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Critical behavior of the mixed-spin Ising model with two competing dynamics
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In this work we investigate the stationary states of a nonequilibrium mixed-spin Ising model on a square
lattice. The model system consists of two interpenetrating sublattices of ¢pid$2 andS=1, and we take
only nearest neighbor interactions between pairs of spins. The system is in contact with a heat bath at
temperaturel and subject to an external flux of energy. The contact with the heat bath is simulated by single
spin flips according to the Metropolis rule, while the input of energy is mimicked by the simultaneous flipping
of pairs of neighboring spins. We performed Monte Carlo simulations on this model in order to find its phase
diagram in the plane of temperatufeversus the competition parameter between one- and two-spinglips,
The phase diagram of the model exhibits two ordered phases with sublattice magnetizgtiong>0 and
m;>0, m,<0. These phases are separated from the paramagnetic phasen,=0) by continuous transi-
tion lines. We found the static critical exponents along these lines and showed that this nonequilibrium model
belongs to the universality class of the two-dimensional equilibrium Ising model.
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[. INTRODUCTION of the phase diagram is occupied by the paramagnetic phase,
the other half being occupied by the ordered phase with mag-
Kinetic Ising models on a lattice have been employed tonetizations in opposite directions. The ordered phase with
describe the stationary nonequilibrium states of a great variboth magnetizations positive occupies a very small region of
ety of problemg1,2]. Aside from the exact solution found by the phase diagram.
Glauber for the kinetic Ising model in one dimens[@&f, the Each of the dynamical processes we consider satisfies the
majority of studies in this field employ computer simulation detailed balance condition, which drives the system toward
methods. The reason for this is the absence of a completguilibrium. However, when both act simultaneously, de-
theory concerning nonequilibrium phenomena such as weailed balance is no longer satisfied and the system is forced
have for the case of problems considered in equilibrium staeut of equilibrium. In the present model the two dynamics do
tistical mechanics. not conserve the order parameter. The two-spin flip we con-
In this work we consider a particularly simple model of a sider here is different from the usual Kawasaki kinefigs
nonequilibrium system. The model is an Ising system withbecause the two sublattices are not equivalent. Tantede
spin- 3 and spin-1 variables on different sublattices of theOliveira[6] considered an Ising ferromagnetic system evolv-
square lattice. The time evolution of the states of the systering in time according to two competing dynamical processes:
is governed by two competing dynamical processes: onéhe one-spin flip Glauber dynamics, and the two-spin ex-
simulating the contact of the system with a heat bath at @hange Kawasaki dynamics. They found three different types
temperatureT, and the other mimicking an input of energy of magnetic ordering as the competition parameter between
into the system. The contact with the heat bath is simulatethese two stochastic processes changes. Ferromagnetic, para-
by the Glaubei 3] stochastic process, where both th@nd  magnetic, and antiferromagnetic phases appear in their phase
Sspins relax through one-spin flips, with probabilgywhile  diagram. Our mixed-spin Ising system also presents three
the input of energy is modeled by flipping a pair of nearestdifferent phases, and this is related to the fact that the two-
neighbor spins simultaneously, with probability {p). spin flips in both models increase the energy of the system.
Only two-spin flips that increase the energy of the system arélowever, in their work the two-spin exchange Kawasaki dy-
permitted in this model. Therefore, the flux of energy into thenamics conserves the order parameter, while in our case this
system favors states of higher energy, causing a competitiotioes not happen because the two sublattices are not equiva-
with the one-spin flip Glauber process. This model has alient.
ready been studied in the pair approximatigd and the The phase diagram and the critical properties of Ising sys-
phase diagram in th&-p plane determined. We found two tems with competing Glauber and Kawasaki dynamics have
continuous transition lines: one line separating an orderetieen extensively studied in recent years and a review can be
phase where the sublattice magnetizations are aligned pardbund in Ref.[7]. In this work we used Monte Carlo simu-
lel from a disordered phase where the sublattice magnetizadations and finite-size scaling argumef#3 to determine the
tions are both zerdparamagnetic phageand another line phase transitions and the static critical exponents of the
separating the paramagnetic phase from an ordered phas®del. We attributed a weiglptto the one-spin flip process,
where the sublattice magnetizations are aligned in oppositend a weight (+p) to the two-spin flip process. We deter-
directions. In the pair approximation nearly half of the areamined the phase diagram of the model in the plane of tem-
peratureT versus competition parametpy and we also no-
ticed the presence of three different phases.g=ed (small
*Electronic address: wagner@fisica.ufsc.br flux of energy we obtained an ordered phase where the sub-
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lattice magnetizations are both positive. On increasing thgvhich can be written a¥gp(o,S—o',S’). Then, we have

