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Group symmetries in two-body random matrix ensembles generating order out of complexity
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The two-body random matrix ensembles with spin TBREnd in a singlej shell TBRE} introduced
recently in the context of ground state structures in complex interacting particle systems, possess
U(N)DU(N/2)®SU(2) and UN)DO(3) group symmetries, respectively, withthe number of single par-
ticle states. It is shown that both these group symmetries give rise to simplicities in the ground state structures
but in different ways.
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[. INTRODUCTION results in[4,8—1( are based on the near Gaussian form of
the density of state(E)) in the two models and by deriv-
There is now new interest in investigating two-body ran-ing easy to understand forms for the centroids, variances, and
dom matrix ensemble§TBRE) with various deformations lower order shape parameters. Towards this end, for the
[1]. Early formulation of TBRE is due to French, Bohigas, TBRE-=s, in [8—10 some counting arguments are employed
Flores, and their co-workerg2]. Recently, many research While for the TBRE}, cranking model and Fermi occupan-
groups have pointed out that TBRE with extra informationCies are used4]. The purpose of the present paper is to
provide a framework for understanding the structure of level§€€xamine the results of the two TBRE's from the standpoint

in the ground state domain of complex isolated finite inter-Of their group structure. First, there is aN)( group operat-

acting particle systems such as atomic nuclei, quantum doti!d In them-particle spaces. For TBRE with spinless fermi-

etc. For example, in nuclei the focus is in using the nucleaPS: the relevance of this B group structure is pointed out

shell model as a laboratory for deriving or testing variousn & recent pub||cat|or|j5]. With the UN) group, it is seen

predictions of extended TBRE'’s for order out of chaos in thethat TBREs and TBRE} possess LN)DU.(N/Z)(@SU(Z)

ground state domain, localization measures such as the info?—nd UN)>0(3) group structures, r.e.fspectl\{ely..D.qe to these

mation entropy, Breit-Wigner to Gaussian transition ind|fferent group symmetries, the origin of S|mpI|C|t|_es n the
h functions. nature of Gamow-Teller and other transiEWO cases are quite different. Results for TBR&re given in

Egr?ns%ﬁen;:]hcs%m,s and so ¢b.3-6. Similarly, deformed Sec. Il and for TBRE-in Sec. lll. Finally, Sec. IV gives

TBRE are used recently in the description of observed Cong,ome concluding remarks and future outiook.

ductance peak spacing and peak height distributions in Cou-

lomb blockade quantum dofg], in the study of the role of Il. TWO-BODY RANDOM MATRIX ENSEMBLES

interaction fluctuations on their ground state Ji@r9] etc. In WITH SPIN

the simplest form, TBRE is defined for spinless fermionis

Boson$ and here the interactions, that are two body are rep-

resented by a random matrix in two-particle spaces and Let us considem fermions in{) number of single particle

propagated to many-particle spaces by using the geometry ¢5P) levels each doubly degenerdtaus N=2()) with spin

the space(note that one considems particles inN single  s=3 ands,= = 3. The number of levelsl(m,S) with fixed

particle states and constructs theparticle states as direct total m-particle spinS is easily determined by considering

products of single particle stale$One class of extension of m, particles withs,= 3 andm, with s,= — 3. The dimension

TBRE is to impose group symmetries on the two-body inter{number of statesfor a fixed (n,,m,) is simply

action, they are called TBRE-syft]. Two different types of o\l q

TBRE-sym are discussed in this paper. _ .

Recently, Jacquod and Stof®9] and Kaplaret al. [10] D(ml’mZ)_<m )(mz):D(m’SZ)’

considered TBRE with spin degree of freedofoalled

TBRE-) and discussed the ground state magnetization of (m;—my)

disordered systems such as quantum dots and the ground m=my+m, and SZIT-

state spin structure of a general complex interacting particle

system, respectively. On the other hand, Mulrelal. [4] _ . .

introduced a singlg-shell model withm-particle states hav- NOW the fixedS dimension d(m,S)=D(m,S,=9)

ing good angular momenturd) and the two-body random —D(m,S,;=S+1) is

interaction(TBRE4). Using TBRE} a basis is given for the

observed dominance df=0 ground states in many nuclear

shell model and interacting boson model calculations. The

A. Variances for TBRE-s and the ground state structure

_(28+1)( O+1 )( O+1

dMS= 671 | m2+S+1 m/2—S)' @
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Note that HamiltonianH=V(2) is defined by the two-body matrix el-
ements Vi, =a((ij)s|V(2)[(kl)s)a, s=0,1 (note that
|(ij)s). denotes antisymmetrized two-particle sjatéor a
TBRE= one assume¥;, =0 and (V,)2=UZ, ie., the

