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Dynamics of spinodal decomposition in finite-lifetime systems:
Nonlinear statistical theory based on a coarse-grained lattice-gas model
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We study theoretically dynamics of the spinodal decomposition infinite-lifetimesystems to clarify effects of
the interparticle interactions beyond the Ginzburg-Landau-Wilson phenomenology. Our theory is based on the
coarse-grained Hamiltonian derived from the interacting lattice-gas model with a finite lifetime. The informa-
tion of a system is reduced to closed-form coupled integrodifferential equations for the single-point distribution
function and the dynamical structure factor. These equations involve explicitly the interparticle interactions.
The finite lifetime prevents the phase separation and the order formation in the cw creation case; domains
cannot grow to be larger than an asymptotic characteristic size@kmax(t→`)#21. Power-law dependence of
kmax(t→`) on the interparticle interaction and the particle lifetime is also found numerically. The finite lifetime
prevents the phase separation, i.e., the lower critical wave numberkc

(1) appears and domains of size larger than
@kc

(1)#21 cannot grow.
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I. INTRODUCTION

Spinodal decomposition is a nonequilibrium phenomen
in which an unstable state separates spatially into sev
stable states. The spinodal decomposition has been stu
since it was observed as the periodic compositional varia
of metallic alloys in the 1940s~see reviews, e.g.,@1–7#!. It
was investigated with experiments such as x-ray scatterin
the 1960s and 1970s@8,9#. In the earliest theoretical works
Cahn and co-worker@10,11# and Cook@12# proposed linear
theories, which describe correctly only an early stage of
phase-separation dynamics. Following them, the nonlin
theory was developed by Langer, Bar-on, and Miller~LBM !
@13#. They used an approximation with which the distrib
tion function is decoupled and the spatial correlation is
scribed by the dynamical structure factor. One of the p
poses of theoretical studies is to solve the behavior of
dynamical structure factor because it corresponds to
spectrum of x-ray, neutron, or light scatterings. These th
ries employed the Ginzburg-Landau-Wilson free energy.
the other hand, theories based on the kinetic spin model~i.e.,
Glauber’s model, Kawasaki’s model, etc.! have been pro-
posed@14–16#. For example, Binder@14# derived the equa-
tion of motion for the dynamical structure factor with the u
of the master-equation method from Kawasaki’s sp
exchange kinetic Ising model@17#. Tomita @15# studied the
mean-field dynamics based on the spherical spin model.
sides these works, many theoretical studies@18–25#, com-
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puter simulations@26–29#, and experiments@30–32# of the
phase separation have been proposed. The phase sepa
is studied also in various kinds of fields such as high polym
physics@33#, cosmology@34#, and so on.

Thus far, almost all the theories of the spinodal decom
sition are applicable only to systems with neither creat
nor annihilation of constituent particles. In such systems, i
implicitly assumed that the particle has infinite lifetim
However, there are many examples where external fields
ate unstableparticles ~or quasiparticles! that have afinite
lifetime and can build a new phase. Several examples of s
systems are listed here:~i! a highly excited gas in which the
excited molecules attract one another more strongly tha
the ground state, leading to the creation of new phases@35#,
in this case, excited molecules are unstable;~ii ! the exciton
liquid phase@36# and the exciton Bose-Einstein condensati
@37# created by light absorption, in which excitons have
finite radiative lifetime;~iii ! the electron-hole liquid@38,39#
and the electron-hole droplet@40,41# in semiconductors ex-
cited more strongly than for exciton systems, in whi
electron-hole pairs can disappear due to recombina
within a finite lifetime, we consider the formation of thes
phases as the phase separation of particles with finite
time; ~iv! new phase development and spatial modulation
crystals under nuclear and other irradiation@42–44#. Theo-
retical studies of the order formation such as void nucleat
of vacancies were proposed@45#. They are accompanied b
the creation process and the recombination process with
terstitials. In these studies, however, effects of ‘‘finite lif
time’’ are not focused upon. In the above examples, the p
ticles ~or quasiparticles! have a finite value of lifetime due to
light irradiation, recombination, or other processes. The fin
lifetime influences significantly the new phase developme
©2002 The American Physical Society31-1
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To study the phase separation in such finite-lifetime s
tems, we proposed theoretical formulation of the spino
decomposition dynamics in finite-lifetime systems and d
cussed effects of the finite lifetime@46,47#. It was a phenom-
enology based on the Ginzburg-Landau-Wilson free ene
and hence it had a universality for various physical syste
However, we cannot investigate effects of microscopic ch
acteristics of the systems with its phenomenology beca
the microscopic information is included implicitly into th
free-energy functional. Also in order to approach more re
istic systems, we have to study effects of the interpart
interactions for the spinodal decomposition dynamics as w
as the finite-lifetime effects. Therefore we need to constru
theory of the spinodal decomposition in finite-lifetime sy
tems taking explicitly into account more microscopic deta

The main aim of this paper is to introduce a formalism
spinodal decomposition in finite-lifetime systems, whi
contains explicitly the microscopic interparticle interaction
To this end, our strategy is to start with the lattice-gas mo
with interparticle interactions. After a suitable coars
graining procedure, we obtain an effective Hamiltonian
the system. The processes of the creation and the annihila
of particles are introduced in the same way as in the prev
paper@46,47#. Employing an approximation to the two-poin
distribution function, coupled integrodifferential equatio
are derived in a closed form, which contains nonlinear f
tures of the dynamics. Numerical results of these fundam
tal equations are examined to clarify the relation between
spinodal decomposition dynamics and the interparticle in
actions in finite-lifetime systems.

