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Finite-size scaling in disordered systems
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The critical behavior of a quenched random hypercubic sample of linealLsizeonsidered, within the
“random-T.” field-theoretical model, by using the renormalization group method. A finite-size scaling behav-
ior is established and analyzed near the upper critical dimersiod— e and some universal results are
obtained. The problem of self-averaging is clarified for different critical regimes.
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I. INTRODUCTION vanish and is a fixed nonzero universal quantity even in the
thermodynamic limit.

The description of effects of disorder on the critical be- The lack of SA in disordered systems implies that the
havior of finite-size systems has attracted a lot of interesstandard FSS breaks down. Thus, one needs to formulate a
[1-8]. Up to now, discussions have taken place on whetheFSS theory suitable for the case under consideration. There is
the introduced disorder influences the finite-size scalingin ongoing activity in this field but an understanding of the
(FSS results[3,8], compared to the standard FSS resultsproblems at a deeper level is still desirafile3,§|.
known for pure systemf9—11]. A formulation of general The successful application of the field-theoretical methods
FSS concepts for the case of disorder is strongly complicatel3,14 for the analytic calculations of the size-dependent
due to the additional averaging over the different randontniversal scaling functions for pure systems makes the pos-
samples. For a random sample with volubfe whereL is a sible exte_nsmn of these methods very appealmg also in th_e
linear dimension, any observable propeXysingular in the ~ C2S€ of dlsordereg systems._ The appropriate field theory is
thermodynamic limit, has different values for different real- the N-component)” theory with a “random¥.” term [15-

izations of the randomness and can be considered as a stotl- The analytic difficulties raised by the disorder usually
chastic variable with meaX and variance AX)zzzﬁ are avoided with the replica trick by sonmg an effective pure

— i problem [17]. However, the perturbative structure of the
—X?, where the overline indicates an average over all realiheory is still much more complicated than for the corre-
izations of the randomness. Here, an important theoreticalyonding pure system, raising additional difficulties in the
problem of interest is related with the property of self- applicability of the ideas proposed [it3,14. Some of them
averaging(SA) [12]. If the system does not exhibit SA a 46 of rather hard computational nature.
measurement performed on a single sample does not give a getween the generic models for magnetism, the most
meaningful result and must be repeated on many samples.ﬁopwar and relatively well-studied model by means of
numerical study of such a system also will be quite difficult. \yonte Carlo simulations is the Ising modgle., N=1) due
This point has been studied recently by means of FSS argyg the fact that in three dimensions this is the model for
ments[1,4], renormalization groupgRG) analysis[2,5] and  hich, in accordance with the Harris criterion, randomness is
Monte Carlo simulationf4,6]. The quantity under inspection gjevant. But its RG analysis is complicated as a result of the
is the relative varianc®y(L):=(AX)?/X%. A system is said well-known accidental degeneracy in the recursion relations
to exhibit “strong SA” if Ry(L)~L "% asL—x. This isthe  that needs higher order iaand so the use of the loop ex-
case if the system is away from criticality, i.e.,Li&> €. pansion to second ordésee, e.g.;15,18—-20). This leads to

At criticality, i.e., whenL<¢, the situation depends on the apparent computational difficulties in the finite-size treat-
whether the randomness is irrelevant or relevant. In thenent of the system. The calculations based on the loop
former case the relative varian&g (L)~ L “pure/"pure, where expansion to second order are not done even for the pure
apure @Nd v are the specific heat and correlation lengthfinite-size systems. In this situation, more attractive for the
exponents respectively, for the corresponding “pure” systemfinite-size RG study are the disorderety (N=2) and
Since their ratio is small and nonpositive, this leads to “weakHeisenberg l=3) cases, as these are simpler and have the

SA’ [2]. same qualitative features as governedin4 — e dimensions
In the latter case, when randomness is relevant, the corréy a random fixed point.
lation length exponent of the random systemqonr 2/d Other problems have a more basic nature and are related

[2], and the system exhibits “no SA,” aBy(L) does not with the breaking of the replica symmet(gee[22]). Since
its deeper understanding is still lacking, they are beyond our
interest in the present study.
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are performed in the mean-field regirde-4, and up to the wherek is a discrete vector with componerks=2mn; /L,
first order ine near the upper critical dimensiah=4. Al- ni=0,+1,+2,...,i=1,...d and a cutoffA~a"?! (ais
though in this case, the problem of usefulness of the correthe lattice spacing In this paper, we are interested in the
sponding series expansions away from the dimendiod continuum limit, i.e.,a—0.
—€ arises and is questionablesee [23] and references In our case of quenched randomness one must average the
therein, we shall show that many generic FSS properties ofogarithm of the partition function over the Gaussian distri-
the model can be established and we hope this would haveution (2.2) to produce the free energy
implications for more realistic cases.