) ) o ijk| are zero centered random variables with variaUée
With Sa good quantum number, the Hamiltontdriwhich is  (ygyally the random variables are taken to be Gaussian in

two body or (1+2) body has UN)DU(N/2)®SU(2)  nature. Note that the bar over’s denotes ensemble average.
group symmetry and this is well knowii1-13. All the  Quite similar to the UK) case(Appendi¥, with respect to
m-particle states belong to the totally antisymmetric reprethe UN/2)® SU(2) group, theV(2) will have scalar ¢
sentation of UN) and the spirSis generated by the SB)  — (), effective one-body ¥=1), and irreducible two-body
group. The direct product group structure immediately givequz) parts in each spins&0,1) sector[12,14). The v
the resu!t that fixedS averages of any operator will be a — o parts generate the centroidém,S) and obviously they
polynomial inmandS(S+1); note thaim is the eigenvalue il be zero on ensemble average. In the dilute limit defined
of the number operatdi and S(S+1) is the eigenvalue of by Q—, m—w, andm/Q—0, theV*=25=%1 parts gener-
the $? operator. This then leads to simple forms for the cen-ate the TBREs varianceso?(m,S) [contributions from the
troids and variances of fixedm,9 densities p™S(E) =1 parts will be smaller at least by the facton/2)] and
=(8(H—E))™S. Let us point out that a general two-body then,

> (28+1)d(m,S)=(r’\rl]
S

TBRE-S [(Q—m/2)(Q—m/2+1)—S(S+1)][m(m+2) —4S(S+1)]

o(mS) 80(0-1)

{[QQ+1)12]U3}

{SA(S+1)4(30%— 70+ 6)/2+3m(m—2)(Q—m/2)(Q —m/2— 1)(Q+1)(Q+2)/8 +[ S(S+1)/2][ (52 —3)(Q +2)(m2— Q)m+ Q(Q—1)(Q+1)(Q+6)]}
* QQ+1)(0-2)(0-3)

X[(Q(Q—1)/2)U%]=Py(m,S) U3+ P1(m,S)U2. 2)

Using Eq.(2) it is seen that the TBREvariances get smaller m-particle matrix element is nat? in general but it is a
as the spirSis increasing and this trend is independent of thecomplicated function of the spi® that is generated byn
ratio U%/UZ. For example, for(0=20, m=8, and S  spin; couplings.

=(0,1,2,3,4) ther?(m,S)/a?(m,0) values foru%/U3=0.3, It is well verified ip a number of numerical gxamples
1, and 3 are(1.0, 0.92, 0.7, 0.55, 0.29(1.0, 0.94, 0.84, [8,10,11 that p™(E) is in general a Gaussian with expo-
0.69, 0.52, and(1.0, 0.96, 0.88, 0.77, 0.67respectively. It Nential tails[15]. Then the ground state energiy) for a

is worth pointing out that the behavior of the dimensions%]'verllzS follows frons1 the so-called Ratcliff prescriptidi 6]
d(m,S) with respect teSis some what different. They grow 2=/ _% d(m.S)p™(E)dE. Then Eq~—o(m,S)Indm,9
from S=0 to S=1 and then start decreasing fast. For ex-away from the centroid(m,S). The behavior of the fixe®
ample, for @ =30m=10) the dimensions fo8=0, 1, 2, 3, variances(decrease with increasin§ and the logarithmic
4, and 5 are~4x10°, ~8x10°, ~6x10°, ~2x10°, dependence oEg4 on the dimensions, clearly show that in
~4x10°, and~3x 107, respectively. At this stage it is im- 9€neral one gets nearly degenerste0 andS=1 ground
portant to discuss the relationship Bf(m,S) with the so- states and othe® ground states will be far above. Thus the
called connectivity factoK(m,S) studied in[9]. Say a typi- Egugé%?ng{etgeblgl—eg gﬁgrstﬁi g;gu;;?e:;z’gepg;;ﬁﬂ in
cal |Sa) state is connected t& (m,S) number of states . g

|SB) by>thes=0,l parts of the two-body interaction and the [8-10]. The precise structurevhetherS=0 is the ground