flux of energy, the ordered phase becomes unstable andtfe following equation for the total transition probability:

disordered phas€paramagnetic phageappears. However,

for a large value of the flux of energyp&0), we observe W(o,S—0',S")=pWg(0,S—0d’,S")

the presence of another ordered phase, whose symmetry is e

different from that found at large values @fWe determined +(1=-p)Wep(0,S—0",S"), )

the critical exponents, B, andy along the continuous tran-

sition lines, and we showed that the mixed-spin model is |nO

the same universality class as the equilibrium Ising model.
The rest of this paper is organized as follows. Section Il

describes the mixed-spin Ising model and the two competing N

dynamical processes. In Sec. Ill, we give some details con- W(o,S—o0’,S')= 2 8. 0180, 0 O —g1i" Oy o

cerning the Monte Carlo simulations and define the observ- te ez NN

ables of interest. In Sec. IV we present the results of the

simulations, the phase diagram, and the static critical expo-

nents of the model. Finally, in Sec. V, we present our con- N

clusions. +k21 0,0 5(,2 ,..-501 ’(ré...g(rN’U’,\‘

where Osp=<1 is the competition parameter between the
ne-spin flip and two-spin flip processes. The one-spin flip
process is described by the Glauber dynamics, that is,

X 681,51552,55 5Sk*5|; “55’\‘ ’S&wj(o’)

||.. THE MI.XED SP.IN I.SING MODEL o X 85, 505, 535,505, 5,09, ®)
We consider a mixed-spin Ising model defined in a square

lattice of linear sizel, with spins o=1/2 and S=1.  wherew;(c) andw(S) are the probabilities of flipping the

The lattice is bipartite, with the" spins occupying the sites gping o; and S,, respectively. We use the variab& to

of one sublattice, while the spins occupy the sites of mean the two possible values that a change of the actual spin

the other sublattice, each sublattice containiNgsites. ariapleS, can take. We adopt the Metropolis prescription

A state of the system is represented byr,S}  for the one-spin flip transitions, that is,
={o1,...,00,...,0n:S1,---:Sms- .Sy}, Where the spin vari-

ablesoy can assume the valuesl and the spin variableS wj(o)=min[ 1,exg — BAE;)], (6)
can assume the values91. The energy of the system in the
state ¢,S) is given by where 8=1/kgT, and T is the absolute temperature of the

heajc b.ath.AEj is the change_in'energy afte_r flipping spif
at sitej. We also assume a similar expressiondg(S). For

E(s.5)= _J(% S0y, @ the two-spin flip we can write
where the sum is over all nearest neighboring pairs of spms N
andJ is taken to be positive. Let us denote pgo,S;t) the ~ Weplo',S'—0,S)= 12 001,01 00,05 o) =0l Doy,
probability of finding the system in the state,S) at timet.
The equation of motion for the probability of the states of the X Se oS i 8s o0 g wi(a',S)
S -~ . 5,.5,9s,.8)" 05§ " 0s,5,@ikl0 1),

system is given by the gain-loss master equation

q 0

giPlo.S=- UES W(o,S—a’,S")p(a,S;t) wherew(c,S) is the probability of a simultaneous flipping

of the neighboring sping;; andS,. This process favors an

increase in the energy of the system, and it is written as

+2, W(o',S' —0a,9)p(a’,S5t), (2
oS 0 if AE=0

1 if AE;>0, ©

. - . . wjk(O',S):
whereW(o,S—¢',S") is the probability, per unit of time,

for the transition from the stater(S) to the state¢’,S’). In ] . o ]
this model, we assume that the transition raps,S  WhereAE;; is the change in energy after flipping the spins
—0o',S') is given by the competition between two indepen-and Sy at the neighboring sitgsandk.

dent stochastic processes: the one-spin flip Glauber process,

intended to describe the relaxation of theand S spins due I1l. MONTE CARLO SIMULATIONS

