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Self-organized critical forest-fire model on large scales
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We discuss the scaling behavior of the self-organized critical forest-fire model on large length scales. As
indicated in earlier publications, the forest-fire model does not show conventional critical scaling, but has two
qualitatively different types of fires that superimpose to give the effective exponents typically measured in
simulations. We show that this explains not only why the exponent characterizing the fire-size distribution
changes with increasing correlation length, but allows us also to predict its asymptotic value. We support our
arguments by computer simulations of a coarse-grained model, by scaling arguments and by analyzing states
that are created artificially by superimposing the two types of fires.
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I. INTRODUCTION

During the past years, systems that exhibit self-organi
criticality ~SOC! have attracted much attention, since th
might explain part of the abundance of fractal structures
nature@1#. Their common features are slow driving or ener
input and rare dissipation events that are instantaneous o
time scale of driving. In the stationary state, the size dis
bution of dissipation events obeys a power law, irrespec
of initial conditions and without the need to fine tune para
eters. Examples of such systems are the sandpile mode@1#,
the self-organized critical forest-fire model~FFM! @2–5#, the
earthquake model by Olami, Feder, and Christensen@6#, and
the Bak-Sneppen model@7,8#. A recent review on the litera
ture on SOC can be found, for instance, in@9#.

The study of SOC models is usually based on the assu
tion that the size distributionn(s) of dissipation events~ava-
lanches, fires, earthquakes! shows the scaling behavior fami
iar from equilibrium critical systems,

n~s!.s2tC~s/smax!, ~1!

with a cutoff functionC that is constant for small argumen
and decays exponentially fast when the argument is con
erably larger than 1. The cutoff cluster sizesmax is related to
the correlation lengthj via smax;jD, with D being the fractal
dimension of the dissipation events.~If the cutoff is set by
the system sizeL, j must be replaced withL.! This holds
indeed for some self organized critical systems, like the B
Sneppen model, but it has been known for some time th
does not hold for the two-dimensional Abelian sandp
model@10#. Very recent work has shown that this violation
simple scaling in the sandpile model is due to the existe
of multiple waves of topplings, and some features of
correct scaling behavior have been worked out@11,12#. Vio-
lation of finite-size scaling is also seen in the abov
mentioned earthquake model@13#.

*Present address: Technischen Universita¨t München, James
Franck Strasse, D-85747 Garching, Germany
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During recent years, evidence has accumulated that
two-dimensional SOC forest-fire model does not sh
simple scaling either. Instead, there are more than one
verging length scale@14#, the behavior of the model for tre
densities just above the critical density is completely diff
ent from that of conventional critical systems@15,16#, and
finite-size scaling is violated@17#. A scaling collapse based
on Eq. ~1! gives a good overlap of the tails of the distrib
tion, but not so much of the first part, where the slope~i.e.,
the exponentt! seems to increase slightly with increasin
correlation length~see, e.g.,@4#, and Fig. 2 below!. We have
suggested@17# that all these features are due to the fact t
there are two qualitatively different types of fires in the sy
tem: smaller, fractal fires that occur in regions of low tr
density and burn a tree cluster that resembles a percola
cluster, and larger compact fires that burn a patch of a
density above the percolation threshold.

The purpose of this paper is to show how these two ty
of fires add up to give the distributions typically seen
computer simulations, and to derive the asymptotic prop
ties of the fire size distribution in the limit of very larg
correlation length. In particular, we will derive th
asymptotic value of the exponent of the fire size distributio
toward which it should converge for sufficiently large corr
lation length. We support our arguments by three differ
types of evidence that all lead to the same conclusions~i!
Scaling arguments based on the superposition of the m
tioned two types of fires;~ii ! The fire size distributions re
sulting from the ~artificial! superposition of the fires o
patches of different tree densities and different sizes;~iii !
Computer simulations of a coarse-grained model that al
us to numerically study systems with much larger correlat
length than has been possible so far. The outline of the pa
is as follows: In the next section, we will derive scaling law
and analytical expressions for the fire size distribution res
ing from the assumption that the forest-fire model is co
posed of patches of different sizes and different tree de
ties. Then, in Sec. III we will show numerical data that res
from the superposition of fires from artificially generate
patches of different sizes and densities. In Sec. IV, we w
present and study a coarse-grained forest-fire model w
©2002 The American Physical Society35-1
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each lattice site stands for a group of several sites in
original model. Finally, we will discuss our findings.