The paper is organized as follow. In Secs. Il and Il we M= _J

;

[’

define the model and the effective Hamiltonian. In Sec. IV WDQD(X)P(QD(X))MZ ; 2.7

we perform the analysis in the zero-mode approximation. In

Secs. V and VI we give the expressions for the shift of thewhere

critical temperature and the renormalized coupling constants

in first order ine. Section VII deals with the verification of Z,=Tryexd H,]. (2.9

the FSS, and the analysis of the problem of SA is given in ) . .
Sec. VIII. Finally in Sec. IX we present our main conclu- It is well known that the direct average over the Gaussian

sions. leads to equivalent resulf&4] for the critical behavior in the
n=0 limit of the following “pure” translationally invariant
L. MODEL model[25]:
n
We consider the “randoni-” Ginzburg-Landau-Wilson 1 d 2 2
model of disordered ferromagnetsee, e.g.[15-20), Hp(n)=— 5;1 Ld At "+ ¢V (X))
1 d 2 2 2 u 4
He=—75 | 49X OO+ e (04 00|%+ [ V 4(x)] + 15l ¥a(X)]
+ ilw(X)l“ (2.1) + 2 i dX] o (X)|?] h(%)|? (2.9
12 ! 3 w5 Ld @ B . .
wheNre lg(x) is an N-component field with l!IZ(X? Here ¢,(x), a=1,...n (n being the number of replicas
=2_1¢{(x), and the random variablg(x) has a Gaussian 5re components of am N)-component fields(x). Owing
distribution to this equivalence, the modét,, has been the object of
5 intensive field-theoretical studiesee[23] and references
exd — ¢(X) therein in the bulk case. Much less is known for the equiva-
P _ 2A 29 lence ofH, and then=0 limit of #,, in the finite-size case.
(e(x))= 27 A (2.2 Problems may arise when finite-size techniques are used,
since both the procedurés—< and removing of the disor-
with mean der by the “trick” n—0 may not commute.
e(x)=0 (2.3 IIl. THE EFFECTIVE HAMILTONIAN

In this work we will use the RG technique introduced in
[13,14] for studying pure systems with finite geometry. This
technique permits explicit analytical calculations above and
in the neighborhood of the upper critical dimension. The
main idea is to expand the field in EQ.1) in Fourier modes
and then to treat the zero mode separately from the nonzero
a system in a finite cube of volumé! with periodic bound- modes. The nonzero modes can be treated by the methods
ary conditions. This means that the following expansiondeveIOped for the bulk systen@g.g., loop expansignwhile .
takes place: the zero mode, whose fluctuations are damped at the critical

temperature, has to be treated exactly. This overcomes the

problems due to the infrargdR) divergences that take place

> W(k)expik-x) (2.5 in finite-size systemésee Ref[26]).

k In our more complicated case we have two possibilities:
to consider the random model equati@hl) or to consider

and the replicated pure model equatid8.9). The last one is
closer to the case treated [t3,14 by getting around the

E d(K)exp(ik-x), (2.6) difficulties dl_Je to the random average performed with

K P(¢(x)) and is used in the present study. For this case, the

and variance
e(X) (X' ) =A% x—x"). (2.9

The overline in Eqg.(2.4) indicates a random average per-
formed with the distributiorP(¢(x)). Here we will consider

=~

h(x)=

e(X)=

=~
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y2
2A(n)

R V2mA(n)
We decompose the fielg(x) into a zero-momentum com-
ponentd) L~ dfddxl//(x) Wh|Ch p|ays the ro|e Of the un|_ and SN ZWN/Z/F(N/Z) |S the Surface Of am- dlmenS|0na|

form magnetization, and a second part depending upon thinit sphere.
nonzero modesi=L 93, ,(k)exp(—ik-x). After some Let us note that the above mentioned equivalence between
- . .

FINITE-SIZE SCALING IN DISORDERED SYSTEMS

replicated partition function is given by

zp(n)zf Dy exd Hp(n)]. (3.1) PL(y)= 3.7

algebra, the partition function can be expressed as the models2.1) and(2.9) may be mathematically expressed,

Ld 2
zp(n)zfmpaex —721 (ro¢ +12¢4)

LdAO 2

(E¢

A n
-2y ¢%| 0%+ (higher powers Ofa')J.
2 &

(3.2

Here the terms involving d%¢ vanish sincer depends only
on nonzero modes. The terms containingre treated using

within the used approximation, by the following relation:

J
FIH == 5= Zp(Mn-o. (38
From Egs.(3.5 and(3.8), and by using the identity
0—' n
nh (M[n=0=INA(0) (3.9
for the free energy, we get
FH =~ f_ dy Po(y)In Z,(0), (3.10

diagram expansion, leading to the effective Hamiltonian in

the one-loop approximation,

LY &
H(w==7 2, ( fimaze o )¢>)
2
, (33

dx n
+LA8(”)(Z #
1

a=

wheret(n), T(n), andA(n) will be presented below. With
the help of the identity

aA?
&R

we get

= 2ra)? f_xdyexp:—(l/2a)y2+yA],
(3.9

Z8(n)=Tr,, exed HE(n) ] = fldy PA(Y)

(3.5

x| sq f:dwl |IN T exp{HE ()}

where

~ 1
HEf(n) = (t<n>+ %72)|¢|2+ 1—2”u<n)|¢>|4}

(3.6

1
_Zyd
2L

is an effective Hamiltonian with a random variabjewith
Gaussian distributiopdepending o (n)]

where
Z,(0)=Sy f:dlqsl [N texd H"(0)]  (3.10)

is the partition function for the random syste(®.6) after
taking the limitn—0. The obtained effective “random;
model” (3.6), distributed with Gaussian weigli8.7), is the

analytic basis of this paper. The effective constatfts),

T(n), and Z(n) involve n and finite-sizeL as parameters.

For describing the finite-size properties of the initial model
(2.1), as follows from Eqgs(3.10 and(3.1D), it is necessary
to setn to zero. In the following sections we shall consider
the results of this procedure.

IV. THE FSS EXPRESSION FOR THE FREE ENERGY AND
CUMULANTS IN THE ZERO-MODE APPROXIMATION

If we neglect the loop corrections this corresponds to the
mean-field(MF) approximation, i.e.d>4. Then the zero
mode playing the role of the uniform magnetization may be
treated exactly. In this case the effective Hamiltorn(i2u3) of
the model reduces to

1 n 1 n A n 2
MF_ _ " d 2, 2N2 T 2
et S 2, (4 4(;1 ¢“) }
.1

Now using an appropriate rescaling of the figid|
=(uL% ~d and introducing the scaling variable

p=tL¥2y= 12 4.2
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for the partition functior(3.11) in the mean-field approxima- Note that the final result must be independent of replica in-

tion, we obtain dex B, becausé}-{';,"F is invariant under permutation of the
replicas. After taking the limin—0, we end up with the
ZMF(0)=(uLY) "N (m+ylut?), (4.3 following expression:
where we have introduced the following auxiliary function: M2m==(|¢3|2m)H:wF
° (UL M2 re Ty om(X) 2
In(z)=S f d® &NV exp[— [zD?%+ 5 P*]}. =————— | dx———TFe xTWTA
N( ) N 0 q 2[ 12 ]} \/m e IN(X)
9 (4.10
From Egs.(3.10 and(4.3) we get for the free energy In a similar way
o 2
AH= - —— f dyexp( -3 y_) In[ (uL%) =N (M2)* =16l 94l hriee
27TA —® 2 A dy —
1/ :M - dx IN+2(X) ? —(x— )2
XIn(p+ylut?)]. (4.9 2rn el In(x) '
If we introduce a second scaling variable (4.11
A Equations(4.10 and(4.12) show that the finite-size scal-
A=—, (4.6)  ing depends on two scaling variablefrom Eq.(4.2) and\