: f th ted matrix el tt;st' d state or theS=1) depends on the form of the tails of
vanances ol the gonnec_e matrix eerr;en (.m epen- p™S(E). This problem is treated in two different ways in
dent of §). Theno"(m, ) =X K(m,S)U; and this expres- |ierature. Here we consider Jacquod and Stone approach that

sion is used by Jacquod and Stone by deriving formulas ofs pased on the variances and in Sec. 11B we will turn to
Kg(m,S) [9]. Comparing with Eq.(2), it is expected that kapjanet al. approach that is based on the excess correction.
Ps(m,S)=K¢(m,S). Itis seen that Eq(2) gives the expres-  jacquod and Stong8,9] carried out detailed numerical
sions for the factor®s_o,(m,S=0) andPs_1(M,S=m/2)  TBRE=s calculations withH=V(2) and observed tha$

that are |dent|cal_t0 the results fds_g1(m,S=0) _and =0 (S=1) is always the ground state for even¢oddm)
Ks-1(m,S=m/2) given in Eqs(B1) and(B2), respectively, gystems. This and the fact that tBe 0 variances are always
of [9]. However, by comparing Eq2) with Eq. (B4) of [9] it |3rger thanS=1 variances is used in conjecturing that

is clearly seen that fo8+ (0,m/2), K(m,S)# P(m,S) (here

one is assuming/3=U2=U?). Thus in these situations, the A=E _E 41)= mS..
variances ar@®(m,S)U? but notK (m,S)U?. One reason for g Smin) ~ Egd Snin+ 1) = AL (M, Syn)
the differences is that the variance of each alloirezhzerg —o(m,Syint1)]
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where S,;;,=0 or %, Egs stands for the ground state energy B. Ground state structure in TBRE-s with excess corrections
and B is a free parameter. Now employing the relation
a?(m,S)=K(m,S)U? it is shown that the conjecture de-  Alternatively, Kaplanet al.[10] considered shape correc-
scribes very well TBREsnumerical results. One of the strik- tions, in terms of the excess parameter, to the Gaussian
ing observation is the odd-even effdutith respect tam) in ~ form of p™S(E). For a TBRE, as the third moment vanishes,
A and theK(m,S) formulas are able to reproduce this effect. the important shape parameter is thedefined by the fourth
However, as pointed out before?(m,S) should be in terms  central momeniM,,=((H—¢&)*); y,= M,/o*—3. Methods
of P(m,S) and, therefore, it is more appropriate to use  for deriving the expression for exastt, for fixed (m,3 are
available in literaturd13,17 but they are unwieldy. How-

A=EgdSin) ~ Egd Smint 1) = BULVP(M, Syin) ever, the behavior oM, and, hencey, can be understood
—JP(M, Syt 1)]. 3) by writing V(2) in s, representation and calculating aver-

ages, using the binary correlation method describéd, i8],
As P(m,1)#K(m,1), the question arises is whether E8.  over the (n;,m,) states introduced just above Ed); here,
produces the odd-even effect seen in TBRE&iculations. In  instead of UN/2)® SU(2), one isusing the direct sum sub-
fact Eq. (3) does produce the odd-even effect R6m,S)  group UN/2)® U(N/2). In nuclear physics, with Si@) giv-
contains onlyS(S+ 1) andS?*(S+ 1) terms(note that these ing isospin, this is referred as proton-neutron formulation
terms have odd-even effgector example, fo) =16, theA  [1]. The binary correlation results, with finita and Q cor-
values given by Eqd2) and (3), in units of BU, are 0.71, rections, for the ensemble averaged second and fourth mo-
1.95, 1.65, 2.66, 1.89, 2.9, 1.99, 3.02, 2.04, 3.08, 2.07, 3.12nents are worked out for a genetabody Hamiltonian by
2.08, 3.13, 2.09 fom=2-16. Even wheth%# U2, the odd-  Tomsovic[19]. Adopting his results to the present case, one
even effect is preserved by E@). has[with m=m;+m, andS,=(m;—m,)/2]

ml)“ﬂ—mﬁZ

<[V(2)]2>m11m2:( ) m2>[(0—m2+2

2
) )+1}u1+(2 )

X[(Q—m+1)(Q—my+ 1)+ 1][(U5+UD)/4],

)+1}u§+(mlm2)