II. SCALING PROPERTIES OF THE SOC FOREST-FIRE
MODEL

A. The definition of the model

The SOC forest-fire model is usually studied on a squ
lattice withL2 sites. Each site is either occupied by a tree,
is empty. At each time step, all sites are updated in para
according to the following rules:~i! An empty site becomes
occupied by a tree with probabilityp, ~ii ! A tree is struck by
lightning with probabilityf. This tree and the whole cluste
of trees connected to it~by nearest-neighbor coupling! burn
down and become empty sites.

B. Two types of fires determine the dynamics of the SOC
forest fire model

As long asp and f are so small that fires do not interfe
with each other or with tree growth, the stationary behav
of the model depends only on the ratiof /p, but not on the
two parameters separately. After some time, the sys
reaches a stationary state with a mean tree densityr and a
mean fire sizes̄. A snapshot of the two-dimensional~2D!
system in the stationary state is shown in Fig. 1. One can
that it consists of patches of different tree densities and
ferent sizes. Some of the patches have a high tree den
and if they are struck by lightning, the entire patch bur
down, with only few trees being left. After the fire, the tre
densityrpatch(t) of the patch grows again according to

ṙpatch~ t !5p„12rpatch~ t !… ~2!

until it is hit by the next lightning stroke. This mechanism

FIG. 1. Snapshot of the SOC forest-fire model forr.rc

.0.408 and system sizeL54096. Trees are black and empty sit
are white.
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growth and burning down of forest clusters produces
patchy structure seen in Fig. 1, which is characterized by
following properties.

~a! The patches are almost homogeneously covered w
trees. This is because a fire that burns a patch usually le
only a few trees behind.~We found that the local tree densit
within a patch immediately after a fire is typically 0.078 fo
the 2D square lattice and 0.062 for the 2D triangular lattic!.
Thus the random tree growth leads to a uniform tree den
within the patch. The size distribution of tree clusters with
a patch is therefore similar to the size distribution of clust
in a percolation system of the same density.~By ‘‘percola-
tion’’ we mean ‘‘uncorrelated percolation’’ throughout th
paper. For an introduction to percolation theory, see@18#.!
The fact that several patches contain larger dense tree
ters indicates that some fires leave behind small clusters
can become seeds of new patches. This process of birth
death of patches, which happens on a slower time scale,
not affect our main argument.

~b! It can be assumed that the distribution of patch size
independent of their tree density, because a fire in most c
hardly changes the size of a patch. Thus, the size of m
patches is the same for high and low tree density.

~c! Some patches have a tree density above the perc
tion threshold. These patches contain a spanning cluster
is compact, i.e., has the fractal dimension 2. When suc
patch is struck by lightning, a compact fire occurs that bu
the spanning cluster. If lightning strikes a patch of low tr
density~below the percolation threshold!, only a small, frac-
tal cluster of trees burns down, and only part of the patch
affected by the fire. If the mean fire size is large~i.e., if f /p
is small!, most trees burn down during large fires, and m
of the empty sites are created during the large compact fi
resulting in the above-mentioned low local tree density i
mediately after a fire.

~d! The size of the largest patch diverges forf /p→0,
suggesting that the system is close to a critical point and
be characterized by power laws. Several such power l
will be mentioned further below.

