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Formation of vortex loops (strings) in continuous phase transitions
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The formation of vortex loops(global cosmic stringsin an Q2) linear sigma model in three spatial
dimensions is analyzed numerically. For over-damped Langevin dynamics we find that defect production is
suppressed by an interaction between correlated domains that reduces the effective spatial variation of the
phase of the order field. The degree of suppression is sensitive to the quench rate. A detailed description of the
numerical methods used to analyze the model is also reported.
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INTRODUCTION at formation[5,20,27. This is the problem tackled in this
paper for the case of the linealZ) sigma model, for which
The mechanism by which topological defects form in con-M is the circleS'. We examine numerically the process of

tinuous phase transitions has been a fascinating field of redefect production in fixed-rate quenches through the forma-

search for many years with implications for astroparticle costion, interaction, and coalescence of interacting domains with

mology, particle physics, and condensed matter Systenwell—defined phases and determine the defect density at the

[1-5]. On the cosmological side it is very likely that the time of production.

universe underwent a sequence of Symmetry-breaking phase We find there is considerable phase alignment of domains

transitions during its expansion and subsequent cooling aftd¥etween their formation and the subsequent production of

the Big Bang. If the disordered phase has symm@&rgnd defects. The spatial variation of the phase is then smoother

the ordered phase a lower symmetththen the manifold\t than one would obtain from assuming that domains are sta-

of possible vacua is given by the coset sp&del. In many tistically independent. In other words the wandering of the

cases the vacuum manifoléf has some nontrivial topology, Phase on the ground-state manif@ from domain to do-

allowing for the appearance of topological defects correMmain is not random—domains of a given phase attract other

sponding to the nonvanishing homotopy classes\éf In ~ domains with similar phases. This clearly reduces the likeli-

realistic (finite quench rate continuous phase transitions, hood that domain coalescence will yield a topological defect.

critical slowing down then implies that there must be some Although classical and guantum-mechanical continuous

time during the transition at which the intrinsic ordering dy- Phase transitions have been modelled and systematically in-

namics becomes too sluggish to keep pace with the quencMestigated, both analyticall$s,20—27 and numerically 28—

It is then inevitable that some neighboring domains will form 33], complete understanding is still lacking.

with an orientation that produces topological defects as they The remainder of the paper consists of five sections. In

coalesce. Sec. | we review mechanisms for the production of topologi-

On the condensed matter side, where phase transitiorf@l defects in continuous phase transitions. In Sec. Il we

occur in accessible and reproducible laboratory conditionsdefine the problem at hand and outline our approach. Section

the production of topological defects is familiar and ob-!l! gives the details of the numerical analysis performed and

served in, for example, ferromagnef§], liquid crystals ~Sec. IV gives our results. Finally we conclude and discuss

[7-11], and superfluids(both “He [12-14 and 3He Some possible implications of our work.

[15,16)).1 Most of the work on defects in condensed matter

systems has focused on either the classification of defects

[_6,17—19, or the coarsening dyn_amics g(_)v_erning thg late- |. THE KIBBLE-ZUREK MECHANISM

time evolution of the defect densif]. But it is of consid-

erable interest to determine the precise mechanism by which In the Ginzburg-Landau picture continuous phase transi-

defects are produced, as also to determine the defect denstigns proceed through the growth of arbitrarily small ampli-
tude, long-wavelength fluctuations—the so-called spinodal
decomposition of theinstablesymmetric phase to the true

*Email address: bowick@physics.syr.edu ordered phase. These spinodal modes grow exponentially in
"E-mail address: cacciuto@physics.syr.edu time until cut off by the nonlinearities associated with inter-
*Email address: travesse@uiuc.edu actions. When a system undergoing a continuous phase tran-

