
belonging to two widely different density intervals, as men- y bur.nlngddoyvn d#rmg the same Igrge Ereis. h h
tioned further above in the context of Fig. 4. In the original  BY Introducing the coarse-grained model, we have shown

model, this leads to a couple of smaller dense tree cluster@at there exists an entire class of models that share the same
being ’Ieft behind by the fire, as can be concluded frommai” features of a patchy structure and two qualitatively dif-
Fig. 1. ’ ferent types of fires, the asymptotic exponent1.45, and

To conclude this section, our coarse-grained model, whilén€ cutoff exponenk =1.1, while details such as the precise
not being exactly equivalent to the original model, shows the?"@P€ Of the cutoff and the precise mechanism of birth and
features expected of the original model on larger scales angestruction of pa_tches may Q|ffer.
confirms in particular the universality of the exponarand We S,hOUId point out that it is unclear vyhether t.he behav-
our conjecture that the exponentas an asymptotic value ior in higher dimensions resembles that in Fwo dlmenS|.ons.
around 1.45. The detailed mechanism of birth and destrucc'early, as long as the “patchy” structure with two qualita-
tion of patches is somewhat different in the two models andiVely different types of fire occurs, the mean-field theory

leads to different shapes of the fire size distributions at smaff?at neglects all spatial structuf21-23 cannot apply, and
sand for the largess. the system must be below its upper critical dimension.

Our results show that SOC can be caused by mechanisms
fundamentally different from equilibrium critical phenom-

V. DISCUSSION ena. It remains_ to be seen to V\_/hat extent different models are

governed by different mechanisms. One clearly has to make

In this paper, we have argued that the fire size distributiora distinction between conservative models, such as the sand-

in the SOC FFM is the result of the superposition of two pile model, where energy can only be dissipated at the edges,
types of fires. The smaller ones are fractal percolation clusand nonconservative models such as the forest-fire model.
ters, while the larger fires are compact and burn down &he unusual scaling behavior of the two-dimensional Abe-
patch of a tree density above the percolation threshold. Wian sandpile model is related to the multiple waves of top-
supported this picture by a direct analysis of the model, bylings and is not observed in higher dimensions or other
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sandpile models. In contrast, the SOC behavior of the forestelated models, like a recently introduced threshold model
fire model seems to be closely related to the patchy structur¢26], are yet too poorly investigated, but it can be expected
which implies a partial local synchronization. We expect thatthat local synchronization and qualitatively different types of
other nonconservative SOC systems are driven to criticalityvalanches are also important in these systems.

by mechanisms similar to the ones found in the FFM. This

applies in particular to the SOC earthquake md@glwhere

a patchy structure with partial synchronization of neighbor- ACKNOWLEDGMENTS
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