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Blume-Capel model approximated by a sequence of generalized Husimi trees
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We generalize a systematic approximation method presented by the present authofMariiee, Phys.
Rev. E64, 016126(2001], and which was applied to Ising models with spin one-half. The generalization
allows one to consider higher spin systems. In particular we consider the spin-one, Blume-Capel model on a
square lattice. We obtain an approximation to the phase diagram of the system that we show is as or more
accurate than any presently available. This we are able to do with a rather modest effort thereby illustrating the
fact that the method gives one rather accurate results without requiring too extensive computer calculations.
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[. INTRODUCTION Capel model and present the approximation scheme being
used. Section Il contains our results along with comparison
Recently we introducefll] an approximation method that to a number of results from previous approximations. The
may be thought of as a generalization of the Bethe latticdinal section contains some concluding remarks.
approximation. Rather than a Bethe lattice we deal with a
generalized Husimi tree, where a collection of sites and the Il. BASIC METHOD
appropriate interactions connecting these sites are the basic . . .
building blocks of the graphical structure rather than the two The standfard B_Iume—_CapeI model is a lattice spin system
sites and a single nearest neighbor interaction that constitutéf%here the spin vgnaple is allowed to take on the valuesl
the basic building block of the Bethe lattice. By constructingand 0. The Hamiltonian of the system is
a sequence of these generalized Husimi trees with larger and
larger basic building blocks we can obtain better and better H=-3D, o O'j_hE oi+AY, o2, (1)
approximations to the lattice spin system being studied, (i) [ i
achieving, for example, better and better approximations to ] ) i .
the phase diagram of the system. Furthermore, in Réfve where the first sum is over all nearest _nelghbor palr_s_and the
used various extrapolation methods to further improve théater two sums are over all spin variables comprising the
approximations obtained. For the standard ferromagneticystem. Here we will consider only the system on the square
nearest neighbor, Ising model on the square lattice our beddttice and also our results, along with most other results
estimate of the critical temperature was within 0.003% of the!Sing other approximation methods, will be only for the case
exact value. We also found accurate results for the criticayhere h=0. Then the phase diagram in the-T plane,
line of phase transitions of the antiferromagnetic case of thig/hereT is the temperature, consists of a critical line of con-
mode| in the magnetic fie'd_temperature p|ane. tinuous phase transitions Iin the reg|0n WhefeO$A<At
As we noted in[1] the method is general enough that it and a connecting line of first order phase transitionsXopr
could be applied to a very large variety of lattice spin sys-<A=<2. WhenA=A, one is at the tricritical point. It is
tems. One avenue of generalization of what was presented Worth noting that forA— — one has the standard Ising
[1] is to h|ghe|’ spin Systems where, for examp|e’ the Spirm0de| where the exact critical temperature is known.
variable can take on more than two values as is the case with As stated in the introduction we approximate such a sys-
the standard Ising spin models where the spin valueis tem with a generalized Husimi tree and we are interested in
One such system is the Blume-Capel modeB]. Approxi-  the behavior of sites deep within the tree just as in the Bethe
mations of this system’s phase diagram have been obtainéPproximation where one is concerned with the behavior of a
by a large variety of methods. A partial list includes mean-central site and not all sites making up the Cayley tree. We
field theory[2,3], renormalization groug4], Monte Carlo ~ can determine the behavior of our central sites by a recursive
renormalization group analysjis], finite size scaling and the Mmethod. As an example we consider our lowest level ap-
transfer matriy 6], finite size scaling of the partition function Proximation. In this case we have a four site basic building
zerog[ 7], mean-field renormalization groiip], and a micro- block with the sites on the corner of a square and four nearest
canonical Monte Carlo study]. The system has received a neighbor interactions connecting the sites. If we consider the
lot of attention due to the fact that as a part of the phasdour sites as our total system we can take one of our sites to
diagram one has a tricritical poifit0]. We approximate this be the base site and can find expressionsAfr, A9, and
system with a sequence of only three generalized Husimi tred; that denote respectively the part of the partition function
approximations. We use these three approximations as inpéar the four site system where the spin variable on the base
into the BST extrapolation methdd 1] to obtain what we site is+, 0, and—, denoted by the superscript. The subscript
believe is a very accurate overall approximation of this sys denotes the fact that we consider this four site system as
tem on the square lattice. our first generation system. To get the second generation sys-
In the following section, Sec. I, we define the Blume- tem we attach a first generation system at three of the corners
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FIG. 2. The basic building blocks or equivalently the first gen-
eration branch for the second level approximatianand the third
level approximatior(b) of the square lattice system.