This paper is organized as follows. In Sec. II, we intr
duce the theoretical formulation taking into account the c
ation and annihilation of particles starting from the coar
grained lattice-gas model. The closed-form coup
equations of motion are derived in the LBM approximatio
Our model is compared with those in other systems suc
the chemically reacting systems@48–51# and the block co-
polymer systems@52–54#. The finite-lifetime effects on the
spinodal decomposition are understood qualitatively fr
the Lyapunov stability analysis in Sec. III. There the critic
wave numbers are introduced in order to characterize
dynamics in the early stage of the phase separation. Num
cal results are shown in Sec. IV. Power-law dependence o
asymptotic characteristic domain size on the interparticle
teraction and the particle lifetime is clarified numerical
Temporal development of the critical wave numbers is a
discussed. Our results are compared with those in the ch
cally reacting systems and the block copolymer systems

II. THEORETICAL FORMULATION

A. Coarse graining in the lattice-gas model

For the study of the spinodal decomposition, the latti
gas model,

H52 1
2 (

l 1
(

l 2~Þ l 1!
Vl 1l 2

ml 1
ml 2

, ~1!

is often used, wherel 1 , l 2 are the indices of the lattice point
02613
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andVl 1l 2
is the interaction between particles. We assume t

the interparticle interaction is dependent only on the dista
u l 12 l 2u and is attractive, whose strength approaches z
when u l 12 l 2u is large enough. Note thatu l 12 l 2u cannot be-
come shorter than the lattice constant. This restriction me
that the particles have hard-sphere interaction whenu l 12 l 2u
is short enough. In this lattice-gas model, the Hamiltonian
the system is described by the particle numberml 1

at the

lattice pointl 1 : ml 1
50 or 1. To formulate the theory of the

spinodal decomposition, we describe the Hamiltonian b
continuous variable, the particle density. In order to defi
the particle density, we have to divide the space into ma
small regions and count the particle number in each reg
So we shall introduce the coarse-graining procedure and
write the lattice-gas model, Eq.~1!, as the coarse-graine
Hamiltonian.

We use the cell representation for the coarse-graining p
cedure. This procedure is thatN lattice points$ l i51,...,Nu l i
P i % are unified to thei th cell. The system is divided intoN
pieces of the cell of sizea0 . The particle number in thei th
cell is written asni . All the lattice points$ l i u l iP i % in the
i th cell are assumed to haveml i

5ni /N particles uniformly.
With the use of this coarse graining, the lattice-gas mode
Eq. ~1! is transformed into the cell Hamiltonian

H52 1
2 (

i
(

j ~Þ i !
Ji j ninj2K(

i
ni

2, ~2!

where

Ji j [
1

N2 (
l 1P i

(
l 2P j ~Þ i !

Vl 1l 2
~ iÞ j !, ~3!

K[
1

2N2 (
l 1P i

(
l 2P i

Vl 1l 2
. ~4!

This Hamiltonian is described with the intracell partic
numberni , which is 0<ni<N. In this paper,N is assumed
to be so large that we can regardni as a continuous variable
Thus the intracell particle numberni corresponds to the loca
density of particles. The interparticle interaction is divid
into two parts: the intercell long-range interactionJi j and the
intracell short-range interactionK. HereJi j depends only on
the distanceu i 2 j u. As mentioned above, the original inte
particle interaction strengthuVl 1l 2

u is small whenu l 12 l 2u
>a0 , so we consider that the strength ofJi j is much smaller
than that ofK.

B. The Fokker-Planck equation for the multipoint distribution
function

We define a derivationui of the intracell particle numbe
ni from its averagen0[^ni&, i.e., ui[ni2n0 , as an order
parameter of the system. A state of the system is descr
by the multipoint distribution functionP($um%,t), which has
all statistical information of the system, where$um%
[$umum51,2,...,N%. The spatial average of a physical qua
tity O($um%) is evaluated as
1-2
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DYNAMICS OF SPINODAL DECOMPOSITION IN . . . PHYSICAL REVIEW E65 026131
^O~$um%!&~ t !5E )
i

dui P~$um%,t !O~$um%!. ~5!