to the contact with the heat bath at temperafireshich can

be written in the form We used the standard importance sampling technique to

simulate the model introduced in the last section. We consid-
Wg(o,S—a’,S ) =Wg(0,S—0',S)+Wg(o,S—a,3), ered square lattices of linear sizewith values ofl. ranging
3 from L=16 to 128, and we applied periodic boundary con-
ditions. We have taken completely random spin configura-
and the two-spin flip process, chosen independent of tentions as the initial states of our simulations. A new configu-
perature, and designed to increase the energy of the systemation is generated from an old one by the following Markov
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process: for a given temperaturend a selected value of the 5 T T 7 T
competition parametqy, we choose at random a spin of the L
lattice, and then we generate a random numbéetween 4| _
zero and unity. Ifé<p we choose to perform the one-spin
flip process, according to the Metropolis prescription given
by Eg. (6). If £>p, then we consider the two-spin flip pro- 3r p i
cess. In this case, we randomly select a new spin that is a AF
nearest neighbor of the initial chosen spin, and we apply the 2 4
prescription given by Eq(8). In general, we discarded the ! +
first 5x 10* Monte Carlo StepgMCS) in order to achieve 1L
the stationary regime for all lattice sizes. In order to estimate
the quantities of interest, we considered the next14” . L
MCS to calculate the averages for any lattice size. One MCS % o0z o1 7 o9 0% 1w
equalsL? one-spin flip or two-spin flip trials.
We calculated the sublattice magnetizations per spin, 14
andm,, defined as FIG. 1. Phase diagram of the nonequilibrium mixed-spin Ising
model in theT-p plane. The letters denote tlffeand AF ordered
ml_i < 2 S-> (9) phases and the paramagndiphase. The full lines give the results
N\ ™ of simulations, while the dotted lines represent the pair approxima-
tion calculation. The temperature is measured in unit¥ b andp
and is a dimensionless parameter.
1 1o v
m2=N<§j: a'j>. (10 UI’_(p):Ll/Vyy (18)
We also defined the total and the staggered magnetizationsp that
respectively, by
’ _ 1/VU6(O)
mF=[(my+my)], (12) Ui(po) =L ——. (19
and We can determine the critical exponentrom a log-log plot
of U/ versusL.
mAF=](m;—my)], (12 (pJ
and their associated reduced fourth-order Binder cumulants V- RESULTS
[9] In Fig. 1 we show the phase diagram of the model in the
T—p plane. It displays three different phases, separated by
(m*) two continuous transition lines: one line separating an or-
Up(m)=1- 3(m?)?" 13 dered phaseH), where the sublattice magnetizations are
both positive, from a disordered paramagnetic phadg (
The corresponding susceptibilities are defined by where both sublattice magnetizations are zero. The other line
separates the paramagnetic phase from a different ordered
x(m)=N{{m?)—(|m|)?, (14)  phase(AF), where the sublattice magnetizations are aligned
in opposite directions. As we can see, the paramagnetic
wherem can bem™ or mAF. phase occupies almost all the region of the phase diagram.

These above defined quantities obey the following finite\We also plotted in Fig. 1 the results obtained previoydly
size scaling relations in the neighborhood of the stationaryn the pair approximation. In this approximation the AF
critical pointp,: phase occupies an area of the phase diagram as large as the

paramagnetic phase. On the other handRiphase occupies
m(p)=L " A"my(L"¢), (15  a very small area of the phase diagram in both the pair ap-
proximation and the Monte Carlo simulations. For the par-
xL(P)=L""xo(LYé), (16 ticular casep=1, where only one-spin flips are permitted,
the stationary state coincides with the thermodynamic equi-
UL(p)=Uq(LYe), (17)  librium state, because there is no flux of energy into the
system. Fop=1, the transition temperature between the or-
wheree=(p—p.)/pc:, Pc being the critical competition pa- deredF phase and the paramagneBcphase isT.=1.934

rameter for each value df. +0.007. This value was found by considering the common
The derivative of Eq(17) with respect to the competition point where the cumulants for different lattice sizes cross, as
parametep give us the following scaling relation: we will show next. However, this point is not exactly the
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FIG. 2. Finite-size behavior of the order parameters as a function of the competition parprfwetseveral lattice sizek indicated in
the figures(a) Total magnetizatiom® for T=1.5. (b) Staggered magnetization®" for T=2.0.

same for each pair of lattice sizes in the simulations. Thes a function ofp for various lattice sizes, and at a fixed
uncertainty is related to the spread of the values of temperaemperature. Figure(d indicates that the order parameter
ture around a mean value, after all the crossing points arm” is of order unity forp>p. and vanishes fop<p,,
considered. Our critical temperature is in good agreemengxcept for finite-size effects. The same behavior is also ob-
with the one found from series expansion calculatipt, served for the order parameter*™ when we cross the tran-
T.=1.952. The temperature is measured in unitg/ég . sition point[Fig. 2(b)]. We can also get some information
The order parameter of tHe phase ism, while the one  concerning the transition point by examining the behavior of
associated with the ordered AF phasen®™. These param- the order parameters as a function df ;1As we can see in
eters go continuously to zero at the borders of flend AF  Figs. 3a) and 3b). For instance, in Fig. @), we plottedm®
phases with the® phase. Figures(3) and Zb) show the against 1L for some selected values @f in the rangep