FIG. 1. The second generation branch for the first level approxi-
mation of the square lattice system. Circles indicate the connectioﬁ
points.

is this system that is actually used in determining the be-
avior of the system. We have not written out the explicit
expressions for the functions and g as they are rather

lengthy and not particularly illuminating. Nevertheless the

of a new four site, basic building block as shown in Fig. 1. . .
. . 0 - expressions can be found rather easily due to the small num-
One can then obtain expressions 10§ , A2, andA, where X . . . .
ber of configurations involved in the computation &f ,

again the superscripts denote the value of the spin variabléy dA-
on the base site. These expressions can be written as funcl’ andn, . L . , ,
Our higher level approximations involving larger basic

tions of A7, A%, andA; as well ase®’ andef® where - \ : ) VIS
1ol ! p building blocks(see Fig. 2 also involve situations where a

=L/kT. One can continue with this building process in 8Ny uilding block is connected to another at more than one site
obvious way to produce third generation, fourth generation 9 . R . . :
If one makes connections in this manner, e.g., involving two

etc. graphical structures. For théh generation tree one can sites at a time as done in the second level approximasiee
expressA, A%, and A, the three parts of the partition pp

: n . . + Fig. 3), then for the any spin system where the spins can take
fu(r)1<:t|on for th;)Jnth geBnAeratlon tree, in terms ok, 1, oy the valuest1, and zero system one will have an 82(3
An_y Ap_yg, €7, ande”™. —1), dimensional system. In general if a building block is

Thus one obtains a three-dimensional, discrete dynamicglynected to another through a connection involyrgjtes
system and the behavior of the central sites is determined by,en one will have a B-1 dimensional system governing
the fiX(_ed p(_)ints, two cycles, etc. that occur for thiS_ SystéMthe behavior of the generalized Husimi tree. This is to be
Attracting fixed points, two cycles, etc., will be of interest contrasted with the standard Ising model spin case studied in
since we want to take the thermodynamic limit, i==. 1] where the dimension of the discrete dynamical system
Specifically for amth generation system the thermal averageyges as P— 1. The larger the number of allowed spin values
of the spin variable on the root site, i.e., the magnetization ofye more rapid the increase in the dimensionality of the re-

the root site, is cursive maps governing the behavior of the system and
hence in the computational complexity encountered. For this

A=A, reason we have only gone to three levels of approximation

<Ui>n:m’ 2 for the Blume-Capel model whereas we had five levels of

approximations for the Ising systems of REE]. Neverthe-
less as we show in the following section in general the ac-
curacy of our approximations generally matches those ob-
fained by other methods.

where we have denoted the root site as itthesite. If an
attracting fixed point exists, as is often the case, then th
magnetization of this root site is in the thermodynamic limit
determined by the value of the fixed point the system is
attracted to.

Alternatively the magnetization of the root site of the sys-
tem can be written as

_ Xn~VYn
<Ui>n_xn+1+yn’ (3)
where x,=A; /A% and y,=A, /A% thereby reducing the
system to a two-dimensional, discrete dynamical system in-
volving

Xn=Ff(e7,eP2 xn_1,Yn-1), Yn=0(e?,e%* X0 1,Yn_1). FIG. 3. The second generation branch for the second level ap-
(4) proximation of the square lattice system.
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TABLE I. Critical temperatures for each of the three levels of  TABLE II. Critical temperatures using the BST extrapolation

approximation used. method and comparison with results based on alternate approaches.

A T(1) T.(2) T.(3) A T, with T, with T, from T, from
0=0.9405 ©=0.9496 Ref. [9] Ref. [6]

—-4.0 2.551 100 2.388 530 2.320361

—-2.0 2.360477 2.216211 2.155 746 —-4.0 2.1445 2.1459

0.0 1.997 236 1.875236 1.824 143 -2.0 1.9998 2.0011

0.2 1.943525 1.824 058 1.774016 0.0 1.6925 1.6936 1.7151 1.695

0.4 1.884 739 1.767 896 1.718 942 0.2 1.6450 1.6461 1.6648

0.6 1.819919 1.705815 1.657 986 0.4 1.5927 1.5938 1.612381

0.8 1.747725 1.636518 1.589871 0.6 1.5346 1.5356 1.5579

1.0 1.666 213 1.558118 1.512731 0.8 1.4695 1.4705 1.4935

1.2 1.572 302 1.467 665 1.423 663 1.0 1.3954 1.3964 1.4137 1.398

1.4 1.460 585 1.360 030 1.317 644 12 1.3098 1.3107 1.3194

1.6 1.319560 1.224 563 1.184 362 1.4 1.2077 1.2086 1.2098

1.7 1.229 384 1.138670 1.100 157 16 1.0796 1.0804 1.0759

1.8 1.112 097 1.029125 0.993 653 17 0.9994 1.0003

1.9 0.901 329 0.856 306 0.832459 1.8 0.9002 0.9052 0.8806

1.96 0.688 039 0.654 504 0.643 483 19 0.7495 0.7504

1.98 0.625 302 0.584 099 0.570376 1.96 0.6206 0.6208 0.6324

1.99 0.585 940 0.535213 0.521 051 1.98 0.5417 0.5418

1.99 0.4947 0.4949 0.550

To obtain our most accurate results we use, for a given
the critical temperature found from each of our three levels 10 —=70tl 4(rotl 70 )
of approximation as input into an extrapolation procedure ’ ' ’ ’

developed by Bulirsch and Stogtl1] and used in various n \® TQ,;El—TQ’m,l -1
statistical mechanical applications by Henkel and co-workers n+m - -|—2+m171_-|—2%172 -1 .