Temporal evolution ofP($um%,t) results from two origins,

]

]t
P~$um%,t !5

]P~$um%,t !

]t U
c

1
]P~$um%,t !

]t U
nc

. ~6!

The first term is the ‘‘conservation term’’ resulting from th
particle transfer, in which the total number of particles
conserved, and the second is the ‘‘nonconservation te
coming from effects of particle creation and annihilation d
to the finite lifetime.

We shall derive the first term due to the particle trans
with the use of the master-equation method by Binder@14#.
The phase separation develops by the particle transfer
tween nearest-neighbor cells. The transition probability
this particle transfer is defined from the detailed-balance c
dition and depends on the energy variation. As a result,
temporal evolution ofP($um%,t) due to the conservation
term obeys the Fokker-Planck equation~see Appendix A!

]P~$um%,t !

]t U
c

52
a0

2

t0
(

i

]

]ui
S F(

j
D i j H N~n01uj !

2
J012K

kBT
Cj~uj ,t !J

2
J0R2

2kBT (
j

(
l

D i j D j l Cl~ul ,t !GP~$um%,t !

1(
j

D i j

]

]uj
F]Cj

]uj
P~$um%,t !G D , ~7!

where

Cj~uj !5 1
6 n0

2~3N22n0!1n0~N2n0!uj1
1
2 ~N22n0!uj

2

2 1
3 uj

3. ~8!

a0 is the volume of a cell andt0 is the time constant con
cerned with the particle transfer.kB is the Boltzmann con-
stant andT is the temperature. We introduce two paramet
characterizing the long-range interaction between cells in
same way as Binder@14#. One is the strengthJ0 defined as
J0[( j (Þ i )Ji j , another is the interaction rangeR as R

[(1/AJ0)@( j (Þ i )(r j2r i)
2Ji j #

1/2.
The creation rate of particles is denoted asy(t), which is

a given function oft and is assumed to be homogeneous
space, hencey(t) is independent of the positionr . The par-
ticle lifetime is denoted ast, which depends on neithert nor
r . The temporal evolution ofP($um%,t) due to the noncon-
servation term obeys the Fokker-Planck equation~see Ap-
pendix B!
02613
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52(
i

]

]ui
S Fy~ t !2

n01ui

t GP~$um%,t !

2
1

2

]2

]ui
2 H Fy~ t !1

n01ui

t GP~$um%,t !J D ,

~9!

which comes from the competition between particle creat
and annihilation@46,47#. As a point to notice, the spatia
averagen0 of the intracell particle number depends on tim
because of the creation and annihilation of particles, and
temporal evolutional equation is

d

dt
n0~ t !5y~ t !2

n0~ t !

t
. ~10!

Using Eqs.~6!, ~7!, ~9!, and ~10!, we drive the full form of
the Fokker-Planck equation for the multipoint distributio
function P($um%,t) in a system with particle creation an
annihilation effects. This equation contains the interparti
interaction explicitly.

C. Closed-form coupled equations of motion: The LBM
approximation

The multipoint distribution functionP($um%,t) has all the
information of a system. But we cannot solve easily t
Fokker-Planck equation forP($um%,t). If it can be solved,
we are afraid that essential qualities become vague. So
our theory, the time evolution of a system is described
two quantities. One is the dynamical structure factorS(k,t),
which is defined as the Fourier transform of the two-po
spatial correlation function̂uaub&(t). It can be measured by
x-ray, neutron, or light scattering experiments. Since we
sume that the system is isotropic,^uaub&(t) depends only on
the distanceura2rbu, and the definition ofS(k,t) is

S~k,t ![(
a

exp@2 ik•~ra2rb!#^uaub&~ t !. ~11!

The other is the single-point distribution function defined

P~1!~ua ,t ![E )
i ~Þa!

dui P~$um%,t !. ~12!

This is the probability distribution function for the case wh
the order parameter in theath cell takes the valueua at time
t. Since a is arbitrary (a51,2,...,N), P(1)(ua ,t) also de-
notes the distribution function of the number of cells
which the particle number isna5ua1n0 . Using only
P(1)(ua ,t), the average of a quantityO(ua), which is a
function only ofua ~not of ub!, is calculated as

^O~ua!&~ t !5E duaP~1!~ua ,t !O~ua!. ~13!

In order to derive closed-form coupled equations for t
single-point distribution functionP(1)(u,t) and the dynami-
1-3
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AKIRA ISHIKAWA AND TETSUO OGAWA PHYSICAL REVIEW E 65 026131
cal structure factorS(k,t) from Eqs. ~6!, ~7!, and ~9!, we
employ an approximation@13#, where the two-point distribu-
tion function is decoupled as

P~2!~ua ,ub ,t !5P~1!~ua ,t !P~1!~ub ,t !

3F11
^uaub&~ t !

