
PHYSICAL REVIEW E, VOLUME 65, 026120
Simple model for 1Õf a noise
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~Received 6 December 2000; published 18 January 2002!

We present a simple stochastic mechanism which generates pulse trains exhibiting a power-law distribution
of the pulse intervals and a 1/f a power spectrum over several decades at low frequencies witha close to 1. The
essential ingredient of our model is a fluctuating threshold which performs a Brownian motion. Whenever an
increasing potentialV(t) hits the threshold,V(t) is reset to the origin and a pulse is emitted. We show that if
V(t) increases linearly in time, the pulse intervals can be approximated by a random walk with multiplicative
noise. Our model agrees with recent experiments in neurobiology and explains the high interpulse interval
variability and the occurrence of 1/f a noise observed in cortical neurons and earthquake data.
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The omnipresence of 1/f a noise in nature is one of th
oldest puzzles in contemporary physics still lacking a gen
ally accepted explanation. The phenomenon is character
by a certain behavior of the respective time signal; the po
spectrumS( f ) is proportional to 1/f a at low frequenciesf
with a'1. Examples include the light of quasars@1#, elec-
trical measurements@2#, music and speech@3#, human cog-
nition @4# and coordination@5#, the current through ion chan
nels @6#, network traffic@7#, burst errors in communication
systems@8#, freeway traffic@9#, granular flow@10#, etc. The
time signals of a large number of these systems@5,7–10#
resemble a pulse train consisting of individual, largely ide
tical events which occur at discrete times. This is especi
true for spike trains of single nerve cells for which 1/f a noise
has been observed in various brain structures@11–15#. The
reported exponents, which depend both on the presenc
absence of a sensory stimulus@11,12# and on the state of the
animal @rapid eye movement sleep vs awake state# @13–15#,
vary from 0.68 to 1.38. The power-law behavior for spi
train power spectra lies within the range 0.01 to 10 Hz,
tending typically over 2 decades. In almost all cases the
per limit of the observed time over which fractal correlatio
exist is imposed by the duration of the recording.

In this paper, we propose a simple mechanism for ge
ating pulse trains with 1/f a behavior in systems with a
threshold-controlled dynamics such as, e.g., neurons
earthquake faults. Our model is based on an integrate-
fire ~IAF! mechanism and consists of a single unit charac
ized by two variables~see Fig. 1!: the voltageV(t) and the
thresholdC(t). Initially, the voltage is below the threshold
Then, the voltage increases monotonically in time—in
simplest case just linearly—and the threshold evolves
cording to a Brownian motion with diffusion constantD
within reflecting boundariesV0,Cl,C(t),Cu . As soon as
V(t) has reached the threshold, the voltage is reset toV0 and
a pulse of unit height is emitted. In this way, a pulse train
generated. Note that the threshold isnot reset to its initial
value.

Such a model is often used to describe single neuro
V(t) is the membrane potential and the emitted pulse is
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generated action potential. However, it is usually assum
that the threshold is constant in time. Recent investigat
have shown that this is not true for cortical neuronsin vivo
@16# andin vitro @17#. Additionally, there is evidence that th
spike trains of auditory neurons@18# and of neurons in the
mesencephalic reticular formation@19# are not renewal, i.e.
successive time intervals between spikes are correla
These facts are incorporated in our model in the simp
possible way. Moreover, the effects of dead time or abso
refractoriness, which limits the rate at which a neuron c
fire, are automatically included in our model via the low
bound Cl . The upper boundCu prevents an infinite time
difference between two pulses.

As one can see from Fig. 2, the power spectrum of
pulse train generated by our model with linear increas
voltage shows a 1/f a decay over several decades@20#. The
frequency below which white-noise behavior is observed
determined byCu2Cl and goes to zero forCu2Cl→`. The
exponenta is not universal and increases if the ratio (Cl

2V0)/AD increases. In the limit (Cl2V0)!AD, we find
a50.5. This result is explained by the fact that this lim
corresponds to the case in which the waiting times betw
pulses are purely determined by the diffusive dynamics
the threshold. Hence, each waiting time is merely the fi
return time of a Brownian motion which obeys a power-la

FIG. 1. Dynamics of our model for a linear increasing volta
V(t) with V050. The dashed lines represent the lower and
upper boundary for the fluctuating thresholdC(t).
©2002 The American Physical Society20-1
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distribution with exponent21.5. This impliesa50.5 @21#.
To compare our results with real neurons, consider

parameters of curve~b!; the dead time of a neuron is typ
cally of the order of milliseconds and the maximal time d
ference between two spikes of the order of seconds. Th
exactly the ratio betweenCl andCu . Moreover, we can now
identify one unit of time in our model with 5 ms real time
Hence, the 1/f a behavior in curve~b! is found for f
,11 Hz. This and the fact thata.1.02 reproduces the ex
perimental results very well.

Extensive numerical investigations have shown that
model is very stable with respect to variations of the dyna
ics. Different forms of voltage increase, e.g., a linear
squared, or a square-root increase, give similar results.
assumption of a monotonical increase of the voltage can
be dropped. A small amount of noise can be added to
voltage signal without altering our findings. Substituting t
reflecting boundaries by a confining potential does
change our results, either. This points towards a generic
havior.

To obtain the power spectrum of our model analytica
consider the signalX(t)5Skd(t2tk) where tk denotes the
time of occurrence of thekth pulse. It follows as shown in
@22#:

S~ f !5 lim
T→`

1

2T U E
2T

T

dtX~ t !exp2 i2p f tU2

~1!

5 lim
T→`

1

2T (
k

(
q

expi2p f ~ tk1q2tk!. ~2!

With Ī 5 limT→` (kmax2kmin11)/2T, this leads to

S~ f !' Ī (
q

^expi2p f ~ tk1q2tk!&, ~3!

where^¯& denotes the average over the ensemble and
k. Hence, we need to know the probability distributio
Cq(t) dt of the time differences between pulsest5tk

FIG. 2. Power spectrum of the pulse train generated by
model. Parameters are~a! V050, Cl50.2, Cu540, andAD50.2.
~b! As ~a! with Cu5200. ~c! V050, Cl50.02,Cu54000, andAD
52.0. This curve is shifted down by 1 decade. All curves show
clear 1/f a decay.a varies from 0.6 to 1.1.
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2tk1q for all integersq. Cq is merely theqth passage times
density functiongq averaged over the stationary probabili
distribution of ‘‘initial’’ states V(0)

Cq~t!5^gq„tuV~0!…&V~0! . ~4!

Sincegq can be computed from the first passage times d
sity function ~FPTDF!, we will first focus on the latter.

The FPDTF of our model withlinear voltage increase can
be obtained by mapping the model to an IAF model w
constant thresholdC5(Cu1Cl)/2: The voltageṼ(t) is de-
fined as the sum ofV(t) andC2C(t). This means thatṼ(t)
fluctuates aroundV(t). It also implies thatṼ(t) is reset to
V01C2C(tk) after thekth threshold crossing. Hence, th
correlations are now encoded in the fluctuating reset. In c
clusion, Ṽ(t) behaves almost as a Brownian motion wi
drift to an absorbing barrier with a reset following each b
rier crossing. The only difference is that the stochastic p
cess is restricted to the interval@V(t)1C2Cu ,V(t)1C
2Cl # at timet which makes an exact mathematical treatm
difficult. Neglecting the restriction for a moment and setti
C50, we obtain from the associated Fokker-Planck equa
the FPTDF

g1„tuṼ~0!…5
2Ṽ~0!

A2pDt3/2
exp2

@Ṽ~0!1t#2

2Dt
, ~5!

andg1[0 for t,0. Here,Ṽ(0) is the initial distance. Equa
tion ~5! is, of course, just an approximation to the FPTDF
our model. This can already be seen from the fact that
FPTDF of our model is identically zero fort,(Cl2V0) and
t.(Cu2V0). However, as will be shown below, this ap
proximation proves to be very useful and Eq.~5! can even be
simplified to a Gaussian with the same mean and varian

g1„tuṼ~0!…}exp2
@V~0!1t#2

2DuṼ~0!u
. ~6!

From the FPTDF one could now compute higher pass
times density functionsgn in principle by convolution

gn„tuṼ~0!…5E
0

t

g1„tuṼ~0!…gn21~t2tut ! dt. ~7!

However, this convolution resists an analytical treatment d
to the Markovian character of our process and the form
Eqs.~6! and ~7!. The former manifests itself in the fact tha
the first passage time directly gives the initial distance
tween the threshold and the voltage for the next pass
problem. The reason for this is that the norm of thekth reset
of the voltageṼ equals the time difference between thekth
and the (k21)th pulse due to the linear increase of the vo
age Ṽ with slope 1. Hence the reset depends on the
passage time only and the whole stochastic point proces
totally described by the FPTDF plus its Markovian proper
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These properties enable us to interpret the stochastic
cess generated by the Gaussian approximation~6! as a ran-
dom walk of the interspike-intervals~ISI! tk :

tk115tk1ADtkhk . ~8!

Here, hk denotes the white-noise source. Note the spe
kind of multiplicative noise which distinguishes our mod
from the one in@23#. The variance of the step length is pr
portional to the current ‘‘position.’’ Hence, the origin is
fixed point of the random walk. To omit this difficulty and i
the spirit of our original model, we consider the random wa
tk to be confined by two reflecting boundaries, i.e., 0,(Cu
2V0),tk,(Cl2V0). The power spectrum of the puls
train generated by such a random walk withtk115tk1tk
shows a clear 1/f a behavior with the same exponent as f
our model~see Fig. 3!. This is also true if the new interspike
interval is chosen from an inverse Gaussian distribut
given in Eq.~5! with an initial condition depending on th
last interval. Hence, these approximations seem to be ju
fied. This is further confirmed by the stationary ISI distrib
tion. For the random walk, the ISI distribution functionP(t)
is proportional tot21 @24#. Simulations show that this is in
excellent agreement with our model and the inverse Ga
ian approximation.

We have to point out that the behavior ofP(t) depends
on the specific kind of voltage increase. For a voltage
crease with (t2t last)

b with 0,b,2, we findP(t)}tb22 for
our model. Substituting the reflecting boundaries by a pot
tial of the forma/x1bx2 for example, we still find power-
law tails in the ISI distribution. Such a form of the ISI dis
tribution has also been observed for cortical neurons@25#,
especially in the mesencephalic reticular formation@19#.
Hence, our model seems to be especially well suited to
plain the occurrence of 1/f a noise in that formation. In gen
eral, IAF models can not explain the high interspike inter
variability exhibited by cortical neurons@26#. A fluctuating
threshold, as described by our model, however, can solve
long-standing issue.

For renewal processes the ISI distribution function a
the FPTDF are identical and completely describe the proc
This is the case for a standard IAF neuron with reset of
voltage to the origin after each barrier crossing, which

FIG. 3. Power spectrum of the time signal generated by
linear version of our model and by the two approximations for
same parameters as in Fig. 2~b!.
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described by the FPTDF in Eq.~5!. Such a model can neithe
explain a 1/f a signal or a power-law decay of the ISI distr
bution. In contrast to our model, Usher and co-worke
showed that fractal behavior might be a consequence of
global activity dynamics of a network of IAF neurons@27#.
Due to experimental limitations, however, the link betwe
1/f a single-unit power spectra and macroscopic activity d
namics remains, as of now, a conjecture. Another attemp
explain the phenomenon of 1/f a noise is based on fractal an
fractal-rate stochastic point processes@28#. Certain types of
these processes properly characterize the statistical prope
found in different experiments. However, in many cases i
not cleara priori why the real system should generate suc
process. This is especially true for the clustering Pois
process which was applied to explain 1/f a noise in the mes-
encephalic reticular formation@14#. In contrast to that, our
model provides a simple explanation of 1/f a noise in
integrate-and-fire systems in general and, hence, applie
neurons in particular. The crucial assumption is a fluctuat
threshold. Such a behavior is related to models presente
@29# and was already considered in@25# to explain the
power-law decay of neuronal ISI distribution function
However, the stochastic point process was still assumed t
renewal and could not explain a 1/f a behavior of the power
spectral density function. Consequently, the second cru
assumption of our model is the Markovian character of
process in agreement with Refs.@22,23#. To directly verify
our model for neurons in the mesencephalic reticular form
tion, one should measure the evolution of the reset from
threshold potential.

All three main characteristics of our model, i.e., a 1/f a

spectrum, a power-law decay of the ISI distribution, and
Markovian dependence of the ISI, can not only be obser
in nerve cells but also in other systems. For example,
pulse signal, defined by associating the occurrence of pu
of unit height with earthquakes in the Mojave region@30#,
shows 1/f a fluctuations witha51.3 and has an ISI distribu
tion with exponent21.1 ~Fig. 4!. Moreover, there is evi-
dence that the ISI do not obey a renewal process. Rath
Markovian dynamics can be found@31#. These findings im-
ply that the effective evolution of the ISI is similar to the on
generated by our model and caricatured by Eq.~8!.

To summarize, we have presented a simple stocha

e
e FIG. 4. Power spectrum of the earthquake signal. Inset: ISI
tribution.
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model which is able to transform integrated white noise w
a 1/f 2 power spectrum into noise with a 1/f tail. The basic
mechanism is similar to what is expected to describe
dynamics of single neurons and, thus, our model can exp
the behavior of neurons in the central-nervous-sys
@14,19#. The analysis of earthquake data even suggests
01

d.
.
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the effective dynamics of the ISI is the same for many s
tems exhibiting 1/f a noise.
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