The two types of fires mentioned add up to give the d
tributions typically seen in computer simulations, and e
plain the unconventional behavior of the forest fire mod
mentioned in the previous section. The left part of the fi
size distribution of the forest fire model@see Fig. 2~b!# is
mainly due to fires burning fractal percolation clusters, a
the cutoff part is due to large compact fires. In contrast,
conventional critical systems the power-law part and the c
off part are due to the same type of critical fluctuation
Since the two parts of the distribution become clearly se
rated only for very largej, as we will show below, the
asymptotic exponent of the fire-size distribution is not visib
in present-day computer simulations.

C. The scaling behavior

In the stationary state, the mean number of growing tr
must equal the mean number of trees burning down, lead
to @2#
5-2
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s̄5
p~12r!

f r
. ~3!

s̄ diverges according to a power law in the limitf /p→0,
implying that the sizesmax of the largest fires also diverge
and with it the correlation lengthj, which we define to be the
radius of the largest fires. The cutoff fire sizesmax can be
expected to scale as

smax;~ f /p!2l, ~4!

with an exponentl @3–5#, which has a value close to 1.1
This leads toj;( f /p)2l/2 since the fractal dimension of th
large fires is 2.~In contrast, earlier work was based on t
assumption that large and small fires have the same fra
dimension, which was found to beD.1.96 @5#, with some
authors not ruling out the valueD52 @4,3#.!

Let s be the number of trees burnt during a fire, andn(s)
the size distribution of fires in the system, normalized su
that*n(s)ds5r. Since each tree is struck by lightning wit
the same probability, the size distribution of tree clusters
proportional ton(s)/s. We write

n~s!5n1~s!1n2~s!, ~5!

with n1(s) being the contribution from the smaller, fract
fires, andn2(s) being the contribution from the compact fire
that burn an entire patch. If there was no qualitative diff
ence between the two types of fires, the scaling law, Eq.~1!,
would hold, from which one could derive the scaling relati

l5
1

22t
. ~6!

FIG. 2. ~a! Superposition of the fire size distributionsn(s) of the
SOC forest fire model forL51300 andf /p50.000 118~dashed
line!, 0.000 169~solid line!, 0.00 236~solid line!, and 0.000 394
~dotted line!. In order to make the curves collapse, the vertical a

had to be scaled with (f /p)2ltav
, using the effective exponenttav

51.14, which can be interpreted as an average exponent ov
certain range ofs values. ~b! Fire size distributionsn(s) for L
51300 and f /p50.000 118 3~upper curve! and f /p50.001 183
~lower curve!. The upper curve was shifted vertically by a fact
C510, in order to make the shapes of the two curves better vis
02613
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~This is obtained from the conditions̄5*1
`sn(s)ds/r and is

given in many earlier publications.! However, since we have
two different types of fires, we cannot expect this relation
hold. Figure 2~b! shows the size distribution of fires for dif
ferent values off /p. ~The system sizeL was chosen large
enough to avoid finite-size effects.! One can see in this figure
that fors between 100 and 1000,n(s) becomes steeper with
decreasingf /p, while for smaller s values the twon(s)
curves coincide.~The reason that they are not on top of ea
other in the figure is that we have multiplied one of t
curves by 10 for better visibility!. Taking all available data
together, one finds that for largers, the value off /p below
which the asymptotic value ofn(s) ~i.e., the value seen fo
f /p→0! becomes visible, is smaller. One can expect that
slope will grow beyond the values visible in the figure, a
that only for sufficiently larges and sufficiently smallf /p,
its asymptotic limit value becomes visible. The steep
slope occurring in this figure has the absolute valuet51.3,
which should be a lower bound to the asymptotic value ot.
@The valuet.1.14 given in many earlier publications wa
obtained by taking some average value alongn(s), which
was less than its steepest slope.# A scaling collapse@see Fig.
2~a!# shows that the cutoff parts of the curves superimp
nicely, allowing us to derive a valuel.1.1, which does not
fit together with the scaling relation, Eq.~6!. The same result
for l was obtained by Pastor-Satorras and Vespignani@19#
using a moment analysis, confirming that the cutoff sho
simple scaling behavior.

