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Growing scale-free networks with tunable clustering
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We extend the standard scale-free network model to include a ‘‘triad formation step.’’ We analyze the
geometric properties of networks generated by this algorithm both analytically and by numerical calculations,
and find that our model possesses the same characteristics as the standard scale-free networks such as the
power-law degree distribution and the small average geodesic length, but with the high clustering at the same
time. In our model, the clustering coefficient is also shown to be tunable simply by changing a control
parameter—the average number of triad formation trials per time step.
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A great number of systems in many branches of scie
can be modeled as large sparse graphs, sharing many
metrical properties@1#. For example: social networks, com
puter networks, and metabolic networks of certain organis
all have a logarithmically growing average geodesic~shortest
path! length l and an approximately algebraically decayi
distribution of vertex degree. In addition to this, social n
works typically show a high clustering, or local transitivit
If personA knowsB andC, thenB andC are likely to know
each other.

Works on the geometry of social networks, which is t
main focus of the present paper, have originated from Ra
port’s studies of disease spreading@2#, and have been furthe
developed in Refs.@3,4#. General mathematical models fo
random graphs with a structural bias are called the Mar
graphs and were studied in Ref.@5#. In the physics literature
networks with high clustering are commonly modeled by
small-world network model of Watts and Strogatz~WS! @6#,
while networks with the power-law degree distribution
the scale-free network model of Baraba´si and Albert~BA!
@7#. Although both models have a logarithmically increasi
l with the network size, each model lacks the property
the other model: the WS model shows a high clustering
without the power-law degree distribution, while the B
model with the scale-free nature does not possess the
clustering. In this work, we propose a network model th
hasboth the perfect power-law degree distributionand the
high clustering. Furthermore, in our model, the degree of
clustering, measured by the clustering coefficient~see be-
low!, is shown to be tunable and thus controllable by adju
ing a parameter of the model.

We start from the definition of a network as a graphG
5(V,E ), whereV is the set of vertices andE is the set of
edges@8#. An edge connects pairs of vertices inV and not
more than one edge may connect a specific pair of verti
To quantify the clustering, Watts and Strogatz introduced
clustering coefficientg[^gv& with the averagê¯& for all
vertices inV. The local clustering coefficientgv for the ver-
tex v is defined as follows: Suppose that the vertexv haskv
neighbors~kv is called the degree of the vertexv, a neighbor
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is a vertex separated by exactly one edge!. For thosekv
neighbors, there can exist at most

S kv

2 D5kv~kv21!/2

edges connecting two ofkv vertices. If one definesuE(Gv)u
as the number of actual edges existing in the network c
necting those neighbors, the local clustering coefficien
written as@6#

gv[
uE~Gv!u

S kv

2 D . ~1!

From the above definition, it is clear thatg is a measure of
the relative number of triads~fully connected subgraphs o
three vertices!. Note also thatg is strictly in the interval@0,
1# with the upper limit attained only for a fully connecte
graph. In a social acquaintance network, for example,g51
if everyone in the network knows each other. It should
noted that even though the BA model successfully expla
the scale-free nature of many networks, it hasg'0 and thus
fails to describe correctly networks with the high clusterin
such as social networks.

We below review briefly the BA model of the scale-fre
network and present our model for the scale-free netw
with the high clustering. The BA model@7# is defined as
follows:

~i! Initial condition: To start with, the network consists o
m0 vertices and no edges.

~ii ! Growth: One vertexv with m edges is added at ever
time step. Timet is identified as the number of time steps

~iii ! Preferential attachment~PA!: Each edge ofv is then
attached to an existing vertex with the probability propo
tional to its degree, i.e., the probability for a vertexw to be
attached tov is @15#

Pw5
kw

(
vPV

kv

. ~2!
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In the BA model, the growth step is then iteratedN5uVu
times, and for each growth step the PA step is iteratedm
times form edges of the newly added vertexv.

In order to incorporate the high clustering we modify t
above BA algorithm by adding an additional step: Triad fo
mation ~TF!: If an edge betweