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Boundary polarization in the six-vertex model
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Vertical-arrow fluctuations near the boundaries in the six-vertex model on the two-dimensionalN3N square
lattice with the domain wall boundary conditions are considered. The one-point correlation function~‘‘bound-
ary polarization’’! is expressed via the partition function of the model on a sublattice. The partition function is
represented in terms of standard objects in the theory of orthogonal polynomials. This representation is used to
study the largeN limit: the presence of the boundary affects the macroscopic quantities of the model even in
this limit. The logarithmic terms obtained are compared with predictions from conformal field theory.
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I. THE MODEL

In this paper, we shall consider the six-vertex model o
square lattice. Originally, this model was introduced as
model describing the ferroelectric properties of t
hydrogen-bonded planar crystals@1#. The hydrogen atom po
sitions are specified by attaching arrows to the lattice ed
In the six-vertex case, the arrows are arranged in such a
that there are always two arrows pointing away from, a
two arrows pointing into, each lattice vertex~the so-called
‘‘ice rule’’ !; thus, there are six possible states at each ve
~see, Fig. 1!. The statistical weights,a, b, andc, of the al-
lowed states are invariant under the simultaneous revers
all arrows. The partition function of the model on anN3N
square lattice is obtained by summing over all possible ar
configurations$C%,

ZN5(
$C%

an1bn2cn3,

wheren1 , n2, andn3 are the number of vertices of typea, b,
andc in configurationC, respectively (n11n21n35N2).

The six-vertex model was studied for both periodic~PBC!
@2,3# and fixed boundary conditions@4#. In this paper, we are
concerned exclusively with the domain wall boundary co
ditions~DWBC!, namely, all arrows on the top and bottom
the lattice are pointing inward while all arrows on the le
and right boundaries are pointing outward~see, Fig. 2!. This
model was introduced in Ref.@5# in connection with the
calculation of the correlation functions for exactly solvab
111 dimensional models@6#. It appears that some problem
from the theory of alternating sign matrices@7,8# and domino
tilings @9# may be reformulated in terms of this model.

Aperiodic boundary conditions are of interest since th
demonstrate the influence of the boundaries and interna
fects of real physical systems on their bulk properties.
renormalization group method, it was shown that the beh
ior of the correlation functions near the surfaces and def
is quite different from the bulk behavior@10#. The exactly
solvable six-vertex model with the DWBC provides us t
opportunity to study the surface phenomena beyond re
malization group scheme.
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II. THE PARTITION FUNCTION AND THE BOUNDARY
POLARIZATION

The partition functionZN of the model with the DWBC
may be represented as the determinant of anN3N matrix
@11,12#. Though there exist several combinatorial represen
tions for this determinant@13,14#, it has so far only been
calculated explicitly for some special cases@7#. Significant
progress has recently been achieved in studying the asy
totics ofZN asN→`. Under some special restrictions on th
values of the vertex weights, the bulk free energy was ca
lated in Ref.@15# by using the Toda equation@16#. A more
general result was obtained in Ref.@17# by a reformulation of
the six-vertex model as a Hermitian matrix model to whi
saddle point integration method was applied. A represe
tion convenient for the largeN analysis was suggested also
Ref. @18#.

Less is known about the correlation functions of th
model for at least two reasons. First, the calculation of
correlators, in general, is a more complicated problem t
the calculation of the corresponding partition function. Se
ond, the lack of translation invariance caused by the spe
boundary conditions introduces additional difficulties. Som
correlation functions for the inhomogeneous model~the
model with the statistical weights depending on the posit
of the vertex! with special choice of the weights were co
sidered in Ref.@19#.

The boundary polarization is the one-point correlati
function that describes the probability for the arrow on t
fixed lattice edge on the boundary to be pointing in eith
direction. The symmetry of the model allows us to consid
only vertical arrows. Let us denote byxN the probability for
the vertical arrow to be pointing down. Note thatxN for PBC

FIG. 1. The vertices of the six-vertex model and their statisti
weights.
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is independent of the position of the edge and is just a sp
taneous polarization of the system@3#. Here, we shall discus
xN for the edge located at the lower-right corner of the latt
~in Fig. 3 this edge is dotted!: It turns out that if the arrow on
the dotted edge is pointing down, then due to the impo
boundary conditions, the allowed vertex configuration at
bottom and the right boundaries is determined in a uni
way. Actually, in the lower-right corner one has the vertex
typec; thus, the rest of the 2N22 vertices are of typeb, and
the DWBC are valid for the residualN213N21 sublattice.
Thus,

xN5cb2N22
ZN21

ZN
, ~1!

and the problem of studying the correlation function,xN , is
reduced to the analysis of the ratio of the partition functio
ZN21 /ZN .