[12,13. We have selected this method over various other

approaches used ii] as it gave the best results for the Ising \\harem=1 andw is a free parametefThe superscripi is

spin systems looked at there. As[ihj having a sequence of tortnately missing in Eq(15) of Ref. [1]). Henkel and
ever improving approximations of the critical tempe"awrePatkos[lZ] were the first to use the algorithm in the area of
such as described above allows one to use various extrap@risicq| phenomena. Later Henkel and Schiit3] examined
lation methods to obtain an improved final approximation 10y characteristics of this algorithm in a number of settings.
the critical temperature. Using a finite size scalinglike ap—rhe choice ofw in any particular application can be both
proach one can write problematic and beneficial. This was one of the aspects of
the algorithm discussed if1,13]. We will describe our

_T* —w —w W
Te(L)=T; +al “t+bL-*24cL %+, ) choices forw in the following section.

where T is the critical temperature for the lattice being

approximatedT.(L) is the critical temperature for thieth IIl. RESULTS

level approximation and where<0w; <w;<wz<---. The In Table | we present the results of our three levels of
BST method allows one to construct a table of extrapolantsyyproximation. In particular, for each of the three levels of
ForL=1, 2, 3 we have approximation used we have listed the critical temperatures,

1 T.(L), for a large set of values &. In Table Il we list our
Tco critical temperature estimates after using the BST method.
Ti . As stated in the preceding sectianis a free parameter. We
2 T have listed our results for two different values @f The
Tco Tea (6)  values ofw used were chosen based on the following. First,
Tél for A— — we know we have the standard Ising model and
13 for the square lattice one knows the exact critical tempera-
c,0

ture. Hence we can use this as a reference point. We wary
when using the critical temperature valugég(L) for L=1,

2, and 3, for the Ising case and choaseuch that it gives
Onsager’s exact critical temperature value. One then finds, to

and theTg , are computed from

n —
Te-1=0. @) four figure accuracyw=0.9405. As a second reference point
N one has the special case whére-0. TheA=0 case is just
Teo=Te(n), (8  the standard spin-one Ising model and has been studied by an
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extremely thorough and intensive finite size scaling approackecond, and third level of approximation af#&.906 75,
[14] as well as an equally intensive low temperature0.8689, (1.92395, 0.7758 and(1.932 79, 0.734 78 respec-
series expansion approadii5,16 resulting in estimates tively. Here again we use the BST extrapolation method to
of the critical temperature of 1.693550.000020 and obtain our best approximation but this time we use it on both
1.693 558 3-0.000 002 5, respectively. Using this as a secthe A sequence and sequence for our twaw values to
ond reference point and our three estimates of the criticahbtain the location of the tricritical point fas=0.9405 to be
temperature we find we want to set=0.9496 to get a match (1.9622, 0.623Band for w=0.9496 to bg(1.9619, 0.6233
between our BST extrapolation result and the best estimateghjs is to be compared with the values of (1.969801,
from finite size scaling and series expansions. We report BS§ 5969+ 0.0008), (1.9650.001, 0.616-0.005), (1.9655
extrapolation values for both these valueswah Table Ilas  +0.015, 0.609%.003), and(1.967, 0.604 from, respec-
well as estimates of . found by Beald6] and Card9]. Note tjvely, Refs.[9,6,5,7.