Next, let us discuss the properties ofn1(s). As f /p de-
creases, the first part ofn(s) does not change any more. Th
indicates thatn1(s) reaches an asymptotic formn1* (s) as
f /p→0, with a cutoff that depends onf /p. We therefore
write

n1~s!5n1* ~s!C1~s/smax,fractal!5n1* ~s!C1„s~ f /p!l1
…, ~7!

introducing the cutoff functionC1(s/smax,fractal) for the distri-
bution of the fractal fires and assuming that the maxim
fractal fire sizesmax,fractal scales with an exponentl1 . For
sufficiently larges, n1* (s) will reach an asymptotic powe
law with the ‘‘true’’ exponentt. We can estimate the value o
t from the following argument: The large fractal fires ste
from the percolation clusters in those patches that have a
density close to the percolation thresholdrperc. Thus the
probability density of finding a cluster of sizes is propor-
tional to the probability thatrpatch of a large patch is large
enough that percolation clusters of sizes exist, multiplied by
the probability density to find a cluster of sizes in a system
at the percolation threshold. The fire size distribution is p
portional tos times the cluster distribution, as we mention
above. The probability to find a cluster of sizes in a perco-
lation system is determined by the size distribution of per
lation clusters:

nperc~s!.s2tpercCperc~s/smax,perc! ~8!

with

smax,perc}~rperc2rpatch!
2sperc ~9!

s

r a

e.
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and sperc591/36'2.528 andtperc5187/91'2.055 @18#. In
these patches close to the percolation threshold, the tree
sity increases with time approximately asṙpatch5p(1
2rperc). Therefore, the probability that the density is with
a distancerperc2rpatchof the percolation threshold is propo
tional to rperc2rpatch, and the probability that a patch ha
tree clusters larger thans is proportional tos21/sperc @see Eq.
~9!#. The probability that a fire of sizes occurs is conse-
quently proportional to

s12tperc21/sperc.s21.45.

This means

t.1.45.

Next, let us estimate the cutoff exponentl1 . As we have
seen above, the radiusj of the largest patches is proportion
to ( f /p)2l/2. The size of the largest fractal tree clusters
therefore proportional to (f /p)2Dpercl/2, with the fractal di-
mension Dperc of percolation clusters.1.56, implying l1
.0.86. Beyond the cutoff size for fractal clusters, prop
tional to (f /p)2l1, the size distribution of fires must b
dominated by the compact fires and therefore by the
distribution of patches. Sincel1,l, the ‘‘bump’’ ~which is
dominated by the compact fires! should span a larger fractio
of the fire size distribution for smallerf /p. Figure 2~b!
shows that this is indeed the case.

Assuming that the patch size distributionnpatch(s) scales,
too, we suggest a scaling form

npatch~s!.smax
b22s2bC2~s/smax!, ~10!

with s being the number of sites in a patch, andsmax
}(f/p)2l being the area of the largest patch. Since mos
the system is covered by large patches,b must be smaller
than 2, requiring the factorsmax

b22 in Eq. ~10! in order to nor-
malize *snpatch(s)ds. The size distributionn2(s) for the
compact clusters depends onnpatch(s), but the relation be-
tween the two is nontrivial. The reason is the followin
Assume that a patch is struck by lightning always when
density is so far above the percolation threshold that it bu
down completely. In this case, the size distribution of t
large fires would be proportional tos times the size distribu-
tion of the patches. However, in this case patches wo
never be destroyed. On the other hand, patches merge
time to time with neighbors, when the neighbor reache
density above the percolation threshold before lightn
strikes the patch with the higher density. In order to obtai
stationary patch size distribution, patches must therefore
destroyed from time to time. This can only happen if they
hit by lightning with a nonvanishing probability as long a
their density is sufficiently close to the percolation thresho
such that smaller dense clusters of trees are left behind by
fire that can develop into small new patches. For this rea
the size distribution of the large fires is different froms times
the size distribution of patches. This will be seen also in
next section.
02613
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D. The exponentd

Additional support for the picture that the fire size dist
bution is the sum of two qualitatively different contribution
comes from the scaling behavior of the tree density. It h
been known for a long time that the tree density approac
its critical value according to

~rc2r!;~ f /p!1/d,

with 1/d.0.5 @3–5#. ~The most recent and probably mo
accurate value is 0.47@19#.! If the fire size distribution
obeyed the scaling law, Eq.~1!, one would expectd to follow
from

rc2r5E
smax

`

s2tds.

