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Dynamics of spinodal decomposition in finite-lifetime systems:
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We study theoretically dynamics of the spinodal decompositidimite-lifetimesystems to clarify effects of
the interparticle interactions beyond the Ginzburg-Landau-Wilson phenomenology. Our theory is based on the
coarse-grained Hamiltonian derived from the interacting lattice-gas model with a finite lifetime. The informa-
tion of a system is reduced to closed-form coupled integrodifferential equations for the single-point distribution
function and the dynamical structure factor. These equations involve explicitly the interparticle interactions.
The finite lifetime prevents the phase separation and the order formation in the cw creation case; domains
cannot grow to be larger than an asymptotic characteristic [$izg({t—=)]" . Power-law dependence of
kma{t—2°) on the interparticle interaction and the particle lifetime is also found numerically. The finite lifetime
prevents the phase separation, i.e., the lower critical wave nd({]ﬁeappears and domains of size larger than
(kY] cannot grow.
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[. INTRODUCTION puter simulation§26—29, and experimentg30—-37 of the
phase separation have been proposed. The phase separation
Spinodal decomposition is a nonequilibrium phenomenoris studied also in various kinds of fields such as high polymer
in which an unstable state separates spatially into severghysics[33], cosmology{34], and so on.
stable states. The spinodal decomposition has been studied Thus far, almost all the theories of the spinodal decompo-
since it was observed as the periodic compositional variatioition are applicable only to systems with neither creation
of metallic alloys in the 1940¢see reviews, e.g[1-7]). It ~ nor annihilation of constituent particles. In such systems, it is
was investigated with experiments such as x-ray scattering ifnpPlicitly assumed that the particle has infinite lifetime.
the 1960s and 19708,9]. In the earliest theoretical works, However, there are many examples where external fields cre-

Cahn and co-workef10,11] and Cook[12] proposed linear ate unstable particles (or quasiparticlesthat have afinite
héifetime and can build a new phase. Several examples of such

phase-separation dynamics. Following them, the nonlinea}yStems are listed her@) a highly excited gas in which the

. excited molecules attract one another more strongly than in
theory was developed by Langer, Bar-on, and Mil(leBM) ; ,
[13]. They used an approximation with which the distribu-the ground state, leading to the creation of new ph38}s

; N . o in this case, excited molecules are unstakii¢;the exciton
tion function is decoupled and the spatial correlation is de]iquid phasd36] and the exciton Bose-Einstein condensation
scribed by the dynamical structure factor. One of the pur

. Lo ) 137] created by light absorption, in which excitons have a
poses of theoretical studies is to solve the behavior of th‘ﬁnite radiative lifetimex(iii) the electron-hole liquid38,39

dynamical structure factor because it corresponds to thgng the electron-hole droplp20,41] in semiconductors ex-
spectrum of x-ray, neutron, or light scatterings. These theogjted more strongly than for exciton systems, in which
ries employed the Ginzburg-Landau-Wilson free energy. Orslectron-hole pairs can disappear due to recombination
the other hand, theories based on the kinetic spin m@#el  within a finite lifetime, we consider the formation of these
Glauber's model, Kawasaki's model, gthave been pro- phases as the phase separation of particles with finite life-
posed[14-16. For example, Bindef14] derived the equa- time; (iv) new phase development and spatial modulation in
tion of motion for the dynamical structure factor with the usecrystals under nuclear and other irradiatigt2—44. Theo-
of the master-equation method from Kawasaki's spin-retical studies of the order formation such as void nucleation
exchange kinetic Ising mod¢lL7]. Tomita[15] studied the of vacancies were proposé¢ds]. They are accompanied by
mean-field dynamics based on the spherical spin model. Behe creation process and the recombination process with in-
sides these works, many theoretical studig8—25, com- terstitials. In these studies, however, effects of “finite life-
time” are not focused upon. In the above examples, the par-
ticles (or quasiparticleshave a finite value of lifetime due to
*Email address: akira@acty.phys.sci.osaka-u.ac.jp light irradiation, recombination, or other processes. The finite
TEmail address: ogawa@acty.phys.sci.osaka-u.ac.jp lifetime influences significantly the new phase development.
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To study the phase separation in such finite-lifetime sysandV, , is the interaction between particles. We assume that

tems, we proposed theoretical formulation of the spinodathe interparticle interaction is dependent only on the distance
decomposition dynamics in finite-lifetime systems and dis-|, —|,| and is attractive, whose strength approaches zero
cussed effects of the finitg lifetin}d6,47]. ltwas a phenom- when|l,—1,| is large enough. Note thét, —I,| cannot be-
enology based on the Ginzburg-Landau-Wilson free energgome shorter than the lattice constant. This restriction means
and hence it had a universality for various physical systemsyat the particles have hard-sphere interaction when |
However, we cannot investigate effects of microscopic charis short enough. In this lattice-gas model, the Hamiltonian of
acteristics of the systems with its phenomenology becausge system is described by the particle numbgy at the

