
PHYSICAL REVIEW E, VOLUME 65, 026133
Formation of vortex loops „strings… in continuous phase transitions
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The formation of vortex loops~global cosmic strings! in an O~2! linear sigma model in three spatial
dimensions is analyzed numerically. For over-damped Langevin dynamics we find that defect production is
suppressed by an interaction between correlated domains that reduces the effective spatial variation of the
phase of the order field. The degree of suppression is sensitive to the quench rate. A detailed description of the
numerical methods used to analyze the model is also reported.
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INTRODUCTION

The mechanism by which topological defects form in co
tinuous phase transitions has been a fascinating field o
search for many years with implications for astroparticle c
mology, particle physics, and condensed matter syst
@1–5#. On the cosmological side it is very likely that th
universe underwent a sequence of symmetry-breaking p
transitions during its expansion and subsequent cooling a
the Big Bang. If the disordered phase has symmetryG and
the ordered phase a lower symmetryH then the manifoldM
of possible vacua is given by the coset spaceG/H. In many
cases the vacuum manifoldM has some nontrivial topology
allowing for the appearance of topological defects cor
sponding to the nonvanishing homotopy classes ofM. In
realistic ~finite quench rate! continuous phase transition
critical slowing down then implies that there must be so
time during the transition at which the intrinsic ordering d
namics becomes too sluggish to keep pace with the que
It is then inevitable that some neighboring domains will fo
with an orientation that produces topological defects as t
coalesce.

On the condensed matter side, where phase transit
occur in accessible and reproducible laboratory conditio
the production of topological defects is familiar and o
served in, for example, ferromagnets@6#, liquid crystals
@7–11#, and superfluids ~both 4He @12–14# and 3He
@15,16#!.1 Most of the work on defects in condensed mat
systems has focused on either the classification of def
@6,17–19#, or the coarsening dynamics governing the la
time evolution of the defect density@3#. But it is of consid-
erable interest to determine the precise mechanism by w
defects are produced, as also to determine the defect de

*Email address: bowick@physics.syr.edu
†E-mail address: cacciuto@physics.syr.edu
‡Email address: travesse@uiuc.edu
1The most recent improved experiments of Dodd and co-work

on the fast adiabatic expansion of liquid4He through the superfluid
l transition @14# do not see any vortex lines, in contrast to the
earlier results@12#.
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at formation@5,20,21#. This is the problem tackled in this
paper for the case of the linear O~2! sigma model, for which
M is the circleS1. We examine numerically the process
defect production in fixed-rate quenches through the form
tion, interaction, and coalescence of interacting domains w
well-defined phases and determine the defect density at
time of production.

We find there is considerable phase alignment of doma
between their formation and the subsequent production
defects. The spatial variation of the phase is then smoo
than one would obtain from assuming that domains are
tistically independent. In other words the wandering of t
phase on the ground-state manifoldS1 from domain to do-
main is not random—domains of a given phase attract o
domains with similar phases. This clearly reduces the lik
hood that domain coalescence will yield a topological defe

Although classical and quantum-mechanical continuo
phase transitions have been modelled and systematicall
vestigated, both analytically@5,20–27# and numerically@28–
33#, complete understanding is still lacking.

The remainder of the paper consists of five sections
Sec. I we review mechanisms for the production of topolo
cal defects in continuous phase transitions. In Sec. II
define the problem at hand and outline our approach. Sec
III gives the details of the numerical analysis performed a
Sec. IV gives our results. Finally we conclude and disc
some possible implications of our work.

I. THE KIBBLE-ZUREK MECHANISM

In the Ginzburg-Landau picture continuous phase tran
tions proceed through the growth of arbitrarily small amp
tude, long-wavelength fluctuations—the so-called spino
decomposition of theunstablesymmetric phase to the tru
ordered phase. These spinodal modes grow exponential
time until cut off by the nonlinearities associated with inte
actions. When a system undergoing a continuous phase
sition is quenched at a finite rate from the disordered to
ordered phase, distinct ordered regions of space~domains!
will generically lie at different points on the vacuum
manifold.
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In @20# Kibble proposed a clear mechanism for topolo
cal defect formation in a cosmological context using a sim
ordering-causality argument. The key idea is that sponta
ous symmetry breaking will occur independently in causa
disconnected regions of space. Suppose that the order pa
eter is uniform within an ordered domain of correlation vo
ume j3 and randomly distributed on the ground-sta
~vacuum! manifold M. Furthermore, Kibble assumed th
the order parameter between domains was the smoothe
terpolation possible~thegeodesic rule!. In this case one can
in principle, compute the probability that the coalescence
say three domains leads to a topologically nontrivial confi
ration. This probability is a number of order one so th
roughly speaking, one defect is formed per correlation v
ume.