<[V(2)]4>m1'm2:2{<[V(2)]2>mlym2}2+k kzo 1z{f(ml791kl7k2)f(m27912_ k112_ k2)+g(mlvﬂiklvk2)g(m27912_ k112

—ka) +9(my,Q Kz, kq)g(my,Q2,2—kp,2—ky) +h(my, kg k) h(my,Q,2—ky,2= ko) Ry i ;
HmO k. K _g: Q—m+k;—s\/m=s|[m-s\2/Q—-m|/m|[Q+1 Q-s\(k,
(m.€.ky, 2)_S=0 Ky ki /\k,—s S s s ko J\'s

terms in the summation

O-2s+1 -1

O—-s+1

) O+1
g(m,Q,kq,ky)=1(m,Q,k;,ky) without the

<(kp.kg) _ _ Let us point out that in th&)—o limit o?(m,S) given by
Q
h(m,Q,k; k)= >, (lr(n_s)(m)<|r(n_s)< m), Eq. (4) agrees with Eq(2) and also in thé[V(2)]*) expres-
s=0 178/ 8/ K ™S s sion the fs with s=k, will dominate. Using Eq.(4),
v,(m,S) values are calculated in several examples. It is seen
127127 (121 12) /477 _ that v, becomes more negative &sncreases. For example,
Rigk, =[U1" T[(Uo+ UD)/AT, - 1=(ky mod 2) for Q=20 andm=12, the y, values forS=(0,1,2) are
+(k, mod 2): (—0.386,—0.391,—-0.40), (—0.396,—0.401,—-0.411, and

(—0.406,—0.413,—0.426 for U3/U? taking values 0.3, 1,
and 3, respectively. It should be pointed out that more nega-
([V(2)TPy™S=[{([V(2)]P)y™S=S tive is y,, the higher will be the ground state. Thus the trend
PA\M,S,= S+ 1 _ seen iny,, though the variation is slow, do point out that the
(V@)™ J/d(mS), p=2, 4. S=0 ground state will tend to be lower th&=1 ground
state. Calculating the dimensions, variances, gpdalues
(4)  using Egs(1), (2), and(4), the densitiesi(m,S)p™S(E) are
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constructed as corrected Gaussians using the so-callethce of the state density,(E)=(8(H—E))™ are gy(m)

Cornish-Fisher methofR20]. Now applying the Ratcliff pro-
cedure ground state energies and ther&ljgee Eq(3)] are
calculated. It is seen that fon=12, 20 case$with () =20,
U3/U3=0.3, 1, 3 the A~0.01[in units of 0*(m,0)] without
v, correction while it increases t&:0.2 with they, correc-

=(H)™ and o (m)=([H—&(m)]?)™, respectively. Simi-
larly, for theM densityp,(M)=(5(J,—M))™ the centroid is
zero and the varianaej (m)=(J;)™. Let us define the stan-

dardized variables E=[E—ey(m)]/oy(m) and M

tion. This result is consistent with the conclusions in Kaplan=M/o3,(m). Similarly, H is the traceless part dfl; (H)™

et al. work [10]. However, in this work they, variation is
much larger(estimates ofy, for S=0, 1 for a four-particle
system are given ifil0] and they compare well with their

=0. It is well established that for a TBRElso for a (1
+2)-body random matrix ensemBlenot only p;(E) and
p2(M) are close to Gaussian but also the joint bivariate den-

numerical resultsand this has to do with the fact that they sity p1(E,M)=(8(H—E)8(J,—M))™ is a bivariate Gauss-

consider paired state§or example,a/;,al_,,, is a paired
state for two particles and fom particles there can be a
maximum ofm/2 pairs in a given stajewith fixed S Group
theory for calculating centroids, variances, apdfor states
with fixed m and S along with a given number of pairs will
be considered elsewhere.

Ill. TWO-BODY RANDOM MATRIX ENSEMBLE
IN A SINGLE j SHELL

The random matrix model TBREis the other extreme to
TBRE-s. Here one considers a singlshell with m-particles
interacting via aJ preserving two-body interactiofd is the
total angular momentum of tha fermion system With J a

good quantum number, the Hamiltonian matrix divides into

disconnected blocks with each of them labeled JoyThe
dimensiond(m,J) of the (m, J block can be determined in
many ways;