from Eq. (4.6). Only the first one is size dependent, having
the same form as in the pure cd46]. This result leads to

and use EqdA4) (see the AppendixEq. (4.5 takes its final the prediction that above four dimensions, the weak disorder

form, does not affect the finite-size scaling proven for pure sys-
. tems. From Eqs4.10 and(4.11), whenu=0 andN=1, we
- in the results of Ref6].
HMF]=— —— | dxexg —(x—pu)?(2\ obtain t
AHT] V2N = = (w7 (20)] In terms of the momenta1,, the susceptibility is given
as
3
X —— 2 —
In[D—N/Z(ﬁX)] 4()\+lu’ ) X:Lsz- (412
n Eln uL* 4.7 Another quantity of importance for numerical analysis is the
4\ 127%) ' Binder cumulant defined by
For the Ising caseN=1 a similar expression for the 1 M,
guenched free energy in a slightly different context is ob- B=1-- (4.13

-2
tained and its analytic structure is studied in REEF—29. 3 M;
Obviously Eq.(4.7) is well defined for any positiva and in
the limit A— 0 we recover the well-known result for the free

energy of the pure model.

and the cumulant specific for the random system defined as

In addition to the free energy, one also needs to know the (/\/lz)z—ﬁz2
correlation functions. Within the replica method the averages Re——+—. (4.14
of the fields{ ¢4} are defined bysee, e.g.[12]) M,

n Since the parametdR is the relative variance of the ob-
Z’F‘,"F(n)*lsﬁJ’ ( 11 d|¢a|) servablethe susceptibility, as we said in the Introduction, it

a=1 is a measure of the SA in the random system. If SA takes
place this quantity should be zero in the thermodynamic
limit.

<|¢,3|2m>H?"F: lim
n—0

X(|p )N pph ™ expHY) |, (4.8)

V. FINITE-SIZE SHIFT OF T.: LOWEST ORDER IN €

where :
For d<4, the perturbatively calculated parts of the free

n energy and cumulants, which contain contributions of all
ZMF() = nf d|, N LexpHYF). nonzero modes, depend, to one-loop order, on the shift of the
p (N=Sy <aH1 [$al [(bal) ") critical temperature and on the renormalized coupling con-
4.9 stantsu andA. The application of the finite-sizeexpansion
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to the model systen2.9) requires the corresponding renor-

malization constants.

To one-loop order, using the minimal subtraction scheme,

before taking then—0 limit, we obtain

_— N+2 2+nNA 61
=1 6e u- 2¢ ’ (5.13
_— N+8  6A 6 1b
u— + 66 U_Ta ( )
o N+2  8+nN- -
a=1t 3e u 2¢ (5.19

In Egs.(5.1),
0= 2 5.2
U= a2 an) (.23
A—A——jéi——— 5.2
T (4m¥er(dr2) - (5.2

The B functions associated with andA have the form

N+8 .
Bu=——ﬁe+—7;—U2—6OA, (5.33

- 8+nN~, N+2 _
Ba=—Ae-——A%+ ——TA. (5.3b

The fixed points of this system first have been studid@d}
and for the purposes of the impurity problem|[iti7]. The

values ofti and A in the fixed point, interesting in the ran-
dom case, are

o 6(4—nN) e
W)= TgN—D—nN(NT8) © (643
N 2(4—N)

A*(n) €. (5.4b

~ 16(N—1)—nN(N+8)

The corresponding expression for the exponentp to the
first order ofe is

1 _2 6N(1—n) 5
»(n) < 16N—1)—-nN(N+8) € 6.5
It should be noted here that we shall consider

N-component fields with £N<N.(d), where N.(d)=4

—4e+0(€?) is the critical number of spin components that

defines the stability of the random fixed point in the-0
limit. The stability of the different fixed points of the model
has been also considered[i®l]. The analysis of the Ising

PHYSICAL REVIEW B5 026129

io o io
t u t
A
io; i ky i

FIG. 1. One-loop contributions to the reduced temperature

As was explained above, the loop corrections will be
treated perturbatively in the nonzekomodes. In the lowest
order in ¢, this procedure generates a shift of the critical

temperaturé—1t(n),

T(n)=tzZ,+t,, (5.6)
where the termtZ; is coming from the one-loop counterterm
[see Eq(5.1)], and

N+2
I
6 2

(5.7

tL:

2+Nn_]1_, 1
Al o
L% ko+t

is the finite-size correction. The two diagrammatic contribu-
tions fort, are shown in Fig. 1. Both diagrams from the
and theA contributions differ only by their numerical fac-
tors. The prime in thed-fold sum in the above equations
denotes that the term with a zero summation index has been
omitted.

After some algebrafor details of the pure case\E0),
see Ref[13]], near the upper critical dimensiah=4— e,
we obtain

N N+2_. 2+Nn. 2 2
t(n)=t+| —5-0— —;—A|[tInt+4L7F,(tL7)],
(5.9
where
F ()—fxd exd - 22| [ S ) s
a2X0= [ 428R Tz || =,
T d/2
_(3 (5.9

Some particular values of the constént,(0) and a method
of calculation are given if32].

At the fixed pointu=0*(n), A=A*(n), up to the first
order in¢, the terms proportional to Iln cancel and Eq(5.8)
can be written in the following scaling form:

3(n—1)N e
16(N_1)—I'IN(N+8) [y ny+ 4,2(y)]6=
(5.10
where the scaling variablg=tL"(" has been introduced.

In the n=0 limit, the expression for the exponent mea-
suring the divergence of the correlation length 16,17

T(n)L2=y—

case (N\=1) needs to perform a loop expansion to second

order (see Introduction and is beyond the scope of the
present study.

1 1
v(0)

3N
(N-1)°

=2-¢ (5.11)
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FIG. 2. One-loop contributions to the couplingand A.

instead of the critical exponent for the pure case

N+2
N+8

Vp

2— (5.12

€.

The scaling form(5.10 can be written for this case as

. 3N
t(0)L2=y+ m[y Iny+4E,4y)]e, (5.13

wherey=tL"r,
From the above expression one can obtain the large-
asymptotic form of thel () shift, i.e.,
Tc(L)_Tc(w)wLil/VR- (5.19
In Eq. (5.14, T.(L):=T.(¢,L) denotes the average pseud-
ocritical temperaturéT.(¢,L) is pseudocritical temperature
for a specific random realizationp(x)] and T.()
=lim __., T.(L). Equation (5.14 was suggested in2].

Combined with the phenomenological FSS theory it gave
rise to the lack of SA, and is confirmed by numerical studies

(see[4]). Here it is verified independently and directly.

VI. RENORMALIZATION OF THE COUPLING
CONSTANTS: LOWEST ORDER IN €

We perform the renormalization in a similar way also for

u(n) andZ(n) by taking into account the diagrammatic con-
tributions fromu and A shown in Fig. 2. The result is

(6.13

u(n)=uzZ,—u,.,
A(N)=AZ,+A, (6.1b

whereuZzZ, and AZ, are the one-loop counterterms for the
coupling constants and

I PPLLL IPNN E S VI .
WV T o ez (629
N+2 8+nN |1 1
= — —_— 2 ,—
Amrjudg 54 }sz (K*+1)?

(6.2b

PHYSICAL REVIEW E65 026129

the fixed point, algebraic transformations similar to those
performed in the preceding section lead to

T*(n)L=u*(n)[1+3(1+Iny)e+2eF,Ay)],
(6.33

A*(n)L=A*(n)[1+3(1+Iny)e+ 2eF,y)1,
(6.3b

where the prime indicates that we have the derivative of the
function F, ,(y) with respect to its argument.

The results for the disordered system simply follow by
settingn=0. From the results for the shift of the critical
temperaturg’5.10 and the renormalization of the coupling
constantu, given by Eq.(6.38, we reproduce the results for
the pure FSS case by settidg=0 andn=0. Moreover, this
result still holds even if we find the FSS corrections after the
analytical continuation te= 0, expressing the commutativ-
ity of the problem.

VII. VERIFICATION OF FSS
Let us consider the scaling variables
w(M)=T(MLY%\{(n), r(n)=A(N)/UMn). (7.1

At the fixed point they can be expressed in terms of scaling
variabley=tL (",

1
*() =
u*(n) 20
I PR i LT
Y=Y T 1aN-1)—nN(N+8) "Y€
ANy e
16N—T)—nN(N+g) +AY)eYFady)e
(7.2
and
4—N
N W= 57 (7.3

In the limit n=0, Egs.(7.2) and (7.3 yield the following
scaling variables describing the disordered syst2m):

. . 1 1 4—N
= (O)_\/u*=(0) y= gV 1+m|ny €
3N
+m|:4.2(y)€—y|:i_z(y)€], (7.9
wherey=tL*"®r, and
¥ i=A* (0) = —o (7.5

12 -

are the corresponding finite-size corrections. As one can see,

the summand in Eq6.2) can be expressed as the first de-
rivative of the summand of Ed5.7) with respect td. So, at

These equations verify the finite-size scaling hypotheses and
show that we are really dealing with a one-variable problem,
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TABLE |. Numerical values for the Binder cumulaBtfrom Eg. TABLE Il. Numerical values for the Binder cumulai from
(4.13 and the relative variandg from Eq.(4.14) in the mean-field Eg. (4.13 and the relative varianck from Eq.(4.14) atd=3.
regime, i.e.d=4.

Random Pure

Random Pure N B R B R

N B R B R
1 0.400 024 0

1 0.216 368 0.310 240 0.270520 0 1.001 0.666 334 0.000 427 0.400 328 0
2 0.451 486 0.111 381 0.470401 0 2 0.602 793 0.061 279 0.547 496 0
3 0.533513 0.038 365 0.543053 0 3 0.625 783 0.022 688 0.592813 0
4 0.575587 0 0.575587 0 4 0.640 628 0 0.614 002 0

since the second variabl* is a fixed universal number. At for the pure case antil=1 (Tables | and I} are in full
the critical pointt=0, since the constarf{; 0)=—-81In2, agreement with Re{13].

see Ref[32], we have The random cas&l=1 for d<4 cannot be considered
within the present expansion, because of the apparent diver-
. . NIn2/ 3e \¥? gence ofug that takes place to the used orderenUp to
o =p* |i—0= — T IN—1 (7.6 now there are only numerical valu@-=3%, g,=0.448, and

R=0,=0.510(7) obtained in33] through Monte Carlo

Numerical values for different thermodynamic quantities carsimulations. What is possible to calculate_here are the corre-
be obtained with the help of Eq&Z.5) and (7.6). Note that ~ SPonding values oB andR very close toN=1, e.g, forN

the scaling variabl. is proportional toye, Consequently =1.001. For completeness these results are presented in

all the e-expansion results will be expressed in powers oTaE’Ie Il. More generally, one can see thaNit>1, thenB

~ —35 andR—0, i.e., the system exhibits SA. This evident
;/—r? pfg was the case for the pure systesme[13], for ex discrepancy with the reality is due to the wrong assumption

that some information about the random céke 1 can be
obtained from the above formulas in this limiting case. As it
VIIl. CUMULANTS AND SELF-AVERAGING was pointed out, the correct treatment of the cibkel
seems to be a more difficult computational problem.
The finite-size correction to the bulk critical behavior of
the cumulant® andR in the regionLt"R=L/£>1. i.e., away

In Ref. [6], the Binder cumulanB and the relative vari-
anceR[EQgs.(4.13 and(4.14] have been calculated analyti-

cally and numerically at the critical poinf=T. in the " ) : .
: S _ _ from the critical point, are obtained with the help of the
asymptotic regime\=; for N=1 andd=4. In Ref.[33] asymptoticsu>1, given in the AppendiEgs. (A7) and

(see alsd4]), the same gquantities were calculated numeri- ) ; .
cally for N=1 andd=3. In both cases the results show that (AS)].' Accprdmg o the analysis presented there, we obtain
for Binder’s cumulant.

the system exhibits a lack of SA.

In the remainder of this section we concentrate on the 1 2 -1 1
calculation of the cumulan8 andR [Egs.(4.13 and(4.14)] B=1--|1+—-/|1+ —|+0O —3) . (8.0
in casest=4 andd=4—e. The reason for considering the 3 N Su M
cased=4 is in its simple analytical nonperturbative treat- For the cumulanR we get
ment. Although the results based on teexpansion give
only a qualitative description of the three-dimensional phys- A 1
ics, we hope that they shed some light at least on the appli- R= FJrO F) (8.2

cability of the theory for studying diluted models.