To predict the density of defects at the formation in th
picture one must have a theory of the relevant correla
lengthj at the formation. One simple proposal@20# is thatj
corresponds to the correlation length at the Ginzburg te
peratureTG when ordered domains are stable to therm
fluctuations. Given the free-energy barrierDF ~see Fig. 1!
between the true ground state and the unstable h
temperature phase forT,Tc , we have

kBTG.j3~TG!DF~TG!. ~1!

Above TG the system can locally jump back and for
between the high- and low-temperature phases. BelowTG
this process is thermally suppressed.

This argument ignores the dynamical aspects of the ph
transition and is likely to be inaccurate if defects form
relatively high temperatures. An alternativenon equilibrium

FIG. 1. Schematic representation of the free-energy curve sh
ing the disordered (T.Tc) and ordered (T,Tc) phases for a scala
field f in a lf4 theory. The highlighted dashed section indica
typical thermal fluctuations for temperatures below the Ginzb
temperatureT,TG .
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approach was proposed by Kibble in a later paper@21# and
elaborated by Zurek@5#. Consider a continuous phase tran
tion proceeding with a finite quench rate. The quench may
an externally imposed temperature or pressure quench o
sult from the expansion of the universe in the cosmologi
setting. In the ordered phase a given region of space m
attain the ground state as long as the microscopic dynam
enables it to relax more rapidly than the quench rate. Bu
a continuous transition critical slowing down implies that t
intrinsic relaxation rate becomes arbitrarily slow near t
critical temperature. Thus there is a characteristic time
temperature at which the system cannot order sufficie
rapidly. The correlation length at this time provides an es
mate of the maximum domain size giving rise to topologic
defects. In causal language typical domain sizes cannot g
faster than the speed of light and, therefore, can never a
the infinite correlation lengths associated with the critic
point.

This picture is illustrated in Fig. 2. The two time scales
the problem are the relaxation timetR(t) and the symmetry-
breaking timetSB(t) ~here taken to be linear!. The dynamics
may be divided in three stages. Fort!2 t̂ ~stage I! the re-
laxation time of the system is smaller thantSB(t). The field
can dynamically relax to equilibrium while the temperatu
is falling. Whent;2 t̂ , the symmetry-breaking time and th
relaxation time become comparable and when2 t̂,t, t̂ , the
situation is reversed. During stage IItSB(t)!tR(t), and the
time needed by the system to relax to equilibrium is mu
larger than the symmetry-breaking time. The system can
relax and the correlation lengthj cannot grow as the critica
point is approached. Its value is frozen until, fort. t̂ ,
tSB(t).tR(t) ~stage III! wherej eventually decreases as e
pected in the ordered phase. The faster the quench ratetQ ,
the smaller the angleu indicating the slope oftSB(t). Con-
sequently, the maximum value reached byj will be smaller
and smaller, creating a higher defect density. The slower

w-

g

FIG. 2. Schematic representation of the relaxation timetR(t)
versus the symmetry-breaking timetSB(t) of a system being
quenched through a continuous phase transition at a rate 1/tQ .
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FORMATION OF VORTEX LOOPS~STRINGS! IN . . . PHYSICAL REVIEW E65 026133
quench rate, the largeru, j is allowed to grow to larger
values while approaching the critical point and the density
defects that form will be smaller~spatially correlated region
have on average a larger size!. Assuming that the correlation
length at the formation is the one relative tot5 t̂ , @we can
safely assume thatj(2 t̂ ).j(t)#, it is easy to show that a
power law dependence between the freeze-out correla
length j* and the quench ratetQ of the phase transition
holds

j* ;~tQ!n/m11, ~2!

wheretR(t);ueu2m, j;ueu2n ande5t/tQ . Extensive ana-
lytical and numerical checks have lent support to the Kibb
Zurek mechanism~see references in the introduction!.

