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Boundary polarization in the six-vertex model
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Vertical-arrow fluctuations near the boundaries in the six-vertex model on the two-dimerisiehakquare
lattice with the domain wall boundary conditions are considered. The one-point correlation fufibtand-
ary polarization’) is expressed via the partition function of the model on a sublattice. The partition function is
represented in terms of standard objects in the theory of orthogonal polynomials. This representation is used to
study the largeN limit: the presence of the boundary affects the macroscopic quantities of the model even in
this limit. The logarithmic terms obtained are compared with predictions from conformal field theory.
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. THE MODEL Il. THE PARTITION FUNCTION AND THE BOUNDARY
POLARIZATION

In this paper, we _shall con_S|der the six-vertex modef on a The partition functionZy of the model with the DWBC
square lattice. Originally, this model was introduced as a

model describing the ferroelectric properties of the &Y be represented as the determinant oNaN matrix

i " [11,12. Though there exist several combinatorial representa-
hy_drogen bonde@ planar cryst@lﬁ. The hydrogen atom po tions for this determinanf13,14, it has so far only been
sitions are specified by attaching arrows to the lattice edges, L . N
In the six-vertex case, the arrows are arranged in such a W?E/alculated explicitly for some special cadas. Significant

that there are always two arrows pointing away from, an rogress has recently been achieved i_n study_in_g the asymp-
two arrows pointing into, each lattice vertéthe so-called otics 0fZy asN—e. Un_der some special restrictions on the
“ice rule”); thus, there are six possible states at each verte}(alue‘?‘ of the vertex we_lghts, the bulk free energy was calcu-
(see, Fig. L The statistical weightsa, b, andc, of the al- ated in Ref.[15] by using the Toda equatidri6]. A more

. . . neral result was obtained in REE7] by a reformulation of
lowed states are invariant under the simultaneous reversal EL7] by

.. . e six-vertex model as a Hermitian matrix model to which
all arrows. The partition function of the model on A< N o . )
L ; : : saddle point integration method was applied. A representa-
square lattice is obtained by summing over all possible arro

configurations{C}, Vioerf] rfig]venient for the largd analysis was suggested also in
Less is known about the correlation functions of this
model for at least two reasons. First, the calculation of the
Zy=2, a"b"2c"s, correlators, in general, is a more complicated problem than
{c the calculation of the corresponding partition function. Sec-
ond, the lack of translation invariance caused by the special
boundary conditions introduces additional difficulties. Some
. . . . N correlation functions for the inhomogeneous modtie
andc in f:onf|gurat|0nC, respectlvgly (11+n2+n3—_ N%). model with the statistical weights depending on the position
The S|x.-vertex model was S.tl.Jd'ed for bqth periothBC) of the vertex with special choice of the weights were con-
[2,3] and fixed boundary conditiorjd]. In this paper, we are sidered in Ref[19].
concerned exclusively with the domain wall boundary con-
ditions(DWBC), namely, all arrows on the top and bottom of
the lattice are pointing inward while all arrows on the lef
and right boundaries are pointing outwdsge, Fig. 2 This
model was introduced in Ref5] in connection with the
calculation of the correlation functions for exactly solvable
1+1 dimensional modelgg]. It appears that some problems
from the theory of alternating sign matrices8] and domino
tilings [9] may be reformulated in terms of this model.

wherenq, n,, andn; are the number of vertices of tyjgeb,

The boundary polarization is the one-point correlation
function that describes the probability for the arrow on the
Lfixed lattice edge on the boundary to be pointing in either
direction. The symmetry of the model allows us to consider
only vertical arrows. Let us denote kyy, the probability for
the vertical arrow to be pointing down. Note thgt for PBC
b c
fects of real physical systems on their bulk properties. By I 1
renormalization group method, it was shown that the behav-
ior of the correlation functions near the surfaces and defects
is quite different from the bulk behavidd0]. The exactly
solvable six-vertex model with the DWBC provides us the

opportunity to study the surface phenomena beyond renor- FIG. 1. The vertices of the six-vertex model and their statistical
malization group scheme. weights.

a
Aperiodic boundary conditions are of interest since they
demonstrate the influence of the boundaries and internal de- <—I—~
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FIG. 2. The domain wall boundary conditions.