IThe most recent improved experiments of Dodd and co-worker§ition is quenched at a finite rate from the disordered to the
on the fast adiabatic expansion of ligtfide through the superfluid ordered phase, distinct ordered regions of spaoenaing
\ transition[14] do not see any vortex lines, in contrast to their will generically lie at different points on the vacuum
earlier result§12]. manifold.
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FIG. 2. Schematic representation of the relaxation tirpét)
FIG. 1. Schematic representation of the free-energy curve showersus the symmetry-breaking timesg(t) of a system being
ing the disorderedT>T.) and ordered T<T,) phases for a scalar quenched through a continuous phase transition at a rate 1/
field ¢ in a A @* theory. The highlighted dashed section indicates
typical thermal fluctuations for temperatures below the Ginzburg
temperaturel <Tg.
approach was proposed by Kibble in a later pd2di and
elaborated by Zurels]. Consider a continuous phase transi-
, i _ tion proceeding with a finite quench rate. The quench may be
In [20] Kibble proposed a clear mechanism for topologi- 5, externally imposed temperature or pressure quench or re-
cal defect formation in a cosmological context using a simpley it from the expansion of the universe in the cosmological
ordering-causality argument. The key idea is that spontanes-etting_ In the ordered phase a given region of space may

ous symmetry breaking will occur independently in causallyain the ground state as long as the microscopic dynamics
disconnected regions of space. Suppose that the order paragljapes it to relax more rapidly than the quench rate. But in
eter is uniform within an ordered domain of correlation vol- 5 ¢ontinyous transition critical slowing down implies that the

3 . .
ume & and randomly distributed on the ground-statejnyinsic relaxation rate becomes arbitrarily slow near the
(vacuum manifold M. Furthermore, Kibble assumed that gijical temperature. Thus there is a characteristic time or

the order parameter between domains was the smoothest igsmperature at which the system cannot order sufficiently
terpolation possibléthe geodesic rulg In this case one can, anigly. The correlation length at this time provides an esti-

in principle, compute the probability that the coalescence ofyate of the maximum domain size giving rise to topological
say three domains leads to a topologically nontrivial configu-efects. In causal language typical domain sizes cannot grow

ration. This probability is a number of order one so that.fasier than the speed of light and, therefore, can never attain
roughly speaking, one defect is formed per correlation Volyhe jnfinite correlation lengths associated with the critical
ume.

. . . point.
To predict the density of defects at the formation in this™ g picture is illustrated in Fig. 2. The two time scales in

picture one must have a theory of the relevant correlation,o problem are the relaxation timeg(t) and the symmetry-

length £ at the formation. One simple proposaDl] is thaté  eaing timersg(t) (here taken to be linearThe dynamics
corresponds to the correlation length at the Ginzburg tem-

peratureTg when ordered domains are stable to thermalmay _be O.“V'ded in three sta_ges. FpE —t (stage ) the_re-
fluctuations. Given the free-energy barrieF (see Fig. 1 laxation time of the system |s.:_sm_aller th;a%(t). The field
between the true ground state and the unstable highQan dynamically relax to equilibrium while the temperature

relaxation time become comparable and whe<t<t, the
situation is reversed. During stageddg(t) < 7x(t), and the
keTo=&(To)AF(Tg). (1) time needed by the system to relax to equilibrium is much
larger than the symmetry-breaking time. The system cannot
relax and the correlation lengthcannot grow as the critical

Above T the system can locally jump back and forth point is approached. Its value is frozen until, fort,
between the high- and low-temperature phases. Béllgw 7gg(t) > 7R(t) (stage ll) whereé eventually decreases as ex-
this process is thermally suppressed. pected in the ordered phase. The faster the quenchrgate

This argument ignores the dynamical aspects of the phagbe smaller the anglé@ indicating the slope ofsg(t). Con-
transition and is likely to be inaccurate if defects form atsequently, the maximum value reached fwill be smaller
relatively high temperatures. An alternatimen equilibrium  and smaller, creating a higher defect density. The slower the
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qguench rate, the large#, ¢ is allowed to grow to larger phases from one domain to the next. This will suppress wan-
values while approaching the critical point and the density ofdering of the phase on the ground-state manifold and lower
defects that form will be smallgspatially correlated regions the probability of forming defects. This is the effect we es-
have on average a larger sizAssuming that the correlation tablish and quantify in this paper.

length at the formation is the one relative ttet, [we can

safely assume thai(—t)=£(t)], it is easy to show that a
power law dependence between the freeze-out correlation

length £&* and the quench rateg of the phase transition
holds Ill. COUNTING DEFECTS: A NUMERICAL APPROACH