The boundary polarization on the arbitrary edge is
pressed in terms of linear combination of partition functio
on sublattices.

III. THE CONNECTION WITH ORTHOGONAL
POLYNOMIALS

Due to the multiplicativity of the partition function, on
can setc51 without loss of generality. Hence, the model
characterized by only two parameters,a andb. In Fig. 4 the
phase diagram on the (a,b) plane for the model with PBC is
plotted ~cf., Fig. 8.5 of Ref.@3#!. It may be regarded as th
phase diagram for the model with the DWBC, in the sen
that the free energy takes a different analytic form in
regions divided by the solid and dashed lines~see Ref.@17#
for details!. Naturally, the ground state and low temperatu
behavior do not coincide with those for the model with PB

In this and next section, we shall consider the model

FIG. 2. The domain wall boundary conditions.

FIG. 3. xN is calculated for the arrow on the dotted edge.
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the solid line in Fig. 4. It is convenient to use the followin
parametrization of the vertex weights on this line:

a51/22x,

b51/21x,
21/2,x,1/2.

It follows from Ref. @11# that the partition function of the
model is represented as the determinant of anN3N matrix:

ZN5
detNM

@f~x!#N2S )
k51

N21

k! D 2 , ~2!

where the matrix elements ofM are given by

Mak5
da1k

dxa1k
f~x!, a,k50,1, . . . ,N21, ~3!

andf(x)5@( 1
2 2x)( 1

2 1x)#21.
Matrix M is a Hankel matrix, that is, it has consta

entries along the antidiagonals. Its determinant can be
pressed in terms of objects related to the theory of ortho
nal polynomials. Letpn(j), n>0, be a sequence of moni
orthogonal polynomials with weightr(j):

E
2`

`

pn~j!pm~j!r~j!dj5dmnhn , n,m>0. ~4!

Then the determinant of the Hankel matrix with the eleme

Hak5E
2`

`

ja1kr~j!dj, a,k50,1, . . . ,N21, ~5!

is equal to Ref.@14# detNH5h0
Nb1

N21b2
N22•••bN22

2 bN21.
Here h0 is determined from Eq.~4!, andbn are the coeffi-
cients of the corresponding three-term recurrence relatio

pn11~j!5~an1j!pn~j!2bnpn21~j!, n>1,

with the initial conditionsp0(j)51 andp1(j)5j1a0.
The functionf(x) has the following integral representa

tion:

FIG. 4. The phase diagram in terms of the weightsa andb.
6-2



il

i

-

e
f-
or
n

R
h

ef

r

n

ram,
m.

n
on

u-

an

f

ne

:

BOUNDARY POLARIZATION IN THE SIX-VERTEX MODEL PHYSICAL REVIEW E65 026126
f~x!5E
2`

`

e2xje2uju/2dj.

Combining this representation with Eq.~3! and Eq.~5!, one
shows that detNM5detNH, where the weightr(j) is equal
to

r~j!5e2xje2uju/2. ~6!

Then, since the coefficientsbn and hn satisfy the well-
known relation bn5hn /hn21 , n>1, we have detNM
5h0h1•••hN21, and the desired representation for probab
ity ~1! is @20#

xN115a22N21b21
~N! !2

hN
. ~7!

Now let us discuss briefly the general case whena andb
are arbitrary positive constants. The partition function
given by formulas~2! and~3!, while f(x) should be changed
~see, for example,@6,11,12#!, the weightr(j) is obtained by
straightforward calculations@17#, and the corresponding ex
pression forxN11 differs from Eq.~7! by a constant.