that while the results using=0.9496 are always larger than |t js worth contrasting the behavior of the fixed points that
those found using =0.9405 the difference between the two result in the continuous phase transition region with the first
results is typically very small and increasesfas: —~. For  order phase transition region. In the region where one has a
A=—4, where the difference is greatest, the difference igontinuous transition there is for high temperatures a single,
0.065% while forA=—4, it is 0.018%. positive, real-valued fixed point that is attracting and that
In Table Il along with our results we have presented thecorresponds to the case of zero magnetization. As the tem-
results of Car¢9] and Beald6] that we believe are the most perature is lowered the stability of this fixed point, i.e., based
accurate available except for special cases such as ia the on standard dynamical systems theory the maximum eigen-
=0 case mentioned above. Comparisons seen in Table {lalue of the Jacobian of the map evaluated at the fixed point
indicate the accuracy of our results appears to match or bettgtlue, increases to a point where the maximum eigenvalue is
that of the other two methods presented there except perhaps This is then a neutral fixed point. Lowering the tempera-
in the area around =2. ForA=0 using the value ofs, ® ture still further causes a bifurcation of the original fixed
=0.9405, chosen because it gives a correct BST extrapolgoint resulting in the creation of two new positive, real-
tion whenA — — o, we haveT.=1.6925 while from Refl9]  valued, fixed points. These two new fixed points are attract-
one has 1.7151 and for R€#6] one has 1.695. Our result ing and correspond to positive and negative values for the
differs from the extremely accurate results for this speciamagnetization given by Eq3) if dealing with the first level
case of referencgd4—164 by approximately 0.062% while approximation or similar equations for higher level approxi-
that of reference differs by 1.27% and that of Riéf] by  mations. Since the value of the magnetization depends on the
0.085%. Additionally the more recent result of Xavigral.  fixed point values the system is attracted to, as illustrated by
[18] based on conformal invariance and finite size scaling folEq. (3) for the first level approximation, and the value of the
the special case ah=0 is T,=1.681(5) that is also less fixed point the system is attracted to varies continuously as
accurate than our resulfOnly two T, are reported if18]  the temperature is lowered the phase transition is continuous.
for the spin-one case and, therefore, we have not included This is in contrast to the situation where a first order
their results in Table 1). Based on the above withw phase transition occurs. Here as before at high temperatures
=0.9405 in the region oA from —< to 0 our results have an there is a single, positive, real-valued fixed point that is
accuracy of 0.06% or better. stable(attracting and corresponds to zero magnetization. As
For the case where=0.9496 our results foh =0 match  the temperature is lowered again the stability of this fixed
those of{14—16 and using this value ob for A— —c our  point decreases, however, before becoming a neutral fixed
results differ from the exact Onsager result by 0.08%. Baseg@oint two new, positive, real-valued fixed points are created
on this forA aroundA =0 our results should have an accu- (corresponding to positive and negative magnetizajiansl
racy significantly greater than 0.08%. Overall our results forthese fixed points are also stable or attracting. At this point
both values ofw used in the BST extrapolation method are there are then three attracting fixed points and which fixed
very close to those of Ref$6,9] indicating overall good point the system is attracted to depends on ones approach.
guantitative agreement regarding the phase diagram based @me can take a strict dynamical system’s approach and allow
all three approaches. The only place where this is not true ithe boundary condition, which are the values assigned, to
in the region whereA approaches the value of 2 and the andy, in Eq. (4) if one is dealing with the first level approxi-
value of T, approaches 0. Our results in this region differ mation, to determine which attracting fixed point the system
from those of Refs[6,9] by approximately 20.0% at, for is attracted to. However, as we have shoWi] the better
example,A=1.99. criteria, a criteria that for other systems has been shown to
Besides determining the critical temperature one is interagree with results based on selecting the phase correspond-
ested in the type of phase transition that occurs. For eacimg to the minimum free energy the more standard statistical
level of approximation there is, beginning with=—o, a  mechanics approach, is to simply have the system go to the
range ofA values where one obtains a continuous transitiormore stable fixed point. That is to the fixed point having the
but as expected for a large enough valueladne obtains a smallest value for the maximum eigenvalue of the Jacobian
first order phase transition. The point at which this crossoveof the map evaluated at the fixed point value. In this case the
occurs is the tricritical point denoted by (,T;). In each  system jumps from the fixed point value corresponding to
successive level of approximation we obtain a more accurateero magnetization to a very different fixed point corre-
approximation to this point. The tricritical point for the first, sponding to nonzero magnetization as the temperature is
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lowered. Since the value of the one fixed point does nomethod one can obtain accurate numerical results. Since the
move continuously into the value of the other as the temperamethod depends only on the spin taking on discrete values
ture is decreased this results in the discontinuity of the magene could besides investigating even higher spin systems

netization and a first order phase transition. such as the spin-3/2 case that was the main system under
consideration in[18] one could add addition interactions
IV. CONCLUSIONS such as next nearest neighbor, biquadratic interactions that

are generally included in the generalization of the Blume-

In the above we have shown the systematic approximatiogape| model known as the Blume-Emery-Griffiths model, or
presented if1] and applied to spin one-half, Ising model yitisite interactions.

systems there can be generalized to higher spin systems. In

the case of higher spin systems the dimension of the dynami-

cal system increases more rapidly and, the(efor'e, one may ACKNOWLEDGMENT

not be able to go to as high a level of approximation as with

the spin one-half case. Nevertheless using the Blume-Capel We wish to thank Professor Chris Care for sending us
model as an example we have shown that even with onlywumerical values foff . to supplement the mainly graphical
three levels of approximation and the BST extrapolationpresentation for the general phase diagram in FHf.
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