behavior of the order parametars andm”F, respectively, —=0.9800—0.9830. From this figure we can say that the criti-
1.0 T T T T T T T T T T T T T 1.0 T T T T T T T T T T T T
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FIG. 3. Magnetization as a function ofL1for several values of the competition parameteas indicated in the figurega) Total
magnetizatiorm® for T=1.5; the transition appears to be in the range 0.881&0.9820.(b) Staggered magnetization*" for T=2.0; the
transition is located in the range 08§<0.07.
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FIG. 4. Fourth-order cumulant for various system sizes as indicated in the figajeShe critical competition parameter is;
=0.9812+0.0001 at the transition linB-F for T=1.5. (b) At the transition line AFP, for T=2.0, we obtaineg.=0.065-0.001.

cal value ofp is located in this range. The same behavior isphases igp.=0.9812-0.0001, while its value at the other
also noted in Fig. ®), where the order parameter"” is  transition line(AF-P transition ling is p.=0.065+ 0.001.
plotted versus 1/, for p in the range 0.050—0.070. From the Monte Carlo simulations, we can also evaluate
For a better determination of the critical parameters, wehe critical exponents of the model. For instance, the expo-
used the fourth-order cumulant intersection propflyThe  nentw that is associated with the correlation length can be
scaling relation for the fourth-order cumulant shows that, apbtained from Eq(19). We see that, at the critical competi-
the critical competition parameter, all curves must cross at éon parameterp.,U| (p.) scales ad. Y. Then, from the
common point. In order to find the critical parameter, welog-log plot of U| (p.) versusL [see Fig. )], the best fit to

fixed the temperature, which is measured in unitsliddz , the Monte Carlo data gives us=1.01+0.06, while in Fig.
and we plottedJ (p) versus the competition parametgr 5(b), the best fit gives ug=1.09+0.05. Figure 6 shows the
for various lattice sizeg, as shown in Figs. (@) and 4b).  log-log plots ofm™ andm”F as functions ol at the corre-

Our estimate for the critical competition parameter at thesponding critical points. The best fit to the data points of Fig.
transition line between the orderdtl and paramagneti®  6(a) furnishes the valug8/v=0.125-0.009 for theF-P

3.0 —————————r————1———1—— 14
(a)
25} - 12 i
—~ 20 ~
© © 1.0 E
" "
415
N O
D — 08 -
< 10
— =
sl | 06} -
0.0 1 L L 1 L 0.4 L 1 L L
1.2 1.4 1.6 1.8 2.0 22 1.2 1.4 1.6 1.8 2.0
InL InL

FIG. 5. Plot ofU/(p.) versusL. The straight lines are the best fits to the data poi@sAt the transition lineP-F, for T=1.5, we
obtainedv=1.01+0.06. (b) At the transition line AP, for T=2.0, we obtained=1.09+0.05.
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FIG. 6. Plot ofm (p.) versusL. The straight lines are the best fits to the data poiajsAt the transition lineP-F, for T=1.5, we found
B/v=0.125+0.009.(b) At the transition line AFP, for T=2.0, we foundB/»=0.13+0.01.

transition, while we get the valug/v=0.13+0.01 for the the paramagnetic phase is given &y 0, while at the AFP
AF-P transition. Another critical exponent of interest is that transition line,e>0 characterizes the paramagnetic phase.
assomated with the susceptibility. From the log-log plots ofFrom the slopes of these curves for large values of the pa-
x" andx”* at their respective critical points we can find the rametereL Y we can determine the exponergsand y. On
exponent ratioy/v. Figure {a) gives y/v=1.67+0.08 for  the other hand, from the other branches, which are related to
the F-P transition, and Fig. (b) gives y/»=1.63+0.04 for  the ordered phases, the slopes of the curves for large values
the AF-P transition. of eLY” give B—v (Fig. 8 and y (Fig. 9. The optimal
More precise values of the critical exponents can be foundalues we have found for the critical exponents employing
by collapsing the data points. For instance, we exhibit inthis procedure are as follows. At thHe-P transition linev
Figs. 8 and 9 the data collapse for the order parametérs =1.02+0.02, 8=0.123+0.002, andy=1.73+0.02 and at
and m*F and for the susceptibilitieg™ and 7, respec- the AF-P transition line v=1.02+0.02, 3=0.123+0.003,
tively. The data points for all the lattice sizes considered arend y=1.73+0.03. We repeated the whole process outlined
located on two different branches: one ¢ 0 and the other above for other points along the critical lines. We summarize
for e<0, wheree=(p—p.)/p.. At the F-P transition line, these results in Fig. 10, where we plotted the expongngs