Let us first note that if xN<4 andd=4—¢, the case The final results can be obtained by replacingnd x by
under consideration applies to the situatjsee Eq.(5.10]  their respective expressions evaluated at the fixed points of
where vg>2/d and randomness is relevafit case. Up 10 the model given in Eqs(7.4) and (7.5). So, to the lowest
the first order ine, due to the RG arguments, no SA must begrder ine, we have

expected near the critical poif2]. This statement is sup-

ported also by our RG calculations. In Tables | and Il we 1 2 &

present the corresponding universal numbers3fand R at B=1-3|1+ N) +0 [) 8.3
d=4 andd=3 in the region_t’"R=L/£<1, i.e., in the vicin-

ity of the critical point. The calculations are performed with gnd

variablex=0 for d=4 andu=u§ from Eq. (7.6) (setting

e=1) for d=3, and with variablex taken from Eq(7.5) in _ 4-N £\ &

both cases. The asymptotic behavior for smai$ presented R= 8(N—1) ‘L o L) 8.4
in the Appendix. The numerical values 8f and R in the

random case and fdi=1, presented in Table | are in full It is interesting to compare E@8.1) with the correspond-

agreement with those obtained in RE8], while those ofB  ing result for the pure systeh34],
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ing the random part of the Hamiltonian for a finite system.
(8.5  One can realize that this is tke=0 part of this term, which

1

=

Fp will give a contribution to the free energy. This scheme per-
Up to the lowest order in I/ they coincide for kX N<4; mits form_ally to end with the same express_iong for the shift
moreover, for N=4-35 (with §<1), we have u=pu, of the cr_ltlca! tgmperaturg and the (enormallzanon constants,
+0(ed) and B=B,¢+O(ed). The result(8.4) confrms S We did within the replica formalism.

the statemenf2] that away from the critical point, a strong . N our opinion, the present FSS study can be also applied
SA emerges in the system Bs-0 with L/&> 1. in the “canonical” casg5], where the disorder is character-
ized by a constant total number of the occupied si@s

bonds, instead of the constant average density. We hope that
results, similar to the bulk case, will also hold in the case of

In the present paper we propose a general scheme for tfi@ite geometry, relating in this way our theoretical findings
FSS analysis of finite-size disorder€(N) system. The With the Monte Carlo simulations.
method we use here is an extension of the field-theoretical
methods used to analyze FSS properties in pure systems. The ACKNOWLEDGMENTS
nature of the symmetr§obtained as a consequence of the use
of the replica trick, which removes the disorflef the model
complicates the perturbative structure of the theory in com
parison with the correspondin@(N) pure one. Recall that,

1+ —

1
Bpure: 1-3 N

3

1-55+0
Hp
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the final results for the disordered system are obtained b art Of. t:ns work \t/va? %ne. Ef ?dFNaS.T.tgcanOV\r/:edge th?
making the number of replicas vanishing. Our results con—'g_?gc'g qupptlar 0 ss;)ccliabe h Se era ;IOBGEcSeCr:ne? Ot
cern mainly systems with number of components larger tha|]1 - =1 1S @IS0 SUpported by the spanis ontrac

1, i.e., non-Ising systems. Their extension to Ising systemyo‘ PB97-0076.

requires higher loop calculations because of the degenerac
of the one-loop order RG equations. PPENDIX: FINITE-SIZE SCALING BEHAVIOR OF THE