@^u2&~ t !#2 uaubG , ~14!

wherea andb stand for two different cells. In this paper, w
call this approximation the LBM approximation. Moreov
we introduce the following terms.N for the particle number,
a0 for length, t0 for time, the critical temperaturekBTc
[(N/4)(J012K), andkBTc /N as the interaction coefficient
After this normalization, we should note that the relati
J012K54 always holds. Applying the LBM approximatio
and the above-mentioned normalization, the closed-fo
coupled integrodifferential equations forP(1)(u,t) and
S(k,t) are obtained as

]

]t
P~1!~u,t !5

]

]u
FS NH D f* ~T!@C2^C&~ t !2B~ t !u#

1
X~ t !

^u2&~ t !
uJ 2Fy~ t !2

n01u

t G D P~1!~u,t !

1D f
1 ]

]u F]C

]u
P~1!~u,t !G

1
1

2N

]

]u H Fy~ t !1
n01u

t GP~1!~u,t !J G, ~15!

]

]t
S~k,t !522H Nk2F12

4

T
B~ t !1

J0R2

2T
B~ t !k2G1

1

t J S~k,t !

1
2

v0
@n02n0

22^u2&~ t !#k21
1

Nv0
Fy~ t !1

n0

t G ,
~16!

whereN is an upper limit of the particle number in one ce
and v0[a0

3 is the volume of a cell. The functionsC, B(t),
X(t), andD f* (T) are defined as

C5C~u![ 1
6 n0

2~322n0!1n0~12n0!u

1 1
2 ~122n0!u22 1

3 u3, ~17!

B~ t ![n0~12n0!1
1

2
~122n0!

^u3&~ t !

^u2&~ t !
2

1

3

^u4&~ t !

^u2&~ t !
,

~18!

X~ t ![
1

~2p!3 E dk k2F12
4

T
B~ t !1

J0R2

2T
B~ t !k2GS~k,t !,

~19!

D f* ~T![2D f
1 4

T
1D f

2 J0R2

2T
. ~20!
02613
m

Here thek integration is carried out in the range of 0<uku
<v0

21/3, and 2D f
152(2p)23*dk k2 and D f

25(2p)23

3*dk k4 are the diagonal elements of the normalized L
placian operators. In these equations, the interparticle in
action appears asJ0R2. As mentioned above, the short-rang
part K is connected with the long-range oneJ0 by the rela-
tion K522 1

2 J0 . Recall that the mean intracell particle num
ber n0 depends on time according to Eq.~10!. The temporal
development of the spinodal decomposition in many-part
systems with creation and annihilation is described w
these equations. But there are conditions for the occurre
of the spinodal decomposition. The spinodal line is given
T54n0(12n0), which is shown in Fig. 1. The spinodal de
composition can occur only when the initial state is with
the shadowed region

T,1 and 1
2 ~12A12T!,n0, 1

2 ~11A12T!.
~21!

D. Comparison of our model with other systems

The temporal evolution of the order parameteru(r ,t) due
to the nonconservation term obeys the equation

]

]t
u~r ,t !U

nc

5y~ t !2
n01u~r ,t !

t
.

This describes the competition between the creation@y(t)#
and the annihilation@t#. Here we shall discuss similarity an
difference between our model and others, e.g., chemic
reacting systems@48–51# and block copolymer systems@52–
54#. The time-evolutional equations for an order paramete
these systems are equivalentmathematicallyto those in our
model. Howeverphysical origins are quite different from
each other. In chemically reacting systems, the compon
are created and annihilated by chemical reactions. The ti
evolutional equation of the order parameters has the linea
nonlinear source term indicating the chemical reaction. In

FIG. 1. The spinodal line drawn on the (n0 /N,T/Tc) plane. The
critical temperature and the critical intracell particle number
given asTc51.0 andnc /N50.5, respectively. The spinodal regio
is shadowed. We use the following terms:N for mean intracell
particle number andTc for temperature.
1-4
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case of aA

h

B type reaction, for example, the equation
the order parameterf(r ,t), the density ofA ~or B! molecules
has the linear source term

]

]t
f~r ,t !U

linear source

52hf1h~12f!,

whereh is the chemical reaction rate. In the block copolym
systems, the free-energy functional has two terms, the u
Ginzburg-Landau-Wilson free-energy functional and t
long-range repulsive interaction part. As a result of the lo
range repulsive interaction part, the equation of the or
parameterf(r ,t), the density of polymers, has the subtra
tive term

]

]t
f~r ,t !U

repulsion

52Gf~r ,t !,

whereG is the parameter concerned with the strength of
long-range repulsive interaction. The parametersh and G
correspond tot21 in our model.