the microscopic |.nformat|on'|s included implicitly into the lattice pointl,: m, =0 or 1. To formulate the theory of the
free-energy functional. Also in order to approach more real- 1

istic systems, we have to study effects of the interparticleSPinodal decomposition, we describe the Hamiltonian by a

interactions for the spinodal decomposition dynamics as weffontinuous variable, the particle density. In order to define

as the finite-lifetime effects. Therefore we need to construct &€ particle density, we have to divide the space into many

theory of the spinodal decomposition in finite-lifetime sys- Small regions and count the particle number in each region.

tems taking explicitly into account more microscopic details. SO We shall introduce the coarse-graining procedure and re-
The main aim of this paper is to introduce a formalism forWrite_the lattice-gas model, Edl), as the coarse-grained

spinodal decomposition in finite-lifetime systems, which Hamiltonian. _ o

contains explicitly the microscopic interparticle interactions. Ve use the cell representation for the coarse-graining pro-

To this end, our strategy is to start with the lattice-gas modefedure. This procedure is thaitlattice points{l;=1,...N|I;

with interparticle interactions. After a suitable coarse- €1} are unified to theth cell. The system is divided int&/’

graining procedure, we obtain an effective Hamiltonian ofPieces of the cell of siza,. The particle number in thith

the system. The processes of the creation and the annihilatig!l is written asn;. All the lattice points{l;|l; i} in the

of particles are introduced in the same way as in the previouh cell are assumed to have, =n;/N particles uniformly.

paper{46,47. Employing an approximation to the two-point With the use of this coarse graining, the lattice-gas model of

distribution function, coupled integrodifferential equations Eqg. (1) is transformed into the cell Hamiltonian

are derived in a closed form, which contains nonlinear fea-

tures of the dynamics. Numerical results of these fundamen- 1 2

. . . : H=-3 Jiinini—K 2, n?, 2
tal equations are examined to clarify the relation between the 24 j%) e Z ! 2
spinodal decomposition dynamics and the interparticle inter-
actions in finite-lifetime systems. where

This paper is organized as follows. In Sec. I, we intro-

duce the theoretical formulation taking into account the cre- _ i _

ation and annihilation of particles starting from the coarse- = N2|lzei |ZE%#) Vig,  (1#1), )

grained lattice-gas model. The closed-form coupled

equations of motion are derived in the LBM approximation. 1

Our model is compared with those in other systems such as K= mzl2i Iin Vi, (4)
lE €

the chemically reacting systeni48—51] and the block co-

polymer system$52—-54. The finite-lifetime effects on the This Hamiltonian is described with the intracell particle
spinodal decomposition are understood qualitatively fromyyympern, , which is 0<n;<N. In this paperN is assumed
the Lyapunov stability analysis in Sec. Ill. There the critical (g pe g9 large that we can regardas a continuous variable.
wave numbers are introduced in order to characterize thep s the intracell particle number corresponds to the local
dynamics in the early stage of the phase separation. Numerjansity of particles. The interparticle interaction is divided
cal results are shown in Sec. IV. Power-law dependence of 8 two parts: the intercell long-range interactignand the
asymptotic characteristic domain size on the interparticle in,iracell short-range interactidf. HereJ;; depends only on

teraction and the particle lifetime is clarified numerically. 4,4 distancdi—j|. As mentioned above, the original inter-
Temporal development of the critical wave numbers is alsq,o icle interaction strengthv, | is small when|l;—1,]

discussed. Our results are compared with those in the cheml-

cally reacting systems and the block copolymer systems. tzh:g,tﬁgtvxc/)?Kconyder that the strengthkf is much smaller

Il. THEORETICAL FORMULATION . L o
B. The Fokker-Planck equation for the multipoint distribution

A. Coarse graining in the lattice-gas model function
For the study of the spinodal decomposition, the lattice- We define a derivation; of the intracell particle number
gas model, n; from its averageng=(n;), i.e., u;=n;—ny, as an order
parameter of the system. A state of the system is described
H=-1 v m.m, (1) by the mu!'upomt dlstrlb_uuon functio® ({u},t), which has
L Ix(#ly) 12 12 all statistical information of the system, wherfu,,}

={u,/m=1,2,..N}. The spatial average of a physical quan-
is often used, wherk, |, are the indices of the lattice points tity O({u,}) is evaluated as
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Temporal evolution oP({u,,},t) results from two origins, 52 { y(t)+ }P({um},t)] )
7 COP{unh )| | P({umh )| ©
at PUnh D=5 ‘CJF | © which comes from the competition between particle creation

and annihilation[46,47). As a point to notice, the spatial
averagen, of the intracell particle number depends on time
because of the creation and annihilation of particles, and its
temporal evolutional equation is

The first term is the “conservation term” resulting from the

particle transfer, in which the total number of particles is

conserved, and the second is the “nonconservation term

coming from effects of particle creation and annihilation due d (t)

to the finite lifetime. oD =y(1)— 2
We shall derive the first term due to the particle transfer

with the use of the master-equation method by Bindei. . .