Assuming that conventional scaling@see Eq.~1!# holds and
using Eqs.~4! and ~6! this leads to

1/d5
t21

22t
.

With the apparent value oft around 1.14, this would result in
a value of 1/d much smaller than 0.47. With the asymptot
valuet51.45~see below!, 1/d would have to be much large
than 0.47. It has been pointed out recently that the obse
value of d makes corrections to simple scaling necess
@19#, and a second contribution ton(s) has been suggested
which has a larger exponentt but the same cutoff as th
main contribution, and which becomes negligible for suf
ciently smallf /p and sufficiently larges. In contrast to these
authors, we argue that there occur not merely correction
scaling, but that the scaling behavior of the SOC forest-
model is fundamentally different from simple scaling. F
this reason, there is no relation between the exponentsd and
t, since there is no single exponentt describing the entire
fire size distribution. Whether there exists another relat
betweend and the fire size distributionsn1 and n2 , we do
not know.

III. SUPERPOSITION OF DIFFERENT TYPES OF FIRES

In order to show that the fire size distribution seen
simulations can indeed be the result of the superposition
the two mentioned types of fires, and in order to confirm t
the asymptotic value oft is 1.45, we superimposed the clu
ter size distributions of two-dimensional lattices that we
homogeneously covered with trees, and that had tree de
ties between rafter the fire50.078 and rmax50.625, with
weights derived from Eq.~2!. This kind of superposition was
suggested by Claret al. in @16#. The values forrafter the fire
and rmax were measured, for instance, in@16#. But in addi-
tion to the superposition of the different tree densities
also superimposed different lattice sizesl, distributed accord-
ing to Eq. ~10! with l 5As and cutoff l max5j5Asmax. The
lattices thus represent patches of different sizes and dens
In order to find the value of the exponentb, we performed
superpositions for 20 different values ofb from 0.1 to 2. The
5-4
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results did not depend very much onb as long asb was
smaller than 1, suggesting that the value ofb is in the inter-
val ~0,1!, but not allowing us to fix it more precisely. Th
results are only reproducible when the statistics are su
ciently good. For this reason, we had to superimpose 104 or
more systems.

The results are shown in Figs. 3~a! and 3~b!. Please note
that these figures give cluster size distributionsn(s)/s and
not fire size distributionsn(s), i.e., the exponents are large
by 1. Figure 3~a! shows that the apparent exponentt'1.14
typically found in simulations of the 2D forest fire model
reproduced by the superposition. The smaller slope for sm
s, and the bump followed by the cutoff, are reproduced
well. We have performed this superposition also for a tria
gular lattice. This lattice is most easily implemented by ta
ing a square lattice and including next-nearest-neighbor c
plings along one of the diagonals in each unit cell. As for
square lattice, the range of tree densities was obtained f
simulations of the SOC model, and was found to cover
interval @0.062, 0.534#. One can see that the apparent exp
nent t is the same as for the square lattice, explaining
‘‘universality’’ of this exponent with respect to a change
the lattice type found earlier@5#. ~All other figures shown in
this paper are for the square lattice only.! Figure 3~b! shows
that the distributions of the two cluster types separate
larger correlation lengthj, and that the slope of the part o
the curve that stems from fractal clusters tends tot51.45 as
we calculated in Sec. II. A similar effect will be found in th
coarse-grained model discussed in the next section@compare
Fig. 5~a!#.

