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Iterative renormalization group for anomalous dimension in a nonlinear diffusion process
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We construct a classical successive method, the Picard method in integral equation theory, to make an
iterative algorithm with the renormalization grodRG) approach to calculate the anomalous dimension in a
nonlinear diffusion equation. We find our result improves than the original RG work because we begin with the
eth RG solution, not the trivial fixed-point solution.
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Renormalization group(RG), and in particular, its 1 X2
guantum-field-theory implementation has provided us essen- G(x,t)= —=exp — E) 4
tial tools for the description of phase transitions and critical V2wt

phenomena beyond mean-field thedt~3]. Some years . - . . .

ago, it had been found that there are also important applicaf;}nd@ is the Heaviside function corresponding to the discon-
tions in nonequilibrium phenomena and asymptotic analysié'nu':]y of D. hat thi _ al al
[4-5]. In particular, applications to calculate the anomalous The reason that this RG treatment is potentially useful is
dimensions in the asymptotic behavior of the nonlinear par:[hat the f|?(ed point of the RG transformatlon s a self-similar
tial differential equations have been discussed by Goldenfelas.yrnptOtIC solution of the equatiofd]. In 'Goldenfelds
and his colleagues, in the case of Barenblatt's equaBan original work [6], they construct &-perturbation theory for

modified porous medium equati¢d], and turbulent-energy- e equation, in the lowest order efEq. oy rg}duces toa
balance equatiof8], etc. I|near_d|ffu3|o_n equation _such aziu(x,y)—l_/Za?Xu(x,t):O._
The equation discussed here is a one-dimensional nonlintn€ fixed point of the simple equation, i.e. the long-time

ear diffusion equation behavior of the problem isi~mq/ 't exp(—x?/2t). They
start from this trivial fixed point solution teth calculation

(1) and obtain the fixed-point solution of Eqgl) is u
~Al(tY?F Y exp(=x?¥/2t) by the RG approacfs], where the

, ) i o . anomalous dimensioa appears naturally.

with a discontinuous diffusion coefficierid =1/2 for d,u On the other hand, the numerical result shows that some

>0 andD=(1+a)j2 for du<0. For the diffusion mc!lcated time after the beginning of computation the following rela-

in Eq. (1), 'there is a certain tlme-erendent radigst) tion holds: u~A/(tY/2* %)exp(—x3/2t), i.e., the asymptotics

beyond whichs;u<0 and behind whick,u>0. Thus, there  for Eq. (1) rapidly converges to the above fixed-point solu-

are different diffusion coefficients in the two regions. This ijgp [9]. But the value of the anomalous dimensi@emuan-
equation, hereafter referred to as Barenblatt’s equation, de-

scribes the filtration of a compressible fluid through an elas-

du=Da2u

tic porous medium which is irreversibly deformabje]. 0.25 2
Here, we consider it with the initial condition J 3)
0.20 - (1)
0)= ! X 2
u(x, )—WGX ~ 52 2 0.154
3

The formal solution to the Eq1) is 0.10

0.05 4
u(x,t)=j dy G(x—y,t)u(y,0)+§j0tdsJ’ dy G(x—vy,t

0.00 H

- S)®[ - asu(yys)]agu(Y-S)a (3) 0lo T 0|2 T 0|4 T 0|6 y 0|8 T 1|o

whereG is the Green’s function €

FIG. 1. The anomalous dimensian as a function ofe. The
curve 1 is the numerical result from Barenblgt; The curve 2 is
*Author to whom all correspondence should be addressed. Elethe RG result given by Goldenfekt al.[6]; The curve 3 is our RG
tronic address: tutao@mail.ustc.edu.cn result byPicard-like iteration.
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titatively differs from thesth RG calculation(in Fig. 1, one Qo 2 s t

can see the difference between them explitibgcause the uD(x,t)= \/:ex - Z) 1- —In(l—z)

initial step of their RG method is the trivial fixed-point so- 2t 2me

lution of linear diffusion equation. Therefore, the Heaviside +nonsingular terms O(&2?). (11)

function is kept in its zeroth-order approximation

O[—dsup(y,s)] in the eth RG calculation and the effect of To deal with the divergence, we use the RG approach intro-
the Heaviside function on the final fixed-point solution is duced by Goldenfelet al.[5]. Hence, we obtain

neglected. It is clear that we can improve the result of RG by

beginning witheth RG because the initial step is closer to 1 2

the true solution. This has a better chance of converging to Ug'(x, )= {7z am OH T 5 (12
the true fixed-point solution, which we will see in the fol-

lowing content. with the anomalous dimension

To begin with theesth RG fixed-point solution, not the

trivial fixed-point solution and include the effect of the e

Heaviside function in a certain approach, we can construct a aV= +0(&?), (13
classical successive method, the so-calféchrd method in 2me

integral equation theorj10], to make an iterative approach . . .
posgible[lql] 0] PP where the subscrifR denotes the renormalized quantity. We