III. LYAPUNOV STABILITY ANALYSIS

Before solving Eqs.~15! and ~16! numerically, we shall
discuss qualitatively the effects of finite lifetime. Th
Lyapunov spectrum has often been used in order to dis
the stability of the system. When we assume that the fluc
tion modeuk(t) with wave numberk of the order paramete
is written as

uk~ t !}exp@ tGk~ t !#,

Gk(t) is called the Lyapunov spectrum. It means the grow
speed of a fluctuation modeuk with wave numberk in the
early state. The fluctuation mode grows ifGk(t).0 and de-
cays if Gk(t),0. The Lyapunov spectrum describes also
increase or decrease of the dynamical structure fa
through the relationS(k,t)5uuk(t)u2}exp@2tGk(t)# when the
system is isotropic and translational symmetric. The wa
numberk is replaced simply by its amplitudek[uku.

In the case ofy(t)5n0 /t5const, the Lyapunov spectrum
of the early state is derived as

Gk~ t !52
NJ0R2

2T
B~ t !k2@k21A~ t !#2

1

t
, ~22!

where

A~ t ![
2

J0R2 F T

B~ t !
24G ~23!

from Eq. ~16!. The forms of the Lyapunov spectra at timet
are shown in Fig. 2 as a function of the wave numberk. In
these figures, we can define the critical wave numbers
boundary wave number between unstable@Gk(t).0# and
stable@Gk(t),0# fluctuation modes.
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In the case with neither creation nor annihilation of pa
ticles @y(t)50 and t→`#, only one critical wave number
kc(t) can be defined as

kc~ t ![A2A~ t ! ~24!

from Fig. 2~a!. The fluctuation modes with the larger wav
length than@kc(t)#21 grow but those with the smaller wave
length decay. This corresponds with the usual spinodal
composition. In the case ofy(t)5n0 /t5const, we can find
two critical wave numbers from Fig. 2~b!. One is the lower
critical wave numberkc

(1)(t) and the other is the upper criti
cal wave numberkc

(2)(t), whose values are

kc
~1!~ t !5

1

&
S 2A~ t !2F @A~ t !#22

4

NT
A~ t !2

32

NJ0R2tG1/2D 1/2

~25!

kc
~2!~ t !5

1

&
S 2A~ t !1F @A~ t !#22

4

Nt
A~ t !

2
32

NJ0R2tG1/2D 1/2

. ~26!

Only the fluctuation modes with the wave numberkc
(1)(t)

,k,kc
(2)(t) can grow, and the modes with the smaller wa

numberk,kc
(1)(t) decay in time. This appearance of deca

ing fluctuation modes with a smaller wave numberk
,kc

(1)(t) is one of the effects of particle creation and an
hilation. If y(t)50 and t→`, kc

(1)(t) becomes zero and
kc

(2)(t) becomeskc(t)5A2A(t).

IV. NUMERICAL RESULTS AND DISCUSSION

Numerical calculation for Eqs.~15! and~16! is carried out
without the use of the double-Gaussian ansatz in@13#. In this
section, numerical results are explained and effects of
interparticle interaction and finite lifetime are discussed.
this paper, we confine ourselves to the case where the
ticles are created at a constant rate~‘‘cw creation’’! to bal-
ance with the depletion of particles due to the finite lifetim

FIG. 2. Schematic view of the Lyapunov spectrumGk as a func-
tion of uku. The case of neither creation@y(t)50# nor annihilation
@t→`# is shown in~a!, and the case of cw creation and annihilatio
@y(t)5n0 /t5const# is given in~b!. In ~a!, two lines show the case
where ~i! A(t),0 and ~ii ! A(t)>0. In ~b!, three lines show the
cases where~i! A(t),Ac , ~ii ! A(t)5Ac , and~iii ! A(t).Ac . Here
Ac[(2/Nt)@12(118Nt /J0R2)1/2#. A unit for the wave number
is a0

21.
1-5
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AKIRA ISHIKAWA AND TETSUO OGAWA PHYSICAL REVIEW E 65 026131
that is, bothy and the mean intracell particle numbern0
5yt are constant in time. We set the parametersN51000
and v050.01. They are concerned with the coarse-grain
procedures, soN andv0 should not be so small and so larg
respectively. If these conditions forN and v0 are satisfied,
final numerical results are insensitive to values ofN andv0 .
We set temperatureT50.9 and the mean intracell particl
numbern050.5, which exist in the spinodal region. The in
tial state att50 is chosen to be a uniform-density sta
Then the initial single-point distribution functionP(1)(u,t
50) has a delta-function-like form with a small width due
the thermal fluctuation. In numerical calculations, we assu
it to be Gaussian, whose variance is 0.002 25. The boun
conditions for the single-point distribution function a
P(1)(u,t)uu,2n0

50 and P(1)(u,t)uu.N2n0
50, which result

from the fact that the intracell particle number should
positive and that it must be smaller thanN. The initial dy-
namical structure factor is assumed to beS(k,t50)50,
which reflects that no domain structure exists att50. Since
the total particle number is conserved, the boundary co
tion for the dynamical structure factor isS(k,t)uk5050. The