Our results show also that the size distribution of the la
est fires is related to the size distribution of patches in
nontrivial way, as mentioned in the previous section. If
large fires did burn complete patches, the bump of the
size distribution would have a slope2b11, which is posi-
tive. Since this is not the case, many tree clusters mus

FIG. 3. ~a! Size distribution of tree clustersn(s)/sn(1) resulting
from the superposition of lattices withl max550 andb50.6 ~solid
line: square lattice; dotted line: triangular lattice!, and a power law
with the exponentt1152.14 ~dashed line!. ~b! The same for
l max52000 andb50.6, compared to a power law with the expone
t1152.45. The tree densities we used cover the interval@0.078,
0.625# for the square lattice and@0.062, 0.534# for the triangular
lattice.
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contributing ton(s) that are large but do not cover the enti
patch. This consideration should hold for any value ofsmax.
We expect, therefore, the value ofrmax to decrease slightly
with increasingsmax, such that there is always a nonvanis
ing contribution ton(s) of clusters that are large but do no
cover the entire patch.

We conclude that the superposition of homogene
patches reproduces important features of the SOC FFM.
also an efficient way of studying the regime of large cor
lation length, which is not accessible to direct compu
simulations.

IV. A COARSE-GRAINED FOREST-FIRE MODEL

A. Definition of the model

In order to be able to study larger systems, we introdu
a coarse-grained model where each site stands for a grou
sites in the original model. The variable at each site of t
coarse-grained model is the local tree densityrsite, ranging
continuously from 0 to 1. The rules of our coarse-grain
model are the following:~i! the density at all sites increase
per time step by a small amountDrsite5p(12rsite); ~ii !
Lightning strikes each site with a probabilityf. If the density
of this site is below the percolation thresholdrperc50.59,
nothing happens. If the tree density on a site struck by lig
ning is above the percolation thresholdrperc, this site and the
entire cluster of sites above the percolation threshold c
nected to it burn down. The density on a site after a fire i
random number between 0 andr. The parameterr takes
short-range fluctuations in the density into account. T
smallerr, the smaller the density fluctuations. Smallerr con-
sequently means that the density at each site is the avera
a larger number of sites in the original model. We therefo
expect the coarse-grained model for smallr to resemble the
original FFM for largej.

t FIG. 4. Snapshot of the coarse-grained forest-fire model
p50.01, r50.1, f50.0001, andL51000. The tree density of a
site is represented by its gray shade, with larger densities b
darker.
5-5
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B. Properties of the coarse-grained forest fire model

Although the coarse-grained model is not exactly
same as the original FFM, it shares many of its featu
Figure 4 shows a snapshot of the coarse-grained mode
r 50.1. The figure shows a patchy structure similar to the
in Fig. 1. In many patches one can see sites of two differ
densities. This indicates that lighting often strikes a pa
before all of its sites~which cover a range of densities of th
width r! have a local density above the percolation thresho
leaving behind some sites with a density just below the p
colation threshold. If this happens several times within
same patch, one can expect the patch to be destroyed
replaced by a set of smaller patches. Such processes of
and death of patches are not considered further in this pa
but of course they occur also in the original FFM, as can
seen in Fig. 1. As we have mentioned above, creation of n
small patches must occur in order to balance merging
growth of patches in the stationary state.

Next, let us consider the size distribution of fires in t
coarse-grained model. Figure 5~a! shows our simulation re
sults forr 50.1 and different values off /p. One can clearly
see that the slope becomes steeper with decreasingf /p and
appears to approach a limit slope. Figure 5~b! shows the
slopesd logn(s)/d(logs) as function of log(s), indicating
that the predicted limit value 1.45 is indeed correct.

Figure 5~c! shows a collapse of the cutoff parts of th
curves, giving l.1.1, just as in the original forest-fir
model. We also performed a moment analysis of the fire-s
distribution, giving the same resultl.1.1.

