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Simple model for ¥f* noise
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We present a simple stochastic mechanism which generates pulse trains exhibiting a power-law distribution
of the pulse intervals and aft/ power spectrum over several decades at low frequencieswdlbse to 1. The
essential ingredient of our model is a fluctuating threshold which performs a Brownian motion. Whenever an
increasing potentiaV(t) hits the thresholdy(t) is reset to the origin and a pulse is emitted. We show that if
V(t) increases linearly in time, the pulse intervals can be approximated by a random walk with multiplicative
noise. Our model agrees with recent experiments in neurobiology and explains the high interpulse interval
variability and the occurrence of ff/ noise observed in cortical neurons and earthquake data.
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The omnipresence of fiY noise in nature is one of the generated action potential. However, it is usually assumed
oldest puzzles in contemporary physics still lacking a generthat the threshold is constant in time. Recent investigation
ally accepted explanation. The phenomenon is characterizdthve shown that this is not true for cortical neuramsivo
by a certain behavior of the respective time signal; the powef16] andin vitro [17]. Additionally, there is evidence that the
spectrumS(f ) is proportional to 1f* at low frequencies  spike trains of auditory neurorid8] and of neurons in the
with a~1. Examples include the light of quasddg, elec- mesencephalic reticular formati¢h9] are not renewal, i.e.,
trical measurement], music and speecf8], human cog- successive time intervals between spikes are correlated.
nition [4] and coordinatioh5], the current through ion chan- These facts are incorporated in our model in the simplest
nels[6], network traffic[7], burst errors in communication possible way. Moreover, the effects of dead time or absolute
systemd 8], freeway traffic[9], granular flow[10], etc. The refractoriness, which limits the rate at which a neuron can
time signals of a large number of these systdm§—1(J  fire, are automatically included in our model via the lower
resemble a pulse train consisting of individual, largely iden-bound C,. The upper boundC, prevents an infinite time
tical events which occur at discrete times. This is especiallylifference between two pulses.
true for spike trains of single nerve cells for whicti Lhoise As one can see from Fig. 2, the power spectrum of the
has been observed in various brain structyfgds-15. The  pulse train generated by our model with linear increasing
reported exponents, which depend both on the presence woltage shows a 1 decay over several decadgXd]. The
absence of a sensory stimulus,12 and on the state of the frequency below which white-noise behavior is observed is
animal[rapid eye movement sleep vs awake gtfi8-15, determined byC,— C, and goes to zero faL,— C,—c. The
vary from 0.68 to 1.38. The power-law behavior for spike exponenta is not universal and increases if the ratiG, (
train power spectra lies within the range 0.01 to 10 Hz, ex—V,)/\/D increases. In the limit@,—V,) <D, we find
tending typically over 2 decades. In almost all cases the upa=0.5. This result is explained by the fact that this limit
per limit of the observed time over which fractal correlationscorresponds to the case in which the waiting times between
exist is imposed by the duration of the recording. pulses are purely determined by the diffusive dynamics of

In this paper, we propose a simple mechanism for generthe threshold. Hence, each waiting time is merely the first
ating pulse trains with If behavior in systems with a return time of a Brownian motion which obeys a power-law
threshold-controlled dynamics such as, e.g., neurons and
earthquake faults. Our model is based on an integrate—and—1
fire (IAF) mechanism and consists of a single unit character-
ized by two variablegsee Fig. 1 the voltageV(t) and the 1.2
thresholdC(t). Initially, the voltage is below the threshold.
Then, the voltage increases monotonically in time—in the
simplest case just linearly—and the threshold evolves ac- 0.8
cording to a Brownian motion with diffusion constabt 06
within reflecting boundarie¥,<C,<C(t)<C,. As soon as '
V(t) has reached the threshold, the voltage is res¥ytand 0.4
a pulse of unit height is emitted. In this way, a pulse train is
generated. Note that the thresholdnist reset to its initial
value. 0

Such a model is often used to describe single neurons:
V(1) is the membrane potential and the emitted pulse is the

FIG. 1. Dynamics of our model for a linear increasing voltage
V(t) with Vo=0. The dashed lines represent the lower and the
*Email address: jdavidse@chem.utoronto.ca upper boundary for the fluctuating thresh@dt).
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) —ty.q for all integersg. ¥, is merely theqth passage times
density functiong, averaged over the stationary probability
E distribution of “initial” states V(0)

W o(7)=(9q(71V(0)))v(0) - (4)

Sinceg, can be computed from the first passage times den-
sity function (FPTDP, we will first focus on the latter.