In this section we discuss how we count topological de-
fects numerically. We first define an orientéatdered do-
main on the lattice as the ensemble of spatially connected
sites whose phase difference satisfies the constfaint
where 7x(t)~| €| "%, £~|e| ¥ ande=t/7o. Extensive ana- <#,., where we have |nt.roduc'ed a cutoff angle. The
lytical and numerical checks have lent support to the Kibblenumber of domains at a given time is strongly dependent on

Zurek mechanisnisee references in the introduction the value ofé, . Choosingé, too small will result in too
many domains that are unstable to thermal fluctuations. Tak-

ing 6, too large, on the other hand, means we can no longer
Il. INTERACTING ORDERED DOMAINS properly track the spatial variation of the phase. The best
compromise is achieved by choosing the largest possible
In this paper we will model the ordering kinetics of a yajue of 6, that preserves the topology of the system. In
nonconserved order parameter by Langevin dynamics with gther words, we look for the effective domains whose coa-
global O2) ¢* Ginzburg-Landau free-energy functional. We |escence closely matches the distribution of defects obtained
will not treat gauge theoriel34]. The order parametep is  from thefull field. To be specific we take 2, discretization
zero in the high-temperature disordered phase and nonzero §} the circle inton slices a(k) (k=0,1,..n—1) of width
the Io_vv-temperature ordered phase. For a continuous transk— 2 /n and coarse grain the angular part of the field as
tion ¢ switches on continuously. We model the thermalfollows:
quench via a linearly time varying mass term with slopg

§*~(TQ)V/,U.+1, (2)

0,=03% if g e a(k), (6)
F<|¢|>=fddr[%<|V¢|>2+V<|¢|>], 3 ¢
with a potential of the form wherei is the lattice site and
V() =32m*(D)]p[*+iN[¢]* (A\>0). @)

0°®=1(kA+k(k+1)A), k=0,1,..n-1. (7
For m?(t)=0, |¢|=0 and form?(t)<O0, |¢|= =m(t)/\ 2
In the broken-symmetry phase

» We then compute the number of defects using this coarse-
¢=pe”, () grained field configuration and compare it to that obtained
using continuous angles. We find that the largkshat pre-
wherep=|¢| and ¢ is a phase chosen from the ground—states.erves the topollogy is/4, corresponding to_ 4 d|scret|'za-.
manifold S* tion. The error in the defect count resulting from this dis-

) o 0
Below the critical point ordering progresses via the for_cre\::/zatl?n |s(;)dn ave;ﬁge tsrggll_l':er tfhgn 5/_0' o th | f
mation of ordered domains within which the phase is con- € also address the stability of domains 1o thermal fiuc-

stant. Topological defects form as domains coalesce, as diations. For this purpose we introduce a minimum domain
scribed in the Introduction. size (cutoff) A,. The system is kept in contact with a heat

When identifiable stable domains first form they arebath atconstant temperatufgT<T,) throughout the simu-
widely separated. Between the time they form and the timéation. Ay, is chosen to be the largest spatially connected
they coalesce to produce defects one may expect considefomain generated by thermal fluctuations in the disordered
able interaction to take place since we are dealing with #hase. We now have all necessary tools to explore the dy-
nonlinear field theory. Indeed angular gradient terms in thenamics of the effective domains. The following schematic
broken symmetry regime of the free energy should alignllustrates our strategy:
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Evolve the system through the phase

transition

!

Discretize the phase of the field

Build effective ordere& domains out of the discretized

field

4

¥

Randomize the phase on each

effective domain

Compute the number of defects Ny I
T

N - A 7 Rar
generated by the cffective domains Compute number of defects Ng*"