Figure 6 shows the fire size distributionn(s) for three
different values ofr, and for the samef /p50.01. For smaller
r, the slope becomes steeper and the cutoff bump beco
more pronounced, indicating that for smallerr the coarse-

FIG. 5. ~a! Fire size distributionn(s)/n(1) of the coarse-
grained forest-fire model forf /p50.0031 ~dotted curve!, 0.005,
0.01, 0.0125, 0.025, and 0.05~dashed curve!, with the parameters
r 50.1 andL51000. ~b! Slopes of the curves shown in~a!. ~c!
Collapse of the fire size distributions of~a!. In order to make the

curves collapse, the vertical axis had to be scaled with (f /p)2ltav
,

using the effective exponenttav51.25, which can be interpreted a
an average exponent over a certain range ofs values.
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grained model resembles the original model on larger sca
For smallerr, the cutoff becomes larger. The reason is th
for smallerr a site of the coarse-grained model correspon
to more sites of the original model. The same lightning pro
ability f per site in the coarse-grained model corresponds
smaller lightning probability in the original model whenr is
smaller.

Let us now estimate how many sitesz(r ) of the original
model correspond to a site in the coarse-grained model w
parameterr. From Fig. 2~a! we find that

smax5A~ f /p!2l

with A.30. Similarly, we have for the coarse-grained mod

smax5B~r !~ f /p!2l.

From Fig. 5~c! we estimateB(0.1).100, and from the data
shown in Fig. 6 we then obtainB(0.2).66 and B(0.5)
.44. Now,smax sites in the coarse-grained model correspo
to z(r )smax sites in the original model, andf in the coarse-
grained model corresponds to a lightning probabilityf /z(r )
per site in the original model. Therefore we have

B~r !~ f /p!2l5A~ f /pz!2l/z,

leading to

z~r !5@B~r !/A#1/~l21!.@B~r !/A#10,

resulting in z(0.5).46, z(0.2).2650, and z(0.1)
.170 000. The length scales of the coarse-grained mode
reduced by factors of the order 7, 50, and 400 for these th
r values, compared to the original model.

A direct comparison of a fire size distribution of the orig
nal model and one of the coarse-grained model withr 50.5
confirms these findings. We searched for two fire size dis
butions such that the ratios of theirf values and the ratios o
their smax values are similar. This ratio turned out to b

FIG. 6. Fire size distributions of the coarse grained model
r 50.1 ~dashed curve!, r 50.2 ~solid curve!, and r 50.5 ~dotted
curve!. L51000 andf /p50.01 for all systems.
5-6
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around 45, as shown in Fig. 7, and in agreement with
finding of the previous paragraph. Figure 7 shows also
the shapes of the two fire-size distributions, while similar,
not identical. Identical shapes cannot be expected, since
coarse-grained model is not completely identical to the or
nal model on larger scales. For instance, inhomogene
arising in the original model within an area of sizez(r )
cannot occur in the coarse-grained model. This explains
difference in shape on small scales. On large scales, the
ference in the shape of the cutoff is probably due to the
that the process of slow destruction of large patches
slightly different in the two models. In both cases, lightni
strokes hitting the patch when its density is only sligh
above the percolation threshold make the patch more in
mogeneous. In the coarse-grained model, this leads to
belonging to two widely different density intervals, as me
tioned further above in the context of Fig. 4. In the origin
model, this leads to a couple of smaller dense tree clus
being left behind by the fire, as can be concluded fr
Fig. 1.

To conclude this section, our coarse-grained model, w
not being exactly equivalent to the original model, shows
features expected of the original model on larger scales
confirms in particular the universality of the exponentl and
our conjecture that the exponentt has an asymptotic valu
around 1.45. The detailed mechanism of birth and dest
tion of patches is somewhat different in the two models a
leads to different shapes of the fire size distributions at sm
s and for the largests.