II. INTERACTING ORDERED DOMAINS

In this paper we will model the ordering kinetics of
nonconserved order parameter by Langevin dynamics wi
global O~2! f4 Ginzburg-Landau free-energy functional. W
will not treat gauge theories@34#. The order parameterf̄ is
zero in the high-temperature disordered phase and nonze
the low-temperature ordered phase. For a continuous tra
tion f̄ switches on continuously. We model the therm
quench via a linearly time varying mass term with slopetQ ,

F~ ufu!5E ddt@ 1
2 ~ u¹fu!21V~ ufu!#, ~3!

with a potential of the form

V~ ufu!5 1
2 m2~ t !ufu21 1

4 lufu4 ~l.0!. ~4!

For m2(t)>0, ufu50 and form2(t),0, ufu56m(t)/l1/2.
In the broken-symmetry phase

f5reiu, ~5!

wherer[ufu andu is a phase chosen from the ground-st
manifold S1.

Below the critical point ordering progresses via the fo
mation of ordered domains within which the phase is c
stant. Topological defects form as domains coalesce, as
scribed in the Introduction.

When identifiable stable domains first form they a
widely separated. Between the time they form and the t
they coalesce to produce defects one may expect cons
able interaction to take place since we are dealing wit
nonlinear field theory. Indeed angular gradient terms in
broken symmetry regime of the free energy should al
02613
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phases from one domain to the next. This will suppress w
dering of the phase on the ground-state manifold and lo
the probability of forming defects. This is the effect we e
tablish and quantify in this paper.

III. COUNTING DEFECTS: A NUMERICAL APPROACH

In this section we discuss how we count topological d
fects numerically. We first define an oriented~ordered! do-
main on the lattice as the ensemble of spatially connec
sites whose phase difference satisfies the constraintuDuu
,u« , where we have introduced a cutoff angleu« . The
number of domains at a given time is strongly dependent
the value ofu« . Choosingu« too small will result in too
many domains that are unstable to thermal fluctuations. T
ing u« too large, on the other hand, means we can no lon
properly track the spatial variation of the phase. The b
compromise is achieved by choosing the largest poss
value of u« that preserves the topology of the system.
other words, we look for the effective domains whose co
lescence closely matches the distribution of defects obta
from thefull field. To be specific we take aZn discretization
of the circle inton slices a(k) (k50,1,...,n21) of width
D52p/n and coarse grain the angular part of the field
follows:

u i5Qa~k! if u iPa~k!, ~6!

wherei is the lattice site and

ua~k!5 1
2 ~kD1k~k11!D!, k50,1,...,n21. ~7!

We then compute the number of defects using this coa
grained field configuration and compare it to that obtain
using continuous angles. We find that the largestD that pre-
serves the topology isp/4, corresponding to aZ8 discretiza-
tion. The error in the defect count resulting from this d
cretization is on average smaller than 5%.

We also address the stability of domains to thermal fl
tuations. For this purpose we introduce a minimum dom
size ~cutoff! Lb . The system is kept in contact with a he
bath at constant temperatureT (T!Tc) throughout the simu-
lation. Lb is chosen to be the largest spatially connec
domain generated by thermal fluctuations in the disorde
phase. We now have all necessary tools to explore the
namics of the effective domains. The following schema
illustrates our strategy:
3-3
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The third stage requires more details. Since we introdu
a minimum domain sizeLb , very few domains will form in
the early stages of ordering. Only a small fraction of t
lattice is ordered. One may ask whether these domains h
the expected random distribution of phases. To test this
simultaneously grow each domain by adding an outer s
of sites of width equal to one lattice site with the same fi
phase. We then recursively grow each domain’s external
face until they meet in the same region of space and
complete lattice is filled~see Fig. 3 for an illustration of this
algorithm applied to a two-dimensional configuration!. The
final configuration obtained by this construction correspo
to freely expanding domains with fixed phases. If phases

FIG. 3. Two-dimensional~2D! example of the domain recon
struction procedure. The left image represents a discretized con
ration on a 50350 lattice ~periodic boundary conditions! with a
given bubble cutoffLb , and the right image is its layer by laye
reconstructed configuration. Each gray level represents a diffe
phase of the field.
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randomly distributed across domains the number of defe
determined before and after randomizing should be stat
cally equivalent. As the quench progresses more domains
created over the lattice. We repeat the same procedur
each time step of the evolution until almost all the lattice
filled with well-defined domains. A domain-domain intera
tion will be traceable by comparing the number of defe
produced. In particular the difference between the act
number of defects and the number for the random distri
tion of phases should grow with time, reaching a maximu
at the time of domain coalescence.

To resolve strings on the lattice we follow Ref.@28# and
associate a vortex to each lattice plaquette with a nontri
phase winding. Strings are then constructed by connec
these vortices, adopting a random reconnection algorithm
the case of multiple strings passing through the same la
cell. To deal with this ambiguity the number of strings
each time step is obtained by averaging over 15 differen
recombined string configurations.2 All simulations were per-
formed on a 300 MHz. Pentium II for a total computation
time of roughly 800 h.

IV. NUMERICAL SIMULATION

We simulated a two-component classical vector fieldfW (rW)
on a three-dimensional cubic lattice of sideL560 with pe-

2The uncertainty in this counting is smaller when the phases
discretized.

u-
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FORMATION OF VORTEX LOOPS~STRINGS! IN . . . PHYSICAL REVIEW E65 026133
riodic boundary conditions. We evolve the system using
leap-frog numerical implementation of the Langevin equ
tion in the over-damped regime

1

G0

]fW

]t
5¹W 2fW 2

]V~fW !

]fW
1hW ~rW,t !, ~8!

whereG0 is a dimensionful constant,V(fW ) is given in Eq.
~4!, and hW (rW,t) is Gaussian noise with temperatureT that
satisfies the following constraints:

^ha~rW,t !&50 ~9!

and

^ha~rW1 ,t1!hb~rW2 ,t2!&52TG0dabd~rW12rW2!d~ t12t2!.
~10!

It is convenient to rescale to dimensionless variables, to
used from now on, as follows:

x85m0x, t85m0t, h85hAl/~m0
3!,

T85Tl/m0 , f85fAl/m0 , ~11!

wherem0 is the value ofm(t) prior the quench; when the
system is in the symmetric phase. The rescaled equa
dropping the primes, then becomes

] tf5¹2f2a~ t !f2f31h, ~12!

wherea(t)5m2(t)/m0
2 and we have chosenG0m051. The

linear quench is modeled by

FIG. 4. A snapshot of a typical configuration of the system in
3D, L530, lattice with periodic boundary conditions. Each gr
level represents a different phase of the field. Dark lines repre
the string defects trapped between the ordered domains.
02613
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a~ t !5H 1 for t<0,

S 122
t

tQ
D for 0<t<tQ

21 for t>tQ,

, ~13!

tQ
21 being the quench rate. This choice ofa(t) enables us to

drive the system from a disordered phase~convex potential!
to an ordered phase~sombrerolike potential! in a finite time.
For t,0 the system is in thermal equilibrium in the diso
dered phase. As 0<t<tQ , a(t) linearly decreases until i
changes sign passing through the critical point. Whet
>tQ , a(t) stops decreasing terminating the quench into
ordered phase. The limittQ→0 corresponds to an instanta
neous quench whiletQ→` describes an adiabatic quenc
Throughout the simulation the rescaled heat bath tempera
T is held constant. We scanned temperatures ranging f
T50.001 to 0.1. The results reported here are forT
50.035. The equations were numerically solved usingDx
50.5 andDt50.1.

In the subsequent analysis we first treat instantane
quenches and then compare to the results for a slow que

A. Instantaneous quench:tQÄ0

We let the system equilibrate in the disordered ph
@a(t)51,̂ f&50# in the presence of thermal noiseh at T
50.035. We sample over 1000 thermalized configurations
get the minimum ordered domain cutoffLb , as previously
described. At this temperature and this lattice size (L560)
we find that the largest thermally generated bubble in
high-temperature phase has a volume ofVb[Lb579 spa-
tially connected sites. We then switcha(t)51→a521.
This breaks the O~2! symmetry and the system evolves t
ward its equilibrium valuê f&51 following the equations
of motion defined in Eq.~12!. We calculate the number o
defects as explained in Sec. III~see Fig. 4!. For each simu-
lation we average the number of defects over 50 differ
randomized configurations at each time step in the dynam
The number of defects so obtained is then averaged ov
sample of 30 different configurations obtained from simu
tions with different random initial conditions.