Our main results are related to the formulation of the  EVEN MOMENTS OF THE ORDER PARAMETER

problem for some number of componehtsf the fluctuating In this appendix we present the mathematical details of
field for dimensiongi>4 andd=4— €. Due to the presence pow to obtain the asymptotes of the averages
of randomness, it is shown that we are dealing with a two-

i ; ; i — ¢ di2,,—1/2 _
variable problem with scaling variablgs=tL"“u"~“ and (ULH™™M2 o T (A VAX) e
A=A/u. In the mean-field regim&l>4 our results are a m= ———— X————————e '%
generalization folN>1 of those obtained ifi6] for N=1. V2w Jo= Tn(pt AX)
Evaluating numerically the corresponding analytic expres- (Ala)
sions for the Binder’'s cumular® and the relative variance )
R, we demonstrate a monotonic increas®afs a function of ; WLt T Ty p(pt WO 1T L)
N in both pure and random cases and a monotonic decrease (Mp)"= N X NN e '
of R (to zero forN=4) in the random casésee Table)l (A1b)
The e expansion to first order ia shows that close to the
critical temperature, one can express the physical obserwhere we have introduced the function
ables, the shift of the critical temperature, and the renormal-
ization of the coupling constants in terms@fand\. In the -~ f“ (N-1) 1 2, 1 14
random fixed point the parametkrtakes a universal value In(z) =Sy o do @ exp{—z[zP°+ 5P}
[see Eq.(7.9)]. It is found that the distance, over which the (A2)

bulk critical temperature is shifted is proportionallto /"=
in agreement with the statement of R]. This result, com-  The integral in the definition of functiofiy(z) given by Eq.
bined with phenomenological FSS, gives rise to the lack ofA2) may be evaluated in terms of parabolic cylinder func-
SA. The scaling parametes and \ also enter in the final tions Dy(z) using the identity35]
expression for the Binder cumulafd.13 and the relative )
variances4.14), giving explicit expressions for them inthe (* _; _52_ _ _ Y Y
different asymptotic regimes. The numerical calculation off0 e T dx=(2p) QF(V)EX‘{ %)Dy(\/?ﬁ :
the above parameters permits also the verification of the FSS (A3)
and SA(see Table I\. The latter is shown to be absent in the
regime vg>2/d, where randomness is relevant, and ourThe result is
analysis explicitly shows that in this regime the relative vari-
ance is always nonzero for the case of stability of the RG
solutions, i.e., KN<4 andd=4-e.

One can also try to repeat the analysis without the use of
the replica trick. For this, one needs to define in a proper way Now the above integrand in EGAla) can be rewritten in
the procedure in the zero-mode approximation, when rescak very simple form

372
In(2)=(127%)N4 exp( T) D_np(V32). (A4)

026129-8
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Ins2m(pt VAX)
In(pt VX

D_m_nal(pmt+ \/XX)‘@]
D ol (w4 VAX)V3]

For smallu<1 (i.e., in the vicinity of the critical point
the asymptotic form of the ratiA5) is given by

Mom(X):=

— ( 12772) m/2

(A5)

D 2l XV3N)

M m(x)=(12772)m’2[—
i D na(xV/3))

w3 D yp 13D wa(xy3N)
+ N
2 [D_nia(x\3N)I2
(2m+N)D—m—N/2—1(X\/§) +0O( )2}
_ w2b
D pya(Xy3N)
(A6)

In the mean-field regime and at the critical point we have
n=0, and M, is equal to the first term in the right-hand

side of Eq.(A6).
For largeu> 1, the asymptotic behavior of the ratie(,,

PHYSICAL REVIEW B5 026129

[f(x)|<ce®?’, xe[R,X]

for positive constants;G c,. Then

f(k)(O)
ki’

X . 1>
f xB~ e (x)dx~ — >, s~ (k¥Alap
0 a k=0

k+,3)

as s— in the sectofjargs|<m/2.
According to this Lemma, from EqgA2) (with z=u
+x+y/\) and (A5), we have

X )\+6x27\—N—2+O( 1 }
" 6 w’

My(x)= (12772)1/2%{1

(A7)
and
N(N+2) 2xJN  9x2A—N-3
My(x)=127° 1- +
4( ) m ,U«Z P 3,U~2
+O( ! ” (A8)
;g .

Using the asymptotic of\1, and M, for large u, we can
get the behavior of the cumulan®&and B in both cased

is obtained with the help of the well-known Watson's =4 andd=4—e. They are given by

Lemma.
Lemma (See, for exampld 36]) Supposer>0, >0 and
f(x) is an analytic function in a neighborhood 00,

(e
( )x",

f(x)=>,

2 Tk |x| <R,

and that

l+2
N

3n—-1 1
1+3—M2 —3

7

1
B=1-~

3 +0

) . (A9)

For the cumulan®R we get
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