and average over 30 randomized

config

/

Compare N, and NFaen

The third stage requires more details. Since we introducedandomly distributed across domains the number of defects
a minimum domain sizé,, very few domains will form in  determined before and after randomizing should be statisti-
the early stages of ordering. Only a small fraction of thecally equivalent. As the quench progresses more domains are
lattice is ordered. One may ask whether these domains haweeated over the lattice. We repeat the same procedure at
the expected random distribution of phases. To test this weach time step of the evolution until almost all the lattice is
simultaneously grow each domain by adding an outer shefilled with well-defined domains. A domain-domain interac-
of sites of width equal to one lattice site with the same fieldtion will be traceable by comparing the number of defects
phase. We then recursively grow each domain’s external suproduced. In particular the difference between the actual
face until they meet in the same region of space and thaumber of defects and the number for the random distribu-
complete lattice is filledsee Fig. 3 for an illustration of this tion of phases should grow with time, reaching a maximum
algorithm applied to a two-dimensional configuradiomhe  at the time of domain coalescence.
final configuration obtained by this construction corresponds To resolve strings on the lattice we follow R¢28] and
to freely expanding domains with fixed phases. If phases arassociate a vortex to each lattice plaquette with a nontrivial
phase winding. Strings are then constructed by connecting
these vortices, adopting a random reconnection algorithm for
the case of multiple strings passing through the same lattice
cell. To deal with this ambiguity the number of strings at
each time step is obtained by averaging over 15 differently
recombined string configuratioAs\ll simulations were per-
formed on a 300 MHz. Pentium Il for a total computational
time of roughly 800 h.

IV. NUMERICAL SIMULATION

FIG. 3. Two-dimensional2D) example of the domain recon- Ve simulated a two-component classical vector fig(d)
struction procedure. The left image represents a discretized config® @ three-dimensional cubic lattice of sie=60 with pe-
ration on a 550 lattice (periodic boundary conditionswith a
given bubble cutoffA,, and the right image is its layer by layer
reconstructed configuration. Each gray level represents a different?The uncertainty in this counting is smaller when the phases are
phase of the field. discretized.
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1 for t<0,
t
a(t)= (1—2—) for Os<t<rq, (13
7Q
-1 for t= TQ

7(51 being the quench rate. This choicedafft) enables us to
drive the system from a disordered ph&senvex potential
to an ordered phassombrerolike potentialin a finite time.
For t<0 the system is in thermal equilibrium in the disor-
dered phase. AsQt<7q, a(t) linearly decreases until it
changes sign passing through the critical point. When
=14, a(t) stops decreasing terminating the quench into the
ordered phase. The limit,— 0 corresponds to an instanta-
neous quench whileg— o describes an adiabatic quench.
Throughout the simulation the rescaled heat bath temperature
T is held constant. We scanned temperatures ranging from
T=0.001 to 0.1. The results reported here are for
=0.035. The equations were numerically solved using
=0.5 andAt=0.1.

In the subsequent analysis we first treat instantaneous
quenches and then compare to the results for a slow quench.

FIG. 4. A snapshot of a typical configuration of the system in a
3D, L=30, lattice with periodic boundary conditions. Each gray
level represents a different phase of the field. Dark lines represent A. Instantaneous quench:7o=0

the string defects trapped between the ordered domains. We let the system equilibrate in the disordered phase

- " . t)=1(¢)=0] in the presence of thermal noisgat T
riodic boundary conditions. We evolve the system using a{_a( . ! .
leap-frog numerical implementation of the Langevin equa_—0.035. We sample over 1000 thermalized configurations to

C ) . get the minimum ordered domain cutoff,, as previously

tion in the over-damped regime described. At this temperature and this lattice size=60)

- we find that the largest thermally generated bubble in the

il _:V*zqg_ IV ($) +A(F 1), (8) high-temperature phase has a volumeVgi=A,=79 spa-

I'y ot ad tially connected sites. We then swita(t)=1—a=—1.
This breaks the @) symmetry and the system evolves to-

(4), and 7(F.t) is Gaussian noise with temperatufethat ~ Of motion defined in Eq(12). We calculate the number of
satisfies the following constraints: defects as explained in Sec. [Bee Fig. 4 For each simu-
lation we average the number of defects over 50 different
(ma(F,1))=0 (9) randomized configurations at each time step in the dynamics.
The number of defects so obtained is then averaged over a
and sample of 30 different configurations obtained from simula-
R R . tions with different random initial conditions.
(7a(F1,12) 76(F2,12)) = 2T 0 8ap (11— F2) Sty — 1), Figure 5 illustrates the results of the analysis. At early
(10 times the number of defects produced by both randomized
It is convenient to rescale to dimensionless variables, to b8"d nonrandomized configurations agrees within statistical
used from now on. as follows: accuracy. This establishes that the order parameter is ran-
’ domly varying from one spatial domain to another. At later