The FPDTF of our model witlinear voltage increase can
i , , , , ] be obtained by mapping the model to an IAF model with
10 10 10 10 10° 10 constant threshol@ = (C,+ C,)/2: The voltageV(t) is de-
Nyq. fined as the sum of(t) andC— C(t). This means tha¥(t)

fluctuates around/(t). It also implies thaiV(t) is reset to
Vo+C—C(ty) after thekth threshold crossing. Hence, the
0 Ok _ 19
(b) As (@) with C,— 200.(c) Vo= 0, C, - 0.02,C, - 4000, ancyD corrfalatlgns are now encoded in the fluctua.tmg resgt. In c.:on-
=2.0. This curve is shifted down by 1 decade. All curves show aCIl.JS'On' V(t) beh.aves aImOSt_ as a Brownian motion with
clear 1f* decay.« varies from 0.6 to 1.1. drift to an absorbing barrier with a reset following each bar-
rier crossing. The only difference is that the stochastic pro-

distribution with exponent-1.5. This impliesa=0.5[21]. ~ cess is restricted to the interv@V(t)+C—C,,V(t)+C

To compare our results with real neurons, consider the- Ci] at timet which makes an exact mathematical treatment
parameters of curvéb); the dead time of a neuron is typ|_ difficult. Neglecting the restriction for a moment and setting
cally of the order of milliseconds and the maximal time dif- C=0, we obtain from the associated Fokker-Planck equation
ference between two spikes of the order of seconds. This ithe FPTDF
exactly the ratio betwee@, andC,. Moreover, we can now

FIG. 2. Power spectrum of the pulse train generated by ou
model. Parameters afe) V,=0, C,=0.2, C,=40, and/D=0.2.

identify one unit of time in our model with 5 ms real time. - -V(0) [V(0)+7]?
Hence, the ¥¥ behavior in curve(b) is found for f 91(7V(0))= \/277—D73,29XP— °Dr )

<11 Hz. This and the fact that=1.02 reproduces the ex-
perimental results very well. - ] o

Extensive numerical investigations have shown that oufndg;=0 for 7<0. Here,V(0) is the initial distance. Equa-
model is very stable with respect to variations of the dynamdion (5) is, of course, just an approximation to the FPTDF of
ics. Different forms of Vo|tage increase, e.g., a |inear, aour model. This can already be seen from the fact that the
squared, or a square-root increase, give similar results. THeP TDF of our model is identically zero for<(C,—V,) and
assumption of a monotonical increase of the voltage can alse>(Cu— Vo). However, as will be shown below, this ap-
be dropped. A small amount of noise can be added to throximation proves to be very useful and &§). can even be
voltage signal without altering our findings. Substituting thesimplified to a Gaussian with the same mean and variance:
reflecting boundaries by a confining potential does not

change our results, either. This points towards a generic be- - [V(0)+7]?
havior. 91(7|V(0))xexp— ———. (6)
To obtain the power spectrum of our model analytically, 2D[V(0)|

consider the signaX(t)=x,46(t—t,) wheret, denotes the _
time of occurrence of th&th pulse. It follows as shown in From the FPTDF one could now compute higher passage

[22]: times density functiong,, in principle by convolution
LT —i2mft ? Y 7 Y
S(f)=TI[nwﬁf_Tth(t)eXp e D 9n(7]V(0))= fogl(t|v(0))gn—l(7_t|t) dt. (7
1 : However, this convolution resists an analytical treatment due
TP 27 (tey g—ty) )
_T"ELZTEK: % expT e, 2 o the Markovian character of our process and the form of

Egs.(6) and (7). The former manifests itself in the fact that
the first passage time directly gives the initial distance be-
tween the threshold and the voltage for the next passage
_ problem. The reason for this is that the norm of kitle reset

S(f)=~12 (exg?™(tra~ W), () of the voltageV equals the time difference between tib

¢ and the k— 1)th pulse due to the linear increase of the volt-

where(---) denotes the average over the ensemble and overge V with slope 1. Hence the reset depends on the last
k. Hence, we need to know the probability distributionspassage time only and the whole stochastic point process is
V() d7 of the time differences between pulses-t, totally described by the FPTDF plus its Markovian property.

With I_=IimT_,ac (Kmax— KminT1)/2T, this leads to
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FIG. 3. Power spectrum of the time signal generated by the ) )
linear version of our model and by the two approximations for the FIG. 4. Power spectrum of the earthquake signal. Inset: ISI dis-
same parameters as in Fighp tribution.