> (23+ 1)d(m,\])=(2j;1).
J

For a TBRE} the two-particle matrix eIementS/ijij
=((jj)32M2|V(2)[(jj)I2M2), 3,=0,2,...,3 — 1 are random
variables(note thatl, is two-particleJ value and the/’s are

independent oM ). Without loss of generality the SP energy

of thej orbit can be put to zero so thet=V(2). It iseasy to
recognize that TBRE-has the group symmetry U{2
+1)D0(3) with all the m-particle states belonging to the
antisymmetric representation of Uj(2 1) and @3) generat-
ing theJ quantum number. Unlike in the TBR&ease, here
the scalar operatofs andJ? are not sufficient to write exact
expressions for the moments of fixdddensitiesp™(E).

ian with lower order bivariate cumulant correctiof22];
note that here the bivariate correlation coefficient is zero.
The correctegh15(E,M) is [with the third moment op,(E)
being zero for a TBRE

Kipe
Z2EM2-1)+

p1AE,M)=1{1+ >

Kao E4_pE2
ﬂ(E —6E“+3)

ki, . . . Koo
+ 5 (E2=1)(4-6M12+ 3) + 2 (E2- 1)

|

Equation(5) is central to our subsequent discussions. In Eq.
(5) G stands for Gaussian and the bivariate cumulkptsind
k,, are given by

. Koa ~, -
><(M2—1)+2—0:(M4—6M2+3)

X p1.¢(E)pa.g(M). 5

(IZA)™
au(mas (m)’

JZRZHm
koo(m) = ¥_ 1.

dm= M3 (m
©

Similarly k4o(m) andkgs(m) are they, values forp,(E) and
po(M) densities respectively. As pointed out R2], fixed-M
averages of powers dfl can be written as integralavith
respect toE) involving p1(E,M). These and the identifica-
tion [23] ((HP))™=—[(a/aM)((HP))™M]y_;. 1 lead to
simple forms for fixedd dimensions, centroids, and vari-

This is related to the so-called integrity basis operators for ances,

group-subgroup chaiDK; see[21]. However, theory for

good approximate formulas can be developed in the situation

that the system is dilutg —, m—c«, m/(2j+1)—0, and
J<(J) max] and the Hamiltonian is complex.e., H belongs
to TBRE]. Before discussing the results for fixdaentroids

and variances for TBRE- let us digress and address the

more general problem ah fermions in severaj orbits and
the H is aJ conserving (1 2)-body Hamiltonian.

A. Fixed-J centroids and variances from the bivariatep(E,M)
density

Let us considem particles in manyj orbits, then the
number of SP stateN=X;(2j+1). The centroid and vari-

1 2
N (234 1) J+§)
d(m,J)— m \/S_ng,exp _TO"T s

3
e(m,J)=|ey(m)— EUH(m)klz(m)}
k
+or(m) —2;?22) J(I+1), (7)
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propagation Eq.(A2) give simple formulas forey(m),
of(m), o5 (m), and(JZH)™. For example the unitary de-
composition of theJ? operator and the expression for
JI+1). (JZH)™ are,

3
oz<m,a>zcra<m>{1—5k22<m)}

2
ay(m)
Tk 57 )
z JZZ(JZ)V=O+(\]2)V=2,
A test of the results in Eq(7) is carried out using the
so-called K+12fp interaction [24] in nuclear (&1d)*?

space. In this examplei(z)= 12, ey(m)=—94.16 MeV,

2
of(m) =139 Me\?, ky,(m)=—0.088, andky,(m)=—0.12. - o . .
The exact(e, o) values, for example, fod=0, 4, 8, and 12 (Jz)V_Z‘:’(Jz)jjjjz'Jzsz(Jer1)_(21 -1+
(in MeV) are (—92.3, 13.3, (—93.4, 12.3, (—95.9, 10.2,
and(—100.5, 6.5 respectively. From Edy7) the correspond-
ing results arg§—92.6, 12.9, (—93.5, 12.2, (—95.7, 10.4,
and (—99.3, 6.6, respectively. Thus the agreement between o i
the approximate values given by E¢/) and the exact X{ 1 i ]
nuclear shell model results is excellent. Note that for ihe I
=0, 4, 8, and 12 cases, the exact dimensionalities are 11 434,
49441, 11975, and 237. Now we will apply the results in penm 120 veonm, M= (N=m)(N-m—1)
Eq. (7) to TBRE{, examine the structure of fixetleentroids (J7H)M=3(I"H"" "= N(N—1)(N—2)(N-3)
and variances and compare them with the results given by
Mulhall et al. [4].

(3%)"70=3RA(2j+1-A)(j+1),

j>1

—— (= 1)2"12j(j+1)(2j+1)

X %JZ (20, 1)V ;3 [32(3p+1)
2

B. Structure of fixed-J centroids and variances in TBRE}
. . . —(2j=1)(j+1)]; N=(2j+1). 8
Fixed-J centroids, as seen from Eq7), are basically @I-DU+D)] 21+ ®

determined for a TBRE by thle;, bivariate cumulant. Hence o _

their structure in terms of the basic one-and two-particle malNote that for a singlg shell there will be nov=1 parts for
trix elements is determined by the structurekej in terms ~ H andJ? operators. It is useful to add that the propagator for
of these basic inputs. This problem is solved for TBRE:  (JZH)™in Eq. (8) reduces tan?/N? in the dilute limit. Using
carrying out the UN) decomposition of the Hamiltonian Egs. (6)—(8) and (A2) the final result fore(m,J) is easily
and that of theJ? operator using Eq(A1). Then the trace obtained. In the dilute limit it takes the form,

m’ 3 3m 3, .
e(m,J)— (21+—1)2322 (23, +1)V;2, |- 2j(j+1)(2j+1)2J22 (232 1)V, [32(3p+ 1) = 2j(j+1)]
5] 2 DV 133+ 1) =2 (+1)]
t2 [0+ D@+ D WD, ©

It is remarkable to see that, after neglecting the second piece  k,,(m)=((3%)"=2(H"=2)2)™/((J%)*=%)MgZ(m).

of the first term(for large m the first piece dominatgsthe

two terms in the formulg9) are nothing but the first two o o

terms in the expression derived by Mulhall al. see Egs. Therefore, the only unknown quantity in determining

(7)=(9) in [4]. Thus the cranking approximation and the usec”(m,J) is them-particle average(J%)"~*(H"~%)*)™. This

of Fermi occupancies employed f#] is equivalent to the Wwill be a sixth order polynomial imas @2)*~4(H"~?)?is a

generation of the near bivariate Gaussian form in®gfor  six-body operator. The particle-hole symmetry of the 2

a TBRE. Therefore, one can use H§) to go beyond the operators allows one to reduce the seven expansion coeffi-

simple TBRE} to TBRE in severa] shells(with H's preserv-  cients of this polynomial into averages in two- and three-

ing J). particle spaces. The final expression is obtained by simplify-
Fixed (m, J variances, as can be seen from Ef), are  ing the general results fqtJ”=2V*=2W"=2) given in[1,25]

determined by thé,, cumulant. With the unitary decompo- and applying the approximation given in E§) for (J%)"=2.

sition of theJ? operator, it is seen that The result is,

026130-5



V. K. B. KOTA AND K. KAR PHYSICAL REVIEW E 65 026130

m(m—1)(m—2)(m—=3)(N-m)(N—m—1)

((IH"=2(H=2)2)m= N(N—1)(N—2)(N—3)(N—4)(N—5)

m(m—21)(N=m)(N-m—1)(N-m—2)(N—m—3)
N(N—=1)(N=2)(N—=3)(N—4)(N-5)

m(m—1)(m—2)(N—-m)(N—-m—1)(N—-m—2)
N(N=1)(N—=2)(N-3)(N—4)(N-5)

X(2j(j+D(2j+1))A+ (2j(j+1)(2j+1))B;

o ] are easily derived. It is seen that the variances decreaSe as
1

j (V' -272)2 increases. Relating the propagaf®m,S) of the variances

A=—2 (2J,+1) .
Jp

with the connectivity factorK(m,S) it is shown that the
300 Jacquod and Stone prescription e E gy Syin) —Egd Smin
B=8 > (2J1+1)(2J2+1)(233+1)[ ! J J] +1) indeed gives the odd-even effect seen in numerical cal-
310353 1 culations. Going beyond the variances, using the binary cor-
. relation result fory,, it is shown that even with the Ratcliff
b1 Js prescription one sees the dominanceSef0 ground states
XS] Jo ] Vjvjj:jz:azvjij:jZ:ng for TBRE-=s. In the case of TBRE-it is shown that its
o] U(N)DO(3) group structure combined with the near bivari-
ate Gaussian form of fixe(E, M) densities lead to simple
N=(2j+1). (10) formulas for centroids and variances. Thus, for TBRtae
group symmetry alone gives a simple structure for the cen-