The phase separation develops by the particle transfer belsing Egs.(6), (7), (9), an_d (10), we drive 'Fhe_full forr_n Of_
tween nearest-neighbor cells. The transition probability fothe Fokker-Planck equation for the multipoint distribution
this particle transfer is defined from the detailed-balance conf!nction P({um},t) in a system with particle creation and
dition and depends on the energy variation. As a result, th@nmhnatlon effects. This equation contains the interparticle
temporal evolution ofP({uy},t) due to the conservation interaction explicitly.

term obeys the Fokker-Planck equati@ee Appendix A

(10

C. Closed-form coupled equations of motion: The LBM
approximation

P({umht)| a5 R .
— ] =" —2 (9— 2 Ajjt N(no+u)) The multipoint distribution functior®({u,,},t) has all the
c information of a system. But we cannot solve easily the
K 12K Fokker-Planck equation foP({uq},t). If it can be solved,
0 Ci(y; ,t)] we are afraid that essential qualities become vague. So, in
k T our theory, the time evolution of a system is described by
JoR? two quantities. One is the dynamical structure fa&fk,t),
~ ok TZ 2 AijA;Ci(up, ) |P{um,t) which is defined as the Fourier transform of the two-point
B spatial correlation functiofu,ug)(t). It can be measured by
9C. X-ray, neutron, or light scattering experiments. Since we as-
+Z A”au —! P({um} t D (7) sume that the system is isotrop{c,,u)(t) depends only on
the distancer,,—r 4|, and the definition o8(k,t) is
where S(k)=2 exd —ik-(r,—rg)uaug(t). (11
_ 2 2
Cj(uj)=5ng(3N—2ng) +ng(N—ng)uj+ 3 (N—2ng)u; The other is the single-point distribution function defined as
-t ®)

P(l)(Ua,t)Ef IT duP({um}b). (12)
i(#a)

a, is the volume of a cell andy is the time constant con-

cerned with the particle transfekg is the Boltzmann con- This is the probability distribution function for the case when

stant andT is the temperature. We introduce two parametershe order parameter in theth cell takes the valua, at time

characterizing the long-range interaction between cells in the Since « is arbitrary @=1,2,...N), PM)(u,,t) also de-

same way as Binddrl4]. One is the strengtlly defined as notes the distribution function of the number of cells in

Jo=Zj(+i)Jdij, another is the interaction rang®@ as R which the particle number is1,=u,+ny. Using only

= (LI Zj iy (r;— 1) 23 1V2 PM)(u,,t), the average of a quantitp(u,), which is a
The creation rate of particles is denotedygs), which is  function only ofu, (not of ug), is calculated as

a given function oft and is assumed to be homogeneous in

space, hencg(t) is independent of the position The par- _ 1

ticle lifetime is denoted as, which depends on neithémnor (O(u@}(t)—f dueP ™ (Uq HO(U). (13

r. The temporal evolution oP({u,},t) due to the noncon-

servation term obeys the Fokker-Planck equatisee Ap- In order to derive closed-form coupled equations for the
pendix B single-point distribution functio*)(u,t) and the dynami-
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cal structure factoiS(k,t) from Egs. (6), (7), and (9), we
employ an approximatiofiL3], where the two-point distribu-
tion function is decoupled as

P(Z)(uaf IUB !t) = P(l)(ua !t)P(l)(uﬁ 5t)

<ua ,8>
(U021t

wherea and 8 stand for two different cells. In this paper, we
call this approximation the LBM approximation. Moreover
we introduce the following term&\ for the particle number,
ag for length, 7y for time, the critical temperatur&gT,
=(N/4)(Jy+ 2K), andkgT./N as the interaction coefficient.

x| 1+ (14

After this normalization, we should note that the relation

Jo+2K=4 always holds. Applying the LBM approximation

PHYSICAL REVIEW E 65 026131
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FIG. 1. The spinodal line drawn on thad/N,T/T.) plane. The

and the above-mentioned normalization, the closed-forneritical temperature and the critical intracell particle number are

coupled integrodifferential equations foP™)(u,t) and
S(k,t) are obtained as

J
EP(D(U,I): N[D}*(T)[C—(C)(t)—B(t)U]

X(t) otu
+—<u2>(t) u]— DP“)(u,t)

+Df— 7
au

@(u,t)

y(t)+ nO+u}P(l)(u,t)”, (15)