IV. THE LARGE N LIMIT

Equation ~7! reduces the problem of calculation of th
probability xN11 to the calculation of the normalizing coe
ficient hN . At present there exists a powerful method f
studying theN→` behavior ofhN . This method is based o
the matrix Riemann-Hilbert conjugation problem@21#. The
corresponding asymptotic technique was suggested in
@22# and worked out for orthogonal polynomials wit
nonanalytic weights in Ref.@23#. Using this technique, we
obtain the main result of the paper:

ln hN52N ln N12N lnF pe21

cos~px!G1 ln N1 lnF 2p2

cos~px!G
1

1

4N
1

w~x,N!

2N~ ln N!2
1•••, ~8!

where

w~x,N!5~21!Ncos@2px~N11/2!#

and the omitted terms are of the order 1/@N(ln N)3#. Note that
for x50 this result coincides with the one obtained in R
@23#.

Having expansion~8!, it is easy to find the expansion fo
xN :

ln xN522N lnFp~1/22x!

cos~px! G1 lnF p

cos~px!

1/22x

1/21xG2
1

12N

2
w~x,N21!

2N~ ln N!2
1•••. ~9!

From Eq. ~9!, we get all increasing terms for the partitio
function ZN ,
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ZN ;
N→`

C exp~ f 0N21 f 1N1 f 2ln N!, ~10!

whereC.0 is a bounded function ofN, and

f 05 lnFp~1/42x2!

cos~px! G , f 150, f 25
1

12
.

V. RESULTS AT OTHER POINTS

At present there are several points on the phase diag
where the determinant has been calculated in closed for

~i! The ‘‘free-fermion case,’’a21b251 ~dotted circular
quadrant on the phase diagram!. On this circle, one has a
very simple resultZN51. This result can be obtained by a
appropriate limit from the inhomogeneous partition functi
@6,12#. Therefore, one has

ln xN52~N21!ln b. ~11!

~ii ! The ‘‘ice point,’’ a5b51. All weights are equal, and
the partition function is just the number of allowed config
rations$C% ~Sec. I!. In this case one has Ref.@7#,

ZN5)
j 51

N
~3 j 22!!

~N211 j !!
;

thus,

ln xN5N ln
16

27
2

1

2
ln

16

27
1

5

36

1

N
1

5

72

1

N2
1•••. ~12!

For ZN we have asymptotic expansion~10!, where f 0

5 ln(3A3/4), f 150 and f 252 5
36 . Note that for the model

with PBC @3#, f 0
PBC5 ln (8/3A3). f 0, that is, for largeN the

number of allowed configurations for the DWBC is less th
for periodic ones.

~iii ! The pointa5b51/A3. In this case@7#

Z2N115
1

3N2 F)
j 51

N
~3 j 21!!

~N1 j !! G2

,

Z2N5
~3N21!! ~N21!!

3N@~2N21!! #2
Z2N21 ,

and we immediately get

ln xN5N ln
4

9
1

1

2
ln

27

4
2

1

18

1

N
1•••; ~13!

thus, f 05 ln (A3/2), f 150 andf 25 1
18 . The first omitted term

in Eq. ~13! is of the orderN22, and depends on the parity o
N.

We complete this paper with the following statement. O
can see that in expansion~9!, which was obtained fora1b
51, there exists a logarithmic term. For arbitrarya andb, we
state that the logarithmic terms in the largeN expansion of
ln xN will take place only under the following conditions
6-3
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weightsa andb are either on the solid linea1b51, or on
the dashed linesua2bu51 of the phase diagram~Fig. 4!. For
the model with PBC, the logarithmic terms could be e
plained via conformal field theory@6#. Similar arguments are
valid for the discussed model. The influence of the bound
condition changing operators@24# should also now be take
into consideration. If we move away from the solid or dash
lines, the logarithmic terms vanish and the expansion of lnxN
will be in integer powers ofN. Expansions~11!, ~12!, and
~13! indeed contain only integer powers ofN, thus confirm-
ing the above statement.

Finally, we would like to mention that the six-verte
model with any boundary conditions can be considered a
-

cs

g,

e

in
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model for a description of interface roughening of a crys
surface@25#. An important point in these studies is the exi
tence of exact analytical results, which are known for t
six-vertex model with PBC@1–3#. We believe that our ana
lytical results for the model with DWBC provide one mo
basis for the experiments and simulations in this directio
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