FIG. 3. Temporal development of the single-point distributi
function P(1)(u,t) and the dynamical structure factorS(k,t) for T
50.9, N51000, v050.01, andn050.5. The creation rate isy
5n0 /t50.5/t and the long-range part of interaction isJ0R2

50.08. Three figures in the left row,~a!, ~c!, and ~e!, are
P(1)(u,t) and ones in the right row,~b!, ~d!, and~f!, areS(k,t). The
lifetime of particles ist5` for ~a! and~b!, 0.01 for~c! and~d!, and
0.002 for ~e! and ~f!. The inset of~b! shows the behavior during
0<t&0.004. In~c!–~f! for the case of the finite lifetime, the state
with ‘‘ t52 ~stationary!’’ can be considered as stationary one
Terms are defined as following:N for particle number anda0

21 for
wave number.
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largest normalized wave number should be (6p2)1/3, which
comes from the fact that the number of states is equal to
number of cells.

A. Single-point distribution function and dynamical
structure factor

When the long-range part of the interaction isJ0R2

50.08, temporal evolutions of the single-point distributio
function and the dynamical structure factor are shown in F
3. First, we shall discuss the case oft5` ~correspondingly
y50!, as shown in Figs. 3~a! and 3~b!. From these figures
we find that the initial state with one uniform density sep
rates into two states with different densities. Here we defi
the ‘‘onset time’’ tonsetas the time nearly when one peak
P(1)(u,t) separates into two peaks. In Fig. 3~a!, when the
long-range part of the interaction isJ0R250.08, the onset
time is tonset.0.003. According to numerical calculations fo
different values ofJ0R2, we obtain a relation betweentonset
andJ0R2, as shown in Fig. 4. We find that smaller theJ0R2

is larger is the short-range partK522 1
2 J0 and shorter the

tonsetbecomes rapidly. This relation comes from the fact th
many small domains are rapidly formed if the attracti
short-range interaction is large. Moreover, there seems to
ist an asymptotic upper limit ofJ0R2 for occurrence of the
phase separation. Temporal evolution of the dynamical st
ture factor is shown in Fig. 3~b!. From this figure, we find
that the characteristic wave numberkmax(t), at which the dy-
namical structure factor takes the maximum value, shifts
the longer-wavelength side. Whent→`, the form ofS(k,t
→`) may become the Lorentzian form with a maximu
peak atk50, i.e.,kmax(t→`)50, where the system separat
completely into two phases.

Next, we discuss the case of finite lifetime, as shown
Figs. 3~c!–3~f!. Temporal evolutions ofP(1)(u,t) are shown
in ~c! and ~e!. From Figs. 3~c! and 3~e!, it is found that the
phase separation or the order formation takes place if
lifetime ~t50.01! is larger than the onset time (tonset
.0.003). In fact, whent50.002 is shorter than the onse
time, the phase separation cannot occur as shown in
3~c!. Thus an effect of the finite lifetime is to prevent th
phase separation or the order formation. We can interpret

FIG. 4. Relation between the onset time and the long-range
of interactionJ0R2. WhenJ0R2 is fixed, the phase separation an
the order formation cannot occur if the particle lifetime is less th
the onset time, in which case it is described as ‘‘inseparable.’’
use the following terms:kBTca0

2/N for the long-range part of inter-
actionJ0R2 andt0 for the onset time.
1-6
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Fig. 4 is a diagram showing a critical lifetime between bei
‘‘separable’’ and ‘‘inseparable’’ into two phases for variou
interparticle interactionsJ0R2. Temporal evolutions of
S(k,t) are, on the other hand, shown in Figs. 3~d! and 3~f!.
The growth ofS(k,t) stops in the case of the finite lifetime
The stationary form ofS(k,t) is broad when the lifetime is
short enough. This indicates that domains cannot grow
sufficiently large size and that the random therm
fluctuation modes are dominant. In addition,kmax(t) settles
into a finite wave numberkmax(t→`) as t→`. This is inter-
preted as follows: the system cannot separate completely
that domains of the finite size@kmax(t→`)#21 finally remain.

We find numerically two power laws forkmax(t→`). One
is betweenkmax(t→`) and the particle lifetimet as

kmax~ t→`!}t21/4, ~27!

which is clearly shown in Fig. 5. The power21
4 is the same

as that in our previous theory@47# and is independent of th
interactionJ0R2. The other is the relation betweenkmax(t
→`) and the long-range part of the interactionJ0R2 as

kmax~ t→`!}~J0R2!21/4, ~28!

which is confirmed by Fig. 6. The power21
4 is independent

of the particle lifetimet. These power laws, Eqs.~27! and
~28!, reflect the fact that particles within the wider ran
cannot converge before annihilation if the particle lifetime
short enough or if the long-range part of the interparti
interaction is weak enough.