+1a
2N du

k% |+ —

S(k,t)

i k,t)= k2
ES( BH=—-2{N

2
+ —[no ng—(U)(t)Jk>+ —[ (H+ }
(16)
whereN is an upper limit of the particle number in one cell
andv,=aj is the volume of a cell. The functior@, B(t),

X(t), andD7 (T) are defined as

C=C(u)=£n3(3—2ng) +no(1—ng)u

+3(1-2ng)u*—3u?, 17
_ 1 (Wt 1 (uH(t)
B(t)=ng(1—ng)+ E(l_zno) W 3 W
(18
2
X(t)= WJ dk kz{ B(t)kz}S(k,t),
(19
,JoR?
f(T)——DfTJrDf T (20)

given asT.=1.0 andn./N=0.5, respectively. The spinodal region
is shadowed. We use the following ternid: for mean intracell
particle number and . for temperature.

Here thek integration is carried out in the range of&(k|

<v, ¥, and —Di=-(27) 3fdkk?® and D?=(27) °

x [dk k* are the diagonal elements of the normalized La-
placian operators. In these equations, the interparticle inter-
action appears akR2. As mentioned above, the short-range
partK is connected with the long-range odg by the rela-
tion K=2—3J,. Recall that the mean intracell particle num-
berny depends on time according to E40). The temporal
development of the spinodal decomposition in many-particle
systems with creation and annihilation is described with
these equations. But there are conditions for the occurrence
of the spinodal decomposition. The spinodal line is given as
T=4ny(1—ng), which is shown in Fig. 1. The spinodal de-
composition can occur only when the initial state is within
the shadowed region

T<1 and 3(1—V1-T)<ny<i(1+1-T).

(21)

D. Comparison of our model with other systems

The temporal evolution of the order paramatér,t) due
to the nonconservation term obeys the equation

J No+u(r,t)
Eu(r,t) =y(t)— ——.

nc

This describes the competition between the credtig(t) ]

and the annihilatiofr]. Here we shall discuss similarity and
difference between our model and others, e.g., chemically
reacting systemt8—51 and block copolymer systeni§2—

54]. The time-evolutional equations for an order parameter in
these systems are equivalenathematicallyto those in our
model. Howeverphysical origins are quite different from
each other. In chemically reacting systems, the components
are created and annihilated by chemical reactions. The time-
evolutional equation of the order parameters has the linear or
nonlinear source term indicating the chemical reaction. In the
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K . . g |@ @) g ® G
case of aA=B type reaction, for example, the equation of 5 g
the order parametef(r,t), the density ofA (or B) molecules & k| & K/ iy \R2
has the linear source term g 0 g 0
) g

; _]& & § (ii)

J— = — + _

at d)(r’t) 7]¢ 77(1 d))’ Wave number Wave number

linear source

h is the chemical . In the block | FIG. 2. Schematic view of the Lyapunov spectriifpas a func-
wherey Is the chemical reaction rate. In the block copolymer;,, |k|. The case of neither creati¢y(t)=0] nor annihilation

SYStemS’ the free-energy functional has two ,terms' the usu —o0] is shown in(a), and the case of cw creation and annihilation
Glnzburg-Landau-_WHfson frge-energy functional and the[y(t)znolr:consﬂ is given in(b). In (a), two lines show the cases
long-range repulsive interaction part. As a result of the longyyhere (i) A(t)<0 and (i) A(t)=0. In (b), three lines show the
range repulsive interaction part, the equation of the ordegases wheré) A(t)<A., (i) A(t)=A., and(iii) A(t)>A,. Here

parameterp(r,t), the density of polymers, has the subtrac-a =(2/N7)[1- (1+8N7/J,R?)¥?]. A unit for the wave number
tive term isagt.

In the case with neither creation nor annihilation of par-
ticles [y(t)=0 and r— ], only one critical wave number
k(t) can be defined as
whereG is the parameter concerned with the strength of the
long-range repulsive interaction. The parameterand G ke(D)=V—A(t) (24)
correspond tar—* in our model.

d
o0 =-Ger,

repulsion

from Fig. 2a). The fluctuation modes with the larger wave-
length thar{ ks(t)]~* grow but those with the smaller wave-
length decay. This corresponds with the usual spinodal de-
Before solving Eqs(15) and (16) numerically, we shall Composition. In the case of(t)=no/7=const, we can find
discuss qualitatively the effects of finite lifetime. The WO critical wave numtl)ers from Fig.(8). One is the lower
Lyapunov spectrum has often been used in order to discusiitical wave numbek{"(t) and the other is the upper criti-
the stability of the system. When we assume that the fluctuacal wave numbek(?(t), whose values are
tion modeu,(t) with wave numbek of the order parameter