Equation (10) combined with Egs(7), (8), and (A2) will troids and variancegalso y,—note that so far there is no
give o2(m,J) in terms of\V’2. Itis seen that the structure of Pinary correlation result foy, of fixed-J densitieg but in the
! i

2 . . case of TBRE-in addition to the group symmetry one needs
o"(m,J) is more comp_le>{com_pared tce(m,J)_ in Eq. (9)] the random matrix nature of the ensemble as well as the
as Eq.(10) involves 64 and 94 symbols. Using the fixed

(m.J) variances one can go beyond the centroids, i.e., be on%“me limit conditions. In particular it is shown that the ex-
thé investigations 4] agnd stﬁd the role of the’ éa{hssi)::m pression for fixed} centroids derived using the near bivariate
9 ' y Gaussian nature coincides with the result givepdihwhere

widths in generating the dominance.b# 0 ground states for the cranking approximation and Fermi occupancies are used
a TBREj. Numerical calculations are carried out for TBRE- . ng approxi : P .
in the derivation. It is pointed out that the conclusions re-

with j=%/ andZ. They have confirmed that with centroids arding the dominance od—0 ground states in TBRE-

alone one gets somewhat more than 50% probability fogased on centroids alone may not remain valid once vari-
I 1 i 0,

ground states to appear with=0. Equation(9) gives 50% ances are also included and hence answering questions in

probability but a correction to it, as pointed out[i], en- TBRE] (or TBRE with severa’s with H preservingJ) re-

hances this probability. However, the moment variances ara . ;
. . . uires much further study. It should be pointed out that the
switched orjusing Egs.7) and(10)], the effects of dimen- formulation in Sec. Il can be applied to the more general

sions start dominating as we need to use the Ratcliff prez S L ) .
scription for locating the lowest state for a givérvalue. TBRE-(j,]..) (also called inliterature TBRE; se¢|1]). Fi

Then it is seen that thd=0 dominance disappears and nally, it is expected that the investigations presented in this

rarely J=0 states emerge as ground states. It is quite posr_)aper will lead to studies of TBRE's with a wider class of
sible that:(i) one may have to includgd(J+1)]? terms in group symmetries and they, just as the TBRES], may find

Eq. (7); (ii) just as in Sec. Il B discussion, for TBREalso applications in Measoscopic Physics,
v, effects need to be incorporategdi) as argued ifi26] the

J=0 states may be nongeneric and then constructing a cor- ACKNOWLEDGMENTS
rected Gaussian form for locating the=0 ground states
may not be appropriate. Detailed investigationsi pf(iii ) in
describing theJ=0 dominance seen in numerical TBR
calculations, are beyond the scope of the present paper.

1:92:93

Investigations in this paper would not have started but for
E- Ph. Jacquod who brought his work in Ref8,9] to the at-
tention of one of the author®/.K.B.K.). The work on this
paper started with the visit by one of the auth@sK.) to
Physical Research Laboratory under the TPSC program of

IV. CONCLUSIONS AND FUTURE OUTLOOK DST (India).
The purpose of the results presented in this paper is to
bring out the role of group symmetries in extended TBRE's. APPENDIX
To this end investigations are carried out for the two en-
sembles TBRE and TBRE}. Using the U{N/2)® SU(2) With respect to the W) group a two-body interaction

symmetry of TBREs, expressions for fixeim, § variances V(2), defined by the two-particle matrix element;y,
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GROUP SYMMETRIES IN TWO-BODY RANDOM MATRIX. ..

=KkI[V(2)|ij)a, decomposes into scalaw€0); effective
one-body ¢=1), and irreducible two-body =2) parts
[27],

o A(h=1)— — [N\7?
v=0_ . _

\ > Vi V=, Z:] Vijij »
. h=1

Vy—lzmiz} gi ]aiTajy fi,j:[zk: Vkik,}

_[(N)li Vrsrs} 5i,j '

ViTi=y vty le v, (A1)
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Similarly a one-body Hamiltoniah(1)=X;f;e; decomposes
into h"=%=fe and h"=1=3fe

I wheree=N"13,¢ and

€ =€—e€. Now the mparticle variances forH=h(1)
+V(2) are given by

m(N—m)
N(N—1)

1

E

>

i]

o?(m)= i

m—1 2
5i,j+—N_2 i

m(m—21)(N—=m)(N—-m-—1)
N(N—=1)(N—2)(N—3)

((vrzm=2
(A2)
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