B. The critical wave numbers

Figure 7 shows the temporal development of the criti
wave numbers for the cases~a! t5` and~b! t50.01. In the
case~a! of t5`, there is only one critical wave numbe
kc(t). The shadowed region denotes the unstable fluctua
modes. In other words, the fluctuation modes with
smaller wave numberk,kc grow, but those with the large
wave numberk.kc decay. This is the mechanism of th
well-known spinodal decomposition.

FIG. 5. The power-law relation between the particle lifetimet
and the asymptotic~stationary! valuekmax(t→`) of the characteris-
tic wave number ofS(k,t). The solid points correspond to the ca
of J0R250.02 and the open points toJ0R250.08. Both broken
lines are proportional tot21/4. The term for the lifetime ist0 and
one for wave number isa0

21.
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In the case~b! of t50.01, there are two critical wave
numbers: the lower critical wave numberkc

(1)(t) and the up-
per critical wave numberkc

(2)(t). The shadowed region
shows the unstable fluctuation modes. In short, the fluc
tion modes only with the wave numberkc

(1)(t),k,kc
(2)(t)

can grow and other modes decay. The main difference fr
the case~a! of t5` is the appearance of the lower critic
wave numberkc

(1)(t) and of the decaying modes with th
smaller wave numberk,kc

(1) .

C. Comparison of our model with other systems

As mentioned in Sec. II D, there are similarities betwe
our systems and other systems such as the chemically r
ing systems and the block copolymer systems. The chem
reaction rateh and the strength of long-range repulsive i
teraction between copolymersG correspond to the lifetime
of particlest21 in our model and they prevent the pha
separation. This restraint of the phase separation in th
systems is often called ‘‘pinning or freezing’’ of the pha
separation. The power lawsL}(1/h)a1 and L}Ga2 have

FIG. 6. The power-law relation between the long-range par
interactionJ0R2 and the asymptotic~stationary! valuekmax(t→`) of
the characteristic wave number ofS(k,t). The solid points corre-
spond to the case oft50.002 and the open points tot50.01. Both
broken lines are proportional to (J0R2)21/4. The terms used are
defined as following:kBTca0

2/N for the long-range part of interac
tion J0R2 anda0

21 for wave number.

FIG. 7. Temporal development of the critical wave numbers
~a! t5` and ~b! t50.01. In ~a!, there is only one critical wave
numberkc(t). In ~b!, on the other hand, there are two critical wa
numbers,kc

(1)(t) andkc
(2)(t). Only the fluctuation modes within the

shadowed region are unstable and can grow. The appearance
stable modes of smaller wave numberk,kc

(1)(t) is found in~b!. We
use the following terms:t0 for time anda0

21 for the critical wave
number.
1-7
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been also derived numerically@48,52,53#, where L is the
asymptotic domain or pattern size in the stationary s
when timet→`.

Moreover, in these systems, the lower critical wave nu
ber also appears, and the modes with wave numbers sm
than the lower critical wave number decay@48–50#. The
appearance of the lower critical wave number and the
straint of the fluctuation growth with the longer waveleng
is a result common to phase separating systems far f
equilibrium @55#.

V. DISCUSSION AND CONCLUSIONS

We have formulated a theoretical model of the spino
decomposition dynamics in the finite-lifetime system. O
model includes effects of the interparticle interaction exp
itly, in contrast to the Ginzburg-Landau-Wilson phenomen
ogy. The nonlinear coupled equations forP(1)(u,t) and
S(k,t) have been derived with the master-equation met
and the LBM approximation. In general, effects of finite lif
time prevent occurrence of the phase separation and th
der formation. We have discussed the onset time, i.e.,
boundary lifetime, which decides whether or not the ph
separation occurs. Domains with a finite size@kmax(t
→`)#21 are found to remain finally, whose size is propo
tional to t1/4 and (J0R2)1/4. We discussed the temporal d
velopment of two critical wave numbers. One of these cr
cal wave numbers, the lower critical wave numberkc

(1)(t),
appears as a result of finite lifetime. Similar characteris
are shown in chemically reacting systems and block cop
mer systems.

As a final discussion in this paper, we make comments
the unsolved problems of our theory. In our formulation, t
phase separation can occur only when the longer-wavele
modes increase, i.e., the state that corresponds to that w
the spinodal region. However, for practical purposes,
phase separation can occur even out of the spinodal re
via the nucleation mechanisms. In order to describe
nucleation, the volume and surface effects of domains sho
be adopted into the particle-transfer probability, and we h
to obtain more detailed spatial infirmations. As another pr
lem, we should clarify what is the origin of the power law
for the asymptotic domain size@kmax(t→`)#21. To this end,
we need to solve the equations forP(1)(u,t) andS(k,t) ana-
lytically, or derive the power directly with other microscop
models. The quantum nature of particles is also an attrac
topic. We are interested in the more detailed and microsco
mechanism of phase separation and order formation. In
paper, we have given one example of the universality
finite-lifetime effects on the spinodal decomposition.
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APPENDIX A: THE TEMPORAL EVOLUTION
OF THE MULTIPOINT DISTRIBUTION FUNCTION

DUE TO THE CONSERVATION TERM

The conservation term due to the particle transfer is
rived with the use of the master-equation method by Bin
@14#. The phase separation progresses by the particle tran
between nearest-neighbor cells. For example, we cons
the particle transfer from thei th cell to thea i th cell and then
the configuration of particles changes fro
$n1 ,...,ni ,na i

,...,nN% to $n1 ,...,ni21,na i
11,...,nN%. When

the transition probability for this configuration change is d
noted asW(ni→ni21,na i

→na i
11), the temporal evolution

of P($nm%,t) obeys the master equation

]P~$nm%,t !