Ill. LYAPUNOV STABILITY ANALYSIS

is written as ()= 1 At tA 4 A — 32 |¥312
¢ ()_E () —[[AM)] Ny (t) NJoRZT
ug(t)cexp tl ()], (25)
I' (1) is called the Lyapunov spectrum. It means the growing
speed of a fluctuation modg, with wave numbek in the K@(t)= i( —AM)+|[AMD) 2 iA(t)
early state. The fluctuation mode growd'if(t)>0 and de- ¢ V2 N7
cays ifI'(t)<0. The Lyapunov spectrum describes also the o 12
increase or decrease of the dynamical structure factor _ 32 ) 26)
through the relatior8(k,t) =|u,(t)|?<exd 2tI'(t)] when the NJoR?7
system is isotropic and translational symmetric. The wave
numberk is replaced simply by its amplitude=k|. Only the fluctuation modes with the wave numkk—ﬁ)(t)
In the case of/(t) =ny /7= const, the Lyapunov spectrum <k< k(cz)(t) can grow, and the modes with the smaller wave
of the early state is derived as numberk<k{}(t) decay in time. This appearance of decay-
) ing fluctuation modes with a smaller wave numbler
T (t)=— NJoR B()K[K2+A(t)]— E (22) <.k(c%)(t) is one of the effects of particle creation and anni-
2T T hilation. If y(t)=0 and r—=, k{*)(t) becomes zero and

k®)(t) becomesk,(t)=V—A(t).

where

IV. NUMERICAL RESULTS AND DISCUSSION

2
A(t)E J_

ORZ{%“‘

(23

Numerical calculation for Eq$15) and(16) is carried out
withoutthe use of the double-Gaussian ansatzl8l. In this
from Eq. (16). The forms of the Lyapunov spectra at tirne section, numerical results are explained and effects of the
are shown in Fig. 2 as a function of the wave numkeln interparticle interaction and finite lifetime are discussed. In
these figures, we can define the critical wave numbers as this paper, we confine ourselves to the case where the par-
boundary wave number between unstaplg(t)>0] and ticles are created at a constant rétew creation”) to bal-
stable[ ', (t) <0] fluctuation modes. ance with the depletion of particles due to the finite lifetime,
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g 4 E % 0.002 - .
Z £ 600 02 @
R & 400 o) = -
2 @ 0.1
8 20 0.04 0.001 - -

] 0.2 04 0.6 0.8 1 0 0 05 1W1.5 2 12"5 3 35 . inseparable -

ave number
O 1 1 1 1 1

g S T et 0 0.04 0.08 0.12
£ 5 G =o0m ‘ Long-range part of interaction
g s 8 8 Noo7
g, £ ‘ FIG. 4. Relation between the onset time and the long-range part
E ‘g 4 '03 of interactiond,R?. WhenJ,R? is fixed, the phase separation and
5 2 @ g ) N the order formation cannot occur if the particle lifetime is less than
il A A 0 N the onset time, in which case it is described as “inseparable.” We

0 02 04 06 0.8 1 051 15 2 25 3 35 . 2 .

Particle number Wave number use the following termskT.ag/N for the long-range part of inter-
actionJoR? and 7, for the onset time.
£ 8} @ w0002 =0 0.4} t=2 (stationary) . ) 8 .
E g fEhom - largest normalized wave number should berf§“3, which
28 0.0005 & 08 000N comes from the fact that the number of states is equal to the
g g 0.0008 b f cell
g 4 0.003 = 0.2} . numper or cells.
=2 2

% 9 t’_(s’can:iona\ry) EOI /"
z @ | 00001 A. Single-point distribution function and dynamical

0 02 04 06 08 1 e T 5 35 5 35 structure factor

Particle number Wave number When the long-range part of the interaction J§R?

FIG. 3. Temporal development of the single-point distribution =0.08, temporal evolutions of the single-point distribution
function PM(u,t) and the dynamical structure factstk,t) for T function and the dynamical structure factor are shown in Fig.
=0.9, N=1000, v,=0.01, andny=0.5. The creation rate ig 3. First, we shall discuss the casewfe> (correspondingly
=ny/7=0.5/r and the long-range part of interaction %R?> y=0), as shown in Figs. (@) and 3b). From these figures,
=0.08. Three figures in the left row(a), (c), and (e), are  we find that the initial state with one uniform density sepa-
P®(u,t) and ones in the right rovip), (d), and(f), areS(k,t). The  rates into two states with different densities. Here we define
lifetime of particles isr= <o for (a) and(b), 0.01 for(c) and(d), and  the “onset time”t,,.;as the time nearly when one peak of
0.002 for(e) and (f). The inset of(b) shows the behavior during PW(u,t) separates into two peaks. In Fig(aB when the
0§t50.004. In(g)—(f) for the case of t.he finite Iifetimg, the states long-range part of the interaction #R?=0.08, the onset
with "t=2 (stationary” can be considered as stationary ones. fime jst . ~0.003. According to numerical calculations for
Terms are defined as followind\ for particle number ana, - for different values OﬂoRz. we obtain a relation betweep, e
wave number. andJ,R?, as shown in Fig. 4. We find that smaller thgR?