is independent of the position of the edge and is just @ SPON- |G 4. The phase diagram in terms of the weighndb.
taneous polarization of the syst¢B]. Here, we shall discuss
xn for the edge located at the lower-right corner of the latticeine solid line in Fig. 4. It is convenient to use the following

(in Fig. 3 this edge is dottadit turns out that if the arrow on  yarametrization of the vertex weights on this line:
the dotted edge is pointing down, then due to the imposed

boundary conditions, the allowed vertex configuration at the a=1/2—x,

bottom and the right boundaries is determined in a unique —1/2<x<1/2.

way. Actually, in the lower-right corner one has the vertex of b=1/2+Xx,

typec; thus, the rest of thelR— 2 vertices are of type, and » )

the DWBC are valid for the residubl— 1 X N— 1 sublattice. It follows from Ref.[11] that the partition function of the

Thus, model is represented as the determinant oNaqN matrix:
XN= CbZNZZ;_Nl’ 1) Z0 det M @

N—1 20
2
_ , o [¢(x>]N(H k!)
and the problem of studying the correlation functign,, is k=1

reduced to the analysis of the ratio of the partition functions ) _
Zn_11Zy. where the matrix elements g¥1 are given by

The boundary polarization on the arbitrary edge is ex-

. . . . <. . a+Kk
pressed in terms of linear combination of partition functions B " _
on sublattices. Mak——dxa+k¢(x), a,k=01,...N-1, 3
Ill. THE CONNECTION WITH ORTHOGONAL -
and () =[(z=x)(z+x)] "

POLYNOMIALS Matrix M is a Hankel matrix, that is, it has constant

Due to the multiplicativity of the partition function, one entries along the antidiagonals. Its determinant can be ex-
can setc=1 without loss of generality. Hence, the model is pressed in terms of objects related to the theory of orthogo-
characterized by only two parameteasandb. In Fig. 4 the  nal polynomials. Lep,(£), n=0, be a sequence of monic
phase diagram on the(b) plane for the model with PBC is orthogonal polynomials with weighi(¢):
plotted (cf., Fig. 8.5 of Ref[3]). It may be regarded as the
phase diagram for the model with the DWBC, in the sense * _
that the free energy takes a different analytic form in the f,wp”(g)pm(f)p(g)dg_ Omafln,  NM=0. @)
regions divided by the solid and dashed liriese Ref[17]
for details. Naturally, the ground state and low temperatureThen the determinant of the Hankel matrix with the elements
behavior do not coincide with those for the model with PBC.

In this and next section, we shall consider the model on ®
Hasz £kp(6)dé, ak=01,...N-1, (5

is equal to Ref.[14] detH=hgb} by % -b3_,by_1.
Here h, is determined from Eq(4), andb,, are the coeffi-
cients of the corresponding three-term recurrence relation,

1 Prr1(é)=(an+&)pn(é) —bppn-1(§), n=1,

* with the initial conditionspy(£) =1 andp,(£) =&+ ay.
The function®(x) has the following integral representa-
FIG. 3. yy is calculated for the arrow on the dotted edge. tion:

026126-2



BOUNDARY POLARIZATION IN THE SIX-VERTEX MODEL PHYSICAL REVIEW E65 026126

* Zy ~ Cexp(foN2+fN+f,InN), 10
¢(X):f e_xge_|§|/2d§. NN_>00 F( 0 1 2 ) ( )

Combining this representation with E() and Eq.(5), one whereC>0 is a bounded function dfl, and

shows that dgiM =defH, where the weighp(¢) is equal 7(1/4—x2) 1
to f0—|n W s fl—O, f2—1—2.
p(¢)=e e 2, )
Then, since the coefficients, and h, satisfy the well- V- RESULTS AT OTHER POINTS
known relation b,=h,/h,_{, n=1, we have deiM At present there are several points on the phase diagram,
=hgh;- - -hy_1, and the desired representation for probabil-where the determinant has been calculated in closed form.
ity (1) is [20] (i) The “free-fermion case,”a’+b?=1 (dotted circular
5 guadrant on the phase diagran®n this circle, one has a
=a‘2N‘1b‘1(N!) (7 Very simple resulzy=1. This result can be obtained by an
AN+1 hy appropriate limit from the inhomogeneous partition function