These properties enable us to interpret the stochastic prélescribed by the FPTDF in E¢). Such a model can neither

dom walk of the interspike-intervaldSl) 7 : bution. In contrast to our model, Usher and co-workers
showed that fractal behavior might be a consequence of the
Tk 1= Tkt VD T 7k - (8)  global activity dynamics of a network of IAF neurofa7].

Due to experimental limitations, however, the link between

Here, 7, denotes the white-noise source. Note the special/f* single-unit power spectra and macroscopic activity dy-
kind of multiplicative noise which distinguishes our model namics remains, as of now, a conjecture. Another attempt to
from the one in23]. The variance of the step length is pro- explain the phenomenon offf/noise is based on fractal and
portional to the current “position.” Hence, the origin is a fractal-rate stochastic point proces$e8]. Certain types of
fixed point of the random walk. To omit this difficulty and in these processes properly characterize the statistical properties
the spirit of our original model, we consider the random walkfound in different experiments. However, in many cases it is
7 to be confined by two reflecting boundaries, i.es(@,  not cleara priori why the real system should generate such a
—Vo)<7<(C;—Vy). The power spectrum of the pulse process. This is especially true for the clustering Poisson
train generated by such a random walk with;=t,+ 7,  process which was applied to explairf 4hoise in the mes-
shows a clear I behavior with the same exponent as for encephalic reticular formatiofil4]. In contrast to that, our
our model(see Fig. 3. This is also true if the new interspike- model provides a simple explanation off4/noise in
interval is chosen from an inverse Gaussian distributiorintegrate-and-fire systems in general and, hence, applies to
given in Eq.(5) with an initial condition depending on the neurons in particular. The crucial assumption is a fluctuating
last interval. Hence, these approximations seem to be justthreshold. Such a behavior is related to models presented in
fied. This is further confirmed by the stationary ISl distribu-[29] and was already considered [25] to explain the
tion. For the random walk, the ISI distribution functi®gr) power-law decay of neuronal ISl distribution functions.
is proportional tor~* [24]. Simulations show that this is in However, the stochastic point process was still assumed to be
excellent agreement with our model and the inverse Gaussenewal and could not explain aft/behavior of the power
ian approximation. spectral density function. Consequently, the second crucial

We have to point out that the behavior B{r) depends assumption of our model is the Markovian character of the
on the specific kind of voltage increase. For a voltage inprocess in agreement with Ref22,23. To directly verify
crease with (—tj,s)# with 0< 8<2, we findP(7)=7#~2for  our model for neurons in the mesencephalic reticular forma-
our model. Substituting the reflecting boundaries by a potention, one should measure the evolution of the reset from the
tial of the forma/x+bx? for example, we still find power- threshold potential.
law tails in the ISI distribution. Such a form of the ISI dis-  All three main characteristics of our model, i.e., &1/
tribution has also been observed for cortical neur®@%,  spectrum, a power-law decay of the ISI distribution, and a
especially in the mesencephalic reticular formatidr®]. Markovian dependence of the ISI, can not only be observed
Hence, our model seems to be especially well suited to exn nerve cells but also in other systems. For example, the
plain the occurrence of 17 noise in that formation. In gen- pulse signal, defined by associating the occurrence of pulses
eral, IAF models can not explain the high interspike intervalof unit height with earthquakes in the Mojave regi80],
variability exhibited by cortical neuron®6]. A fluctuating  shows 17 fluctuations witha=1.3 and has an ISI distribu-
threshold, as described by our model, however, can solve thtton with exponent—1.1 (Fig. 4). Moreover, there is evi-
long-standing issue. dence that the ISI do not obey a renewal process. Rather a

For renewal processes the ISI distribution function andMarkovian dynamics can be fouj81]. These findings im-
the FPTDF are identical and completely describe the procesgly that the effective evolution of the ISl is similar to the one
This is the case for a standard IAF neuron with reset of thgyenerated by our model and caricatured by @j.
voltage to the origin after each barrier crossing, which is To summarize, we have presented a simple stochastic
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model which is able to transform integrated white noise withthe effective dynamics of the ISl is the same for many sys-
a 1£2 power spectrum into noise with afifail. The basic tems exhibiting 1f* noise.

mechanism is similar to what is expected to describe the ) ]
dynamics of single neurons and, thus, our model can explain We thank A. Aertsen and C. Goltz for useful discussions.
the behavior of neurons in the central-nervous-systerd-D. would like to thank the Land Schleswig-Holstein, Ger-
[14,19. The analysis of earthquake data even suggests thatany, for financial support.
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