Hotice that it is just the lowest RG result which has been
obtained by Goldenfelcet al. before [6]. Obviously, we
would find that in their RG approach, the Heaviside function
is put in its zeroth-order approximation.

e [t Next, in the second step, we can put Ef2) into the
U(l)(X,t)ZJ’ dy G(x—y,t)u(y,0 + Ejodsj dy G(x Heaviside function, now we have

Our general strategy in this paper can be summarized wit
the following steps: First, we put the Heaviside function in
its zeroth-order approximation

—Y,t=5)O[ — dsuo(y,s)JoouP(y,s). (5) u(z)(x,t):f dy Gix—y.t)u(y, 0)+gftdsf iy Gix
0

From it, we obtain the solution® and put it into the Heavi- ) ,
side function again to solve the equation secondly —y,t—5)0[ — Jug )(y,S)]ﬁyU(z)(y,S)- (15

u?(x, t):f dy G(x—y.t)u(y,0)= ; ftdsf dy G(x The calculation differs slightly from the above with
0

Qo x?
2 (2 (2) — _
—y,t=8)0[—u(y,9)]u(y,s)  (6) VD= o |
and the iterative process can be continued to rahystep . m ¢
e [t - V2mexp1+2a™m) "\
uM(x,t)= [ dy G(x—y,t)u(y, 0)+3 | ds| dy G(x
0 +nonsingular terms O(&?). (16)

—y,t=95)0[ —au""V(y,s)]02u(y,s). (7
Y V0L (y: 9170 (y.9). (1) After the RG argument, the form of the solution remains

Using this trick, we can handle this problem step by step tainchanged
include the effect of the Heaviside function.

In the first step, we start with A X2
P U0 = ‘{‘Z)’ an
Qo x? g
Uo(x,t)= 27 (t+1?) ®XR 2(t+19) ) ® where the anomalous dimension changes into
e (t eV1+2a
u(l)x,t=fd G(x—y,t)u ,0+—fdsfd G(x—y,t a?= : 18
(x,) y Gx=y.Hu(y.0+5 | y G(x—y Zrop i 2a®) (18)
—8)O[ — dUg(y,s)1duM(y,s). 9 Using the principle of mathematical induction, it is easy
. . . to prove that
We posit a naives expansion of
/ (n=1)
uD(x,t)=ufM (x, 1) +eufP(x,t) + - (10 o sylt2a (19)

- V2mexp1+2aM D)
The eth term can be calculated straightforwardly. As antici-

pated,u(’) diverges ag—. We find that Suppose that it is true far=m— 1, that is to say
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e\1+2aM2

(m=1)_ (20)
o .
V2mexp(1+2a(M 2)
Now, we substitute then— 1th solution
A x2
-1 _
Uf{" )(x,t)_wexp{—z) (21

into themth equation

u(m)(x,t)zf dy G(x—y,t)u(y,0)+;£dsf dy G(x

—y,t=9)0[ —aug" M (y,s)]12u™(y,s).
(22)

The same approach as above is repeated here and yields

%

eV1+2am D

V2 exp(1+2a(M 1)

u™(x,t)=

2t

t
12

)

+nonsingular terms O(&?). (23
With RG, we can have
A X2
(m) - _
Ug" (X,1) = t1/2+a(m) ex;{ 2t> 24
with
eV1+2amD
(m) (25)

2mexpgl+2a™m )’

We have proved that it is true fon=1 andm=2. Thus, it is
true for anym.
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If the iterative process is convergent, the limit exists.
Writing

lim M= a(*), (26)
n—oo
then one has
eV1+2a™
o™ (27)

- 2mexgl+2a™)

Two questions are to be considered. First, does the sequence
converge and second, if it does converge, does it converge to
the solution of the integral equation? We will discuss the
convergence, the error made in replacing the final result
ur(x,t) by thenth approximatioru’(x,t) and the solution
uniqueness in a separate paper.

The above equatiof27) can be solved numerically, and
we can compare our result with Both Goldenfelfd and
Barenblatt's[9] in the same picture as Fig. 1. It is obvious
that our result improves than the lowest RG approach which
has been done by Goldenfedd al. [6].

In summary, we use Ricard-like iterative process to im-
prove the calculation of RG for the anomalous dimension in
Barenblatt's equation. We illustrate our proposal with the
Barenbaltt's equation, however, it may be useful in studying
the more interesting physical situatidri®], such as the gen-
eralized porous medium equation

du=DAu"" (28)
which models a variety of nonequilibrium phenomena in,
inter alia, fluid dynamics, plasma physics, and gas dynamics,
depending on the value af[13].

G.C. is supported by the National Science Foundation in
China(No. 1987504Y. The authors would like to thank Dr.
Liu Jian Wei for his help in this paper. One of the authors
(T.T.) gratefully thanks Professor N. Goldenfeld for consid-
eration of his work.

[1] N. N. Bogoliubov and D. V. Shirkov/|ntroduction to the
Theory of Quantized Field8rd ed.(Wiley, New York, 1980.

[2] J. Zinn-JustinQuantum Field Theory and Critical Phenomena
(Clarendon, Oxford, 1989

[3] One can find a series of review articles on RG in Phys. Rep.

344, 155(2001)).

[4] N. Goldenfeld,Lectures on Phase Transitions and the Renor-
malization Group(Addison-Wesley, Reading, MA, 1992L.
Y. Chen, N. Goldenfeld, and Y. Oono, Phys. Rev. L&,
1311(19949); G. C. Paquette, L. Y. Chen, N. Goldenfeld, and Y.
Oono, ibid. 72, 76 (1994; Y. Oono, Int. J. Mod. Phys. B4,
1327(2000.

Matsuba and K. Nozaki, Phys. Rev. 6, 4926 (1997); S.
Goto, Y. Masutomi, and K. Nozaki, Prog. Theor. Ph{62,
471(1999; T. Maruo, K. Nozaki, and A. Yosimoripid. 101,
243 (1999; C. Itoi and H. Mukaida, Phys. Rev. &0, 3688
(1999; S. 1. Ei, K. Fujii, and T. Kunihiro, Ann. PhygLeipzig)
280, 236(2000; O. Pashko and Y. Oono, Int. J. Mod. Phys. B
14, 555(2000; K. Nozaki, Y. Oono, and Y. Shiwa, Phys. Rev.
E 62, 4501(2000.

[6] N. Goldenfeld, O. Martin, Y. Oono, and F. Liu, Phys. Rev.
Lett. 64, 1361(1990.

[7] L. Y. Chen, N. Goldenfeld, and Y. Oono, Phys. Rev& 6544
(1991).

[5] The RG method developed by Goldenfeld and his colleagues[8] L. Y. Chen and N. Goldenfeld, Phys. Rev.4&, 5572(1992.
has been applied by many authors to quite a wide class of[9] G. I. BarenblattScaling, Self-similarity, and Intermediate As-

problems successfully. G. Caginalp, Phys. Rev.5& 66
(1996; R. Graham, Phys. Rev. Let?6, 2185 (1996; K. I.

ymptotics(Cambridge University, Cambridge, England, 1296
[10] F. G. Tricomi, Integral Equations, Pure and Applied Math-

026117-3



TAO TU, G. CHENG, AND HUA SHENG PHYSICAL REVIEW E65 026117
ematic(Interscience, New York, 1957\ol 5. paper.

[11] We have already proposed a method about it, the details can H42] Tao Tu (unpublished
found in our article C. Chen and G. Cheng, J. Math. PB@s. [13] For a brief summary, see e.g. W. L. Kath, Physicd®) 375
1589 (1998. The important difference between them is the (1984); D. G. Aronson, inNonlinear Diffusion Problemsed-
change of the initial fixed-point solution explanation and the ited by A. Fasano and M. Primicerio, Lecture Notes in Math-
relation to the RG approach, which are not clear in the former ematics, Vol. 1224 Springer-Verlag, Berlin, 1986

026117-4