]t U
c

5(
i

(
a i

W~ni21→ni ,na i
11→na i

!

3P~n1 ,...,ni21,na i
11,...,nN ,t !

2(
i

(
a i

W~ni→ni21,na i
→na i

11!

3P~$nm%,t !. ~A1!

The summation( i runs over allN pieces of cells and(a i

runs over the nearest-neighbor cells of thei th cell. Here
P(n1 ,...,ni21,na i

11,...,nN ,t) is the probability for the re-

alization of a particle configuration$n1 ,...,ni21,na i

11,...,nN% at time t. The transition probability should mee
the detailed-balance condition

W~ni21→ni ,na i
11→na i

!Peq~n1 ,...,ni21,na i
11,...,nN!

5W~ni→ni21,na i
→na i

11!Peq~$nm%!.

Peq($nm%) is the multipoint distribution function in a therma
equilibrium state and it is defined as

Peq~$nm%![Z21Y~$nm%!expF2
H~$nm%!

kBT G . ~A2!

Here Z is the partition function,H($nm%) is the coarse-
grained Hamiltonian, Eq.~2!, for the particle configuration
$nm%, andY($nm%) comes from the information of the origi
nal lattice; Y($nm%)5NCn1

¯ NCni NCna i
¯ NCnN. This fac-

tor, Y($nm%), is related to the number of the original micro
scopic states with energyH($nm%). Using this equilibrium
distribution function, one of the transition probabilities sat
fying the detailed-balance condition is defined as
1-8
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W~ni→ni21,na i
→na i

11!

5
1

2t0
ni~N2na i

!

3H 12tanhFdH~ni→ni21,na i
→na i

11!

2kBT
G J .

~A3!

dH(ni→ni21,na i
→na i

11) is the variation of energy from

the particle transfer andt0 is the shortest time for a particl
transfer between nearest-neighbor cells. The factorni(N
2na i

) in the transition probability comes from the fact th
one cell hasN pieces of the original lattice points. Thus th
master equation, Eqs.~A1! and ~A3!, for P($nm%,t) is ob-
tained.

This master equation is rewritten as the Fokker-Pla
equation for the multipoint distribution functionP($um%,t).
For this procedure, the energy variationdH is assumed to be
much smaller than the temperaturekBT, then
tanh(dH/2kBT)'dH/2kBT. Next, the functions ofnm61 are
expanded up to the second order,

f ~nm61!' f ~nm!6
]

]nm
f ~nm!1

1

2

]2

]nm
2 f ~nm!, ~A4!

and the space functions are also expanded to the secon
der of a0

f ~na i
!' f ~ni !1a0

2(
j

D i j f ~nj !. ~A5!
.

02613
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Two parameters characterizing the long-range interact
Eq. ~3!, are introduced in the same way as Binder@14#; One
is the strengthJ0 and another is the interaction rangeR.
Finally, we rewrite the variablenm as the order paramete
um[nm2n0 . Applying these procedures to the master eq
tion, Eqs.~A1! and ~A3!, we can derive the Fokker-Planc
equation forP($um%,t), Eq. ~7!.

APPENDIX B: THE TEMPORAL EVOLUTION OF THE
MULTIPOINT DISTRIBUTION FUNCTION DUE

TO THE NONCONSERVATION TERM

The temporal evolution ofP($nm%,t) due to the noncon-
servation term obeys the master equation

]P~$nm%,t !

]t U
nc

5(
i

Fy~ t !P~n1 ,...,ni21,...,nN,t !

2y~ t !P~$nm%,t !1
1

t
~ni11!P~n1 ,...,ni

11,...,nN,t !2
1

t
ni P~$nm%,t !G , ~B1!

which comes from the competition between particle creat
and annihilation@46,47#. HereP(n1 ,...,ni61,...,nN ,t) is the
probability distribution function for the particle configuratio
$n1 ,...,ni61,...,nN%. The summation( i runs over allN
pieces of cells. Sincenm is assumed to be a continuous va
able, the function ofnm61 is expanded to the second ord
as in Eq.~A4!. Rewriting the variablenm as the order param
eterum , we derive the Fokker-Planck equation for the mu
tipoint distribution functionP($um%,t) due to particle cre-
ation and annihilation, Eq.~9!.
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