X'=mex, t'=met, 7'=n\ (M), times the randomized field configurations produce more and
more defects with respect to its counterpart. This clearly in-
T =TA/my, ¢>’=¢\/X/mo, (11) dicates that phase alignment is occurring as the domains

grow. The gap between the two curves widens until it

wherem, is the value ofm(t) prior the quench; when the reaches a maximum at=t*=12+1. We associate this par-
system is in the symmetric phase. The rescaled equatioficular time with the time of defect formation. This is sup-

dropping the primes, then becomes ported by the fact that the number of strings generated by the
effective domains reaches its maximum value at this same
i dp=V2dp—a(t)p— >+ 7, (120  time. The number of strings subsequently decreases as do-

mains coalesce and defects decay. The actual suppression
wherea(t):mz(t)/mg and we have choselimy=1. The factor in the number of strings formed is given 2.0
linear quench is modeled by +0.2. We would like to emphasize that this value should be
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FIG. 5. Number of defects generated by the discretized field F|G. 6. Number of defects generated by the discretized field
compared to the random-discretized field in an instantaneougompared to the random-discretized field in a slow quengh (
quench go=0). =50).

. . . mizes but the extremely long computational time re-
considered as a lower bound. While counting the number Oauiredji(ngZ:hieve this result i>s/ pro%ibitivg

strings we scanned our data using different minimum string

length cutoffsAs=4,6,8,_10,12,_15,18,22. The data reported V. CONCLUSION AND DISCUSSION
above reflect the analysis obtained wikh=15. Smaller val- _ o
ues ofA slightly increase the value of, but also risk over- In this paper we have analyzed the effect of a finite

count defects because many of the smaller strings could H@4ench rate on the density of topological defects at the for-
very shortlived. Larger values of, do not produce a detect- mation. Detailed numerical simulations show that the phase
. S

: angle of ordered domains aligns in the interval between do-
able change iry. meﬁn formation and the prodgction of defects. The effect of
this alignment is to reduce the number of defects that form
B. Slow quench: 7o=50 compared to the simple Kibble mechanism, which assumes
We now consider the effects of a finite-rate quench. wdhat domains are statistically independent at the tjme of coa-
first equilibrate in the disordered phdse(t)=1¢)=0] in Iesc_:ence. A lower bound on this rglatlve suppression factor is
the presence of thermal noisgat T=0.035 and then initiate €Stimated to bey=2.0=0.2 for an instantaneous quench and
the linear quench according to EL3). The longer time Y=4.0=0.4 for a phase transition with quench time,
interval over which domains interact, that is, between the=20- It would be of great interest to systematically vaty
time they form and the time of defect production, results in a0 detérmine the quench rate with optimal defect suppres-
greater mismatch between the number of defects formed arfion: AS 7o increases one has to explore larger correlation
the idealized random scenario. Of course this difference will®Ngths, which is computationally more demanding. We hope
disappear in the extreme adiabatic limit as no defects artP undertake this challenge in the near future.
produced at all in this equilibrium setting. We expect, there- OUr results uncover an underlying feature of defect for-
fore, that there is some finite quench rate that maximizes thB1ation mechanism that may turn out to play an important
suppression of defect density. We exploreg=50 as a role in the precise deterrr_unanon of the |n|t|a_l _den5|ty of_ de-
quench rate fast enough to produce a large number of defedtects g_enerated in a continuous phase transition, a subject of
but still far from the adiabatic limit. The results are given in 9r€at interest from both the cosmological and condensed
Fig. 6. As previously discussed, the gap between the twéhatter viewpoint. Our study is most directly apphf:able to
curves grows with time until it reaches a maximum value©ver-damped condensed matter systems but we think that an
after which it falls off. It is revealing to compare Fig. 5 and @nhalogous effect exists in the under-damped regime more

Fig. 6 to understand the main physical difference betweeﬁ_ppr_opriate to a relativistic theory. An analysis in this direc-
the two experiments. It is obvious that the maximum gaghion iS underway.
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