i ) ) is larger is the short-range paft=2—3J, and shorter the
that is, bothy and the mean intracell particle numbeg ¢ hecomes rapidly. This relation comes from the fact that
=y are constant in time. We set the paramet#rs1000 1 \any small domains are rapidly formed if the attractive
andv,=0.01. They are concerned with the coarse-grainingsp o rt_range interaction is large. Moreover, there seems to ex-
procedures, sbi andv, should not be so small and so large, i an asymptotic upper limit od,R? for occurrence of the
respectively. If these conditions fof and v, are satisfied, phaqe separation. Temporal evolution of the dynamical struc-
final numerical results are insensitive to valueNadnduv . ture factor is shown in Fig. (®). From this figure, we find
We set temperaturg=0.9 and the mean intracell particle {4t the characteristic wave number.,(t), at which the dy-
numberno=0.5, which exist in the spinodal region. The ini- namical structure factor takes the maximum value, shifts to
tial state att=0 is chosen to be a uniform-density state. e longer-wavelength side. Whenso, the form of S(k, t
Then the initial single-point distribution functioR™)(u,t ) may become the Lorentzian form with a maximum

=0) has a delta-function-like form with a small width due to peak atkk=0, i.e.,k,t—*)=0, where the system separates
the thermal fluctuation. In numerical calculations, we assumgompletely into two phases.

it to be Gaussian, whose variance is 0.00225. The boundary Next, we discuss the case of finite lifetime, as shown in
conditions for the single-point distribution function are Figs. 3¢)—3(f). Temporal evolutions oPY(u,t) are shown
PO(U,1)[y<-n,=0 and PM(u,t)]y=n-ny=0, which result in*(c) and (e). From Figs. &) and 3e), it is found that the
from the fact that the intracell particle number should bephase separation or the order formation takes place if the
positive and that it must be smaller thah The initial dy-  lifetime (7=0.01) is larger than the onset timet,fee
namical structure factor is assumed to B&,t=0)=0, =0.003). In fact, whenr=0.002 is shorter than the onset
which reflects that no domain structure existe¢-a0. Since time, the phase separation cannot occur as shown in Fig.
the total particle number is conserved, the boundary condi3(c). Thus an effect of the finite lifetime is to prevent the
tion for the dynamical structure factor 8Kk,t)|,—o=0. The  phase separation or the order formation. We can interpret that
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FIG. 5. The power-law relation between the particle lifetime
and the asymptoti¢stationary valuek,,{t—) of the characteris-
tic wave number o5(k,t). The solid points correspond to the case
of J,R?=0.02 and the open points t#,R?=0.08. Both broken
lines are proportional te~ Y. The term for the lifetime isr, and
one for wave number ig, .

FIG. 6. The power-law relation between the long-range part of
interactionJoR? and the asymptoti¢stationary valuek,,(t—o) of
the characteristic wave number 8fk,t). The solid points corre-
spond to the case af=0.002 and the open points te=0.01. Both
broken lines are proportional taJdR?)~Y4 The terms used are
defined as foIIowinngTCaSIN for the long-range part of interac-

. ) . . T .__tion J,R? andagy * for wave number.
Fig. 4 is a diagram showing a critical lifetime between being 0 0

“separable” and “inseparable” into two phases for various B .
interparticle interactionsJoR2. Temporal evolutions of In the.case(b) of ™ 0.01, there are t)WO critical wave
S(k,t) are, on the other hand, shown in Figéd3and 3f). numbers: the lower critical wave numblél)(t) and the up-

s 2 .
The growth ofS(k,t) stops in the case of the finite lifetime. Per critical wave numberkf:_ )(t). The shadowed region
The stationary form oB(k,t) is broad when the lifetime is shows the unstable fluctuation modes. In short, the fluctua-

short enough. This indicates that domains cannot grow to §on modes only with the wave numbif(t) <k<k{(t)
sufficiently large size and that the random thermal-can grow and other modes decay. The main difference from
fluctuation modes are dominant. In additidg,,(t) settles the case@) of 7= is the appearance of the lower critical
into a finite wave numbek,(t—%=) ast—o. This is inter-  wave numberk(cl)(t) and of the decaying modes with the
preted as follows: the system cannot separate completely arminaller wave numbek< kgl).

that domains of the finite sidek,(t—)]"* finally remain.