Figure 5 illustrates the results of the analysis. At ea
times the number of defects produced by both randomi
and nonrandomized configurations agrees within statist
accuracy. This establishes that the order parameter is
domly varying from one spatial domain to another. At lat
times the randomized field configurations produce more
more defects with respect to its counterpart. This clearly
dicates that phase alignment is occurring as the dom
grow. The gap between the two curves widens until
reaches a maximum att5t* 51261. We associate this par
ticular time with the time of defect formation. This is sup
ported by the fact that the number of strings generated by
effective domains reaches its maximum value at this sa
time. The number of strings subsequently decreases as
mains coalesce and defects decay. The actual suppre
factor in the number of strings formed is given byg52.0
60.2. We would like to emphasize that this value should

nt
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considered as a lower bound. While counting the numbe
strings we scanned our data using different minimum str
length cutoffsLs54,6,8,10,12,15,18,22. The data report
above reflect the analysis obtained withLs515. Smaller val-
ues ofLs slightly increase the value ofg, but also risk over-
count defects because many of the smaller strings could
very shortlived. Larger values ofLs do not produce a detect
able change ing.

B. Slow quench:tQÄ50

We now consider the effects of a finite-rate quench.
first equilibrate in the disordered phase@a(t)51,̂ f&50# in
the presence of thermal noiseh at T50.035 and then initiate
the linear quench according to Eq.~13!. The longer time
interval over which domains interact, that is, between
time they form and the time of defect production, results i
greater mismatch between the number of defects formed
the idealized random scenario. Of course this difference
disappear in the extreme adiabatic limit as no defects
produced at all in this equilibrium setting. We expect, the
fore, that there is some finite quench rate that maximizes
suppression of defect density. We exploredtQ550 as a
quench rate fast enough to produce a large number of de
but still far from the adiabatic limit. The results are given
Fig. 6. As previously discussed, the gap between the
curves grows with time until it reaches a maximum val
after which it falls off. It is revealing to compare Fig. 5 an
Fig. 6 to understand the main physical difference betw
the two experiments. It is obvious that the maximum g
between the two curves has widened with respect to the
stantaneous quench. We estimate the formation time to
t* 5t53062 andg54.160.4. The suppression factorg ba-
sically doubles while passing fromtQ50 to tQ550. There
is clearly a relationship betweeng and tQ . As previously
discussed we expect that fortQ→`, g(tQ)→0 and would
be very interesting to extrapolate the value oftQ that maxi-

FIG. 5. Number of defects generated by the discretized fi
compared to the random-discretized field in an instantane
quench (tQ50).
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mizesg(tQ) but the extremely long computational time r
quired to achieve this result is prohibitive.

V. CONCLUSION AND DISCUSSION

In this paper we have analyzed the effect of a fin
quench rate on the density of topological defects at the
mation. Detailed numerical simulations show that the ph
angle of ordered domains aligns in the interval between
main formation and the production of defects. The effect
this alignment is to reduce the number of defects that fo
compared to the simple Kibble mechanism, which assum
that domains are statistically independent at the time of c
lescence. A lower bound on this relative suppression facto
estimated to beg52.060.2 for an instantaneous quench a
g54.060.4 for a phase transition with quench timetQ
550. It would be of great interest to systematically varytQ
to determine the quench rate with optimal defect suppr
sion. As tQ increases one has to explore larger correlat
lengths, which is computationally more demanding. We ho
to undertake this challenge in the near future.

Our results uncover an underlying feature of defect f
mation mechanism that may turn out to play an import
role in the precise determination of the initial density of d
fects generated in a continuous phase transition, a subje
great interest from both the cosmological and conden
matter viewpoint. Our study is most directly applicable
over-damped condensed matter systems but we think tha
analogous effect exists in the under-damped regime m
appropriate to a relativistic theory. An analysis in this dire
tion is underway.
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