[6,12]. Therefore, one has
Now let us discuss briefly the general case wheandb

are arbitrary positive constants. The partition function is Inxn=2(N—1)Inb. (11
given by formulag2) and(3), while ¢(x) should be changed B ) _ )

(see, for exampld6,11,19), the weightp(&) is obtained by (i) The “ice point,” a=b=1. All weights are equal, and
straightforward calculationgl7], and the corresponding ex- the partition function is just the number of allowed configu-

pression foryy. ; differs from Eq.(7) by a constant. rations{C} (Sec. ). In this case one has Réf],
N .
IV. THE LARGE N LIMIT 2=TI (31—2).! _
N (N=1+))!

Equation (7) reduces the problem of calculation of the
probability x +; to the calculation of the normalizing coef- thys,
ficient hy. At present there exists a powerful method for
studying theN— o behavior ofhy . This method is based on 16 1 16 51 5
the matrix Riemann-Hilbert conjugation probldr@l]. The Inxn=N In2—7— §|n2—7+ %N+ 7_2ﬁ+ o (12
corresponding asymptotic technique was suggested in Ref.
[22] and worked out for orthogonal polynomials with
nonanalytic weights in Ref.23]. Using this technique, we
obtain the main result of the paper:

For Zy we have asymptotic expansiofl0), where f,
=In(3/3/4), f;=0 andf,= — 2. Note that for the model
with PBC[3], f5B=1In (8/3/3)>f,, that is, for largeN the

me ! 2 number of allowed configurations for the DWBC is less than
|n hN:2N In N+ 2N |n COi’]TX) +|n N+|n COi’]TX) for P-eriodic Ones_ -
(iii) The pointa=b= 1/1/3. In this casd7]
1 @(X,N)
t Y 8) 1[N @j—1)?
4N " 2N(InN)? I I Sl
( ) Zon+1 3\ 11:[1 N+ |
where
~(BN=1)I(N—-1)!

o(x,N)=(—1)Ncog 2mx(N+1/2)]

, N gNan—-1)12 TN
and the omitted terms are of the orderN{In N)®]. Note that
for x=0 this result coincides with the one obtained in Ref.and we immediately get
[23].

Having expansior8), it is easy to find the expansion for | . 4 N 1I 27 11 o 13
XN =g T 2 " 1N T (13
_ (1/2=x) m V2=x| 1 thus,fo=In (v3/2), f;=0 andf,= . The first omitted term
In xn 2N 1In n . . 5 :
cog 7X) cogmx) 1/2+x| 12N in Eq. (13) is of the ordeN ™2, and depends on the parity of
N.
_ ¢(x,N—1) . 9 We complete this paper with the following statement. One
2N(In N)?2 ' can see that in expansidf), which was obtained foa+b

=1, there exists a logarithmic term. For arbitrargndb, we
From Eqg.(9), we get all increasing terms for the partition state that the logarithmic terms in the layeexpansion of
function Zy, In xn Will take place only under the following conditions:
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weightsa andb are either on the solid line+b=1, or on  model for a description of interface roughening of a crystal
the dashed lings—b|=1 of the phase diagrafiFig. 4. For  surface[25]. An important point in these studies is the exis-
the model with PBC, the logarithmic terms could be ex-tence of exact analytical results, which are known for the
plained via conformal field theo6]. Similar arguments are  six-vertex model with PBG1—3]. We believe that our ana-
valid for the discussed model. The influence of the boundaryytical results for the model with DWBC provide one more

condition changing operatof&4] should also now be taken pasis for the experiments and simulations in this direction.
into consideration. If we move away from the solid or dashed

lines, the logarithmic terms vanish and the expansion gf;In
will be in integer powers oN. Expansiong11), (12), and
(13) indeed contain only integer powers Nf thus confirm-
ing the above statement. We thank A. H. Vartanian for bringing Ref23] to our

Finally, we would like to mention that the six-vertex attention. This work was partially supported by the RFBR
model with any boundary conditions can be considered as &rant No. 01-01-01045.
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