We find numerically two power laws fde,,(t—c°). One C. Comparison of our model with other systems

i weerk nd th rticle lifetim . )
S betweerkp,,(t—) and the particle lifetimer as As mentioned in Sec. Il D, there are similarities between

K t—00) oc 7~ Y4, (27 our systems and other systems such as the chemically react-
ing systems and the block copolymer systems. The chemical
which is clearly shown in Fig. 5. The power; is the same reaction ratey and the strength of long-range repulsive in-
as that in our previous theofy7] and is independent of the teraction between copolymefs correspond to the lifetime
interaction J,R?. The other is the relation betwedq(t of particles7 ! in our model and they prevent the phase

—) and the long-range part of the interactidsR? as separation. This restraint of the phase separation in these
1 systems is often called “pinning or freezing” of the phase
Kmax(t—) < (JoR%) ™, (28)  separation. The power lawse(1/7)% and L<G*2 have

which is confirmed by Fig. 6. The power is independent

of the particle lifetimer. These power laws, Eq§27) and 2 ° () 7=00 kel 3 (0)1=001 &,
(28), reflect the fact that particles within the wider range El g,
cannot converge before annihilation if the particle lifetime is 5 g
short enough or if the long-range part of the interparticle 3 3
interaction is weak enough. § g
0.1 0.1
B. The critical wave numbers 001 Time 0L oo Time 01

Figure 7 shows the temporal development of the critical £ 7. Temporal development of the critical wave numbers for
wave numbers for the Cfis@ T=% a”d_(l?) 7=0.01.Inthe (45 ;= and(b) r=0.01. In(a), there is only one critical wave
case(a) of 7=, there is only one critical wave number nymperk(t). In (b), on the other hand, there are two critical wave
k.(t). The shadowed region denotes the unstable quctuationumberskgl)(t) andk®(t). Only the fluctuation modes within the
modes. In other words, the fluctuation modes with theshadowed region are unstable and can grow. The appearance of the
smaller wave numbek<k. grow, but those with the larger stable modes of smaller wave numiset k!(t) is found in(b). We
wave numberk>k. decay. This is the mechanism of the use the following termsr, for time anda, * for the critical wave
well-known spinodal decomposition. number.
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been also derived numericall8,52,53, whereL is the under Multiple Environment” from the Ministry of Educa-
asymptotic domain or pattern size in the stationary statdéion, Science, Sports and Culture of Japan.
when timet— oo,

Moreover, in these systems, the lower critical wave num-
ber also appears, and the modes with wave numbers smaller
than the lower critical wave number decf8-50. The
appearance of the lower critical wave number and the re-
straint of the fluctuation growth with the longer wavelength  The conservation term due to the particle transfer is de-
is a result common to phase separating systems far fromved with the use of the master-equation method by Binder

APPENDIX A: THE TEMPORAL EVOLUTION
OF THE MULTIPOINT DISTRIBUTION FUNCTION
DUE TO THE CONSERVATION TERM

equilibrium [55]. [14]. The phase separation progresses by the particle transfer
between nearest-neighbor cells. For example, we consider
V. DISCUSSION AND CONCLUSIONS the particle transfer from thigh cell to theqa;th cell and then

) ) the  configuration of particles changes  from
We have formulated a theoretical model of the spmodal{nl,___,ni n N to {n; n—1n,+1,..ny}. When
(TR R Yy e gree .

decomposition dynamics in the finite-lifetime system. Our

model includes effects of the interparticle interaction explic-

itly, in contrast to the Ginzburg-Landau-Wilson phenomenol-

ogy. The nonlinear coupled equations f&¢')(u,t) and

S(k,t) have been derived with the master-equation method

and the LBM approximation. In general, effects of finite life-  5p({n 1 t)

time prevent occurrence of the phase separation and the or- E— =2 > W(n—1—n; Mg, +1—n,)

der formation. We have discussed the onset time, i.e., the c o«

bounda_ry lifetime, which dgcides_whethe_r or no_t the phase XP(Ny,.c =10, + 1,0 p )

separation occurs. Domains with a finite sif&,(t :

—)]7! are found to remain finally, whose size is propor-

tional to 74 and (,R?)¥*. We discussed the temporal de- -2 W(ni—ni—=1n,—n,+1)

velopment of two critical wave numbers. One of these criti- b

cal wave numbers, the lower critical wave numBgP(t), XP({nm},t). (Al)

appears as a result of finite lifetime. Similar characteristics

are shown in chemically reacting systems and block copoly- _ )

mer systems. The summatior®; runs over all\ pieces of cells an(}:ai
As a final discussion in this paper, we make comments omuns over the nearest-neighbor cells of tik cell. Here

the unsolved problems of our theory. In our formulation, theP(ny,...,n;— 1,nai+1,...nN,t) is the probability for the re-

phase separation can occur only when the longer-wavelengtiization of a particle configuration{n,,...,n;— 1N,

modes increase, i.e., the state that corresponds to that Withi_pl n,l at timet. The transition probability should meet
the spinodal region. However, for practical purposes, thqhe’aétgled-balanc.:e condition

phase separation can occur even out of the spinodal region

via the nucleation mechanisms. In order to describe the

nucleation, the volume and surface effects of domains shouldV(n; —1—n; Mg, T 1Hnai) PedN1,...mi—1n, + 1,..n0)

be adopted into the particle-transfer probability, and we have

to obtain more detailed spatial infirmations. As another prob- =W(ni—ni—=1n, —Ng +1)Ped{Nm}).