V. DISCUSSION

In this paper, we have argued that the fire size distribut
in the SOC FFM is the result of the superposition of tw
types of fires. The smaller ones are fractal percolation c
ters, while the larger fires are compact and burn dow
patch of a tree density above the percolation threshold.
supported this picture by a direct analysis of the model,

FIG. 7. Comparison of the fire distributionsn(s) obtained for
the original SOC forest-fire model forf 50.000 001 56,p50.01,
andL5800 ~dashed line,C541, A51!, and for the coarse graine
model for r 50.5, f 50.000 05,p50.01, andL51000 ~solid line,
C51, A544.921!. The ratio between the two cutoffs,A, is the
same as the inverse ratio between the two lightning probabilitief.
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the artificial superposition of the two types of fires, and
the introduction of a coarse-grained FFM.

One of our main results is that the asymptotic expon
for the fire size distribution ist.1.45, and is visible only at
length scales not accessible to present-day computer sim
tions. For values of the correlation length typically seen
computer simulations, the exponentt has an apparent valu
that is smaller, and which seems to be insensitive to
lattice type used in the simulations. Furthermore, we fou
that the cutoff exponentl has an universal valuel.1.1,
which is measured in the original FFM as well as in t
coarse-grained FFM for different simulation parameters. T
robustness of this exponent is additionally supported by
earlier finding that the correlation length shows nice scal
behavior in a generalized model where trees can be imm
to fire @20#.

We could not find the precise form of the size distributi
of patches, although we presented evidence that it shoul
characterized by an exponentb smaller than 1. The patch
size distribution is the result of a slow and highly nontrivi
process of birth and merging and destruction of patches. T
process also determines the size distribution of the la
fires, for which we could not give an analytical expressio

In contrast to the exponentt, we could not derive the
value of the exponentl from analytical arguments. We can
not rule out that its true value isl51, and that there are
logarithmic corrections that make it appear slightly larg
than 1.

As we have shown, several scaling relations familiar fro
conventional critical systems and in particular from perco
tion theory do not hold in the SOC FFM. Instead, the FFM
a new type of nonequilibrium critical system that has
equivalent in equilibrium physics. It is characterized by d
ferent phenomena on different scales, and by a patchy st
ture indicating that neighboring sites tend to be synchroni
by burning down during the same large fires.

By introducing the coarse-grained model, we have sho
that there exists an entire class of models that share the s
main features of a patchy structure and two qualitatively d
ferent types of fires, the asymptotic exponentt.1.45, and
the cutoff exponentl.1.1, while details such as the precis
shape of the cutoff and the precise mechanism of birth
destruction of patches may differ.

We should point out that it is unclear whether the beh
ior in higher dimensions resembles that in two dimensio
Clearly, as long as the ‘‘patchy’’ structure with two qualita
tively different types of fire occurs, the mean-field theo
that neglects all spatial structure@21–23# cannot apply, and
the system must be below its upper critical dimension.

Our results show that SOC can be caused by mechan
fundamentally different from equilibrium critical phenom
ena. It remains to be seen to what extent different models
governed by different mechanisms. One clearly has to m
a distinction between conservative models, such as the s
pile model, where energy can only be dissipated at the ed
and nonconservative models such as the forest-fire mo
The unusual scaling behavior of the two-dimensional Ab
lian sandpile model is related to the multiple waves of to
plings and is not observed in higher dimensions or ot
5-7
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sandpile models. In contrast, the SOC behavior of the for
fire model seems to be closely related to the patchy struct
which implies a partial local synchronization. We expect th
other nonconservative SOC systems are driven to critica
by mechanisms similar to the ones found in the FFM. T
applies in particular to the SOC earthquake model@6#, where
a patchy structure with partial synchronization of neighb
ing sites was also found@24#. Very recently, it was addition-
ally found that this model contains two qualitatively differe
types of avalanches: those within a ‘‘patch,’’ and those t
enter it from outside and span the entire ‘‘patch’’@25#. Other
et

tt

02613
t-
re,
t
ty
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t

related models, like a recently introduced threshold mo
@26#, are yet too poorly investigated, but it can be expec
that local synchronization and qualitatively different types
avalanches are also important in these systems.
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