3.0 T v T v T v T v T v 2-5 1 v T v T v T v 1
(@ ] L (b)

1.0

05F -
1 1 L L L 0'0 1 1 1 1 L
1.2 14 1.6 1.8 2.0 22 1.2 1.4 1.6 1.8 20 2.2

InL InL

FIG. 7. Plot ofy, (p.) versusL. The straight lines are the best fits to the data poiajsAt the transition lineP-F, for T=1.5, we found
vlv=1.67*+0.08. (b) At the transition line AFP, for T=2.0, we foundy/v=1.63+0.04.
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FIG. 8. Finite-size scalingfull data collapsg for the magnetizationn_ , and for different values of as indicated in the figures. The
parametek is defined bye= (p—p.)/p.. The straight lines represent the asymptotic behavior of the scaling fundi@ns.the transition
line P-F, for T=1.5, the optimal values af,=0.9812+0.0001,r=1.02+0.02, and3=0.123+ 0.002.(b) At the transition line AFP, for
T=2.0, the optimal values ang.=0.065+0.001,»=1.02+0.02, and3=0.123+0.003.

and y versus the competition parameter The left part of
this figure accounts for the AP- transition line, while the
right part is related to thE-P transition line. As we can see,
the values we have obtained for these critical exponents
compare very well with the analogous static exponents of the
equilibrium two-dimensional Ising model. The nonequilibb- We have studied a nonequilibrium mixed-spin ferromag-
rium mixed-spin Ising model that we have considered prenetic Ising model on a bipartite square lattice. Spins of mag-
serves the up-down symmetry, and this fact puts it in thenitudeo = 1/2 were put in one sublattice, while spins of mag-

same universality class as the corresponding equilibrium
Ising model[11].

V. CONCLUSIONS

T T T b | T T T
(@)
0.1 I 3
01 E ]
o 98
e<0
> <
> 001F 4 T o001t E
0k N
R
R * 2
sl 9 o L=16
I o 1x10°} o L=32 -
v ] A [ =48
<o v L=64
g o+ o L=98
1x10™ | 3 + L=128
F PP | PP | PP | ] 1X10—4 a1ael RPN | PP | sasal
0.01 0.1 1 10 1 10 100 1000
I v
el eL

FIG. 9. Finite-size scalingfull data collapsg for the susceptibilityy, , and for different values of as indicated in the figures. The
parametek is defined bye=(p—p.)/p.. The straight lines represent the asymptotic behavior of the scaling funcf@rg.the transition
line P-F, for T=1.5, the optimal values ang,=0.9812+0.0001,r=1.02+0.02, andy=1.73+0.02. (b) At the transition line AFP, for
T=2.0, the optimal values ang.,=0.065+0.001,»=1.02+0.02, andy=1.73+0.03.
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2.0 — T . 7 — T Glauber process with probability, while the flux of energy
~ was simulated by a process involving a simultaneous flipping
1.6} III\I e of a pair of nearest neighbor spins, with probability (1

—p). Through Monte Carlo simulations and finite-size scal-
12k _ ing arguments we determined the phase diagram of the
> ’——I'ii\, [ S model in the plane of the temperature of the heat bath versus
the competition parametgr We showed that the phase dia-
gram contains three phases separated by two continuous
transition lines. When the flux of energy is very small the
system is ordered with the spins of both sublattices in the
= eee—= — e o same direction, while for large values of the flux of energy
0062 0062 o0ce 0% 098 100 the system is also ordered but with the spins of sublattices
pointing in opposite directions. For almost all valuepdhe
p phase diagram exhibits a well defined paramagnetic phase
FIG. 10. Static critical exponents 38, andy as functions of the ~Where the sublattice magnetizations vanish. We also calcu-
competition parametas. The left part of the figure accounts for the lated the critical exponents f, andy along these two criti-
AF-P transition line, while its right part is related to teP tran-  cal lines, and showed that this nonequilibrium model is in the
sition line. same universality class as the equilibrium Ising model in two
dimensions.

nitude S=1 were located in the other sublattice. The system
was in contact with a heat bath at fixed temperature and, at
the same time, subjected to an external flux of energy. The This work was partially supported by the Brazilian agen-
contact with the heat bath was simulated by the one-spin fligies CAPES, CNP(q, and FINEP.
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