lem, we should clarify what is the origin of the power laws

for the asymptotic domain siZék,{t—>)]"*. To this end, ) S o

we need to solve the equations #")(u,t) andS(k,t) ana- Peq(_{_nm_}) is the muIt|p_0|_nt dls'_[r|but|on function in a thermal
lytically, or derive the power directly with other microscopic €duilibrium state and it is defined as

models. The quantum nature of particles is also an attracting

the transition probability for this configuration change is de-
noted asV(n;—n;— 1ng =N+ 1), the temporal evolution

of P({ny,},t) obeys the master equation

topic. We are interested in the more detailed and microscopic H({nb)
mechanism of phase separation and order formation. In this Peq({nm})EZ‘lY({nm})ex;{ - —m} (A2)
paper, we have given one example of the universality of keT

finite-lifetime effects on the spinodal decomposition.

Here Z is the partition function,H({n}) is the coarse-
grained Hamiltonian, Eq(2), for the particle configuration
ACKNOWLEDGMENTS {n}, andY({n.}) comes from the information of the origi-

The authors are grateful to Dr. V. I. Sugakov for discus-na! 1atice;Y({nm}) =nCn == NCNCh -+ NCn). This fac-
sion. This work was supported by CREST, JST, and theor, Y({n.}), is related to the number of the original micro-
Grant-in-Aids for Scientific Research on Priority Area, scopic states with energyl({n,,}). Using this equilibrium
“Photoinduced Phase transitions and Their Dynamics” anddistribution function, one of the transition probabilities satis-
for COE Research on “Strongly Correlated Electron Phasdying the detailed-balance condition is defined as
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W(n;—n;— 1ng—ng+ 1)

27'0
x[l—tam‘{

oH(nj—n;—1n,—n,+1) is the variation of energy from
the particle transfer and, is the shortest time for a particle
transfer between nearest-neighbor cells. The factdN

- nai) in the transition probability comes from the fact that
one cell hasN pieces of the original lattice points. Thus the
master equation, Eq$Al) and (A3), for P({n,,},t) is ob-
tained.

ni(N_nai)

SH(n;—n;— 1n,—n,+ 1)
2kgT

|

(A3)

This master equation is rewritten as the Fokker-Planck

equation for the multipoint distribution functioR({u},t).
For this procedure, the energy variatiéH is assumed to be
much smaller than the temperaturekgT, then
tanh(EH/2kgT)~ SH/2kgT. Next, the functions of,+ 1 are
expanded up to the second order,
14

2z (). (A4)

d
f(nm= l)%f(nm)immf(nm)-l- 57

PHYSICAL REVIEW B5 026131

Two parameters characterizing the long-range interaction,
Eq. (3), are introduced in the same way as Binfiet]; One

is the strength]y and another is the interaction range
Finally, we rewrite the variabla,, as the order parameter
Un=n,—Ng. Applying these procedures to the master equa-
tion, Egs.(Al) and (A3), we can derive the Fokker-Planck
equation forP({uy},t), Eq. (7).

APPENDIX B: THE TEMPORAL EVOLUTION OF THE
MULTIPOINT DISTRIBUTION FUNCTION DUE
TO THE NONCONSERVATION TERM

The temporal evolution oP({n,},t) due to the noncon-
servation term obeys the master equation

U')P({nm}!t) .
ot =2

nc !

y(t)P(ng,....ni—1,...np\t)

—y(t)P({nm},tH%(ni+1>P<n1....,ni

1
+1,...nN,t)—;niP({nm},t) , (B1)
which comes from the competition between particle creation
and annihilatior}46,47. HereP(n4,...,n;=1,...n,.t) is the
probability distribution function for the particle configuration
{ny,....ni=1,..n,}. The summationZ; runs over all N/
pieces of cells. Sinca,, is assumed to be a continuous vari-

and the space functions are also expanded to the second @ible, the function oh,,* 1 is expanded to the second order

der ofag

f(n,)=~f(n)+ag> Ayf(n)). (A5)
]

as in Eq.(A4). Rewriting the variable,, as the order param-
eteru,,, we derive the Fokker-Planck equation for the mul-
tipoint distribution functionP({u,},t) due to particle cre-
ation and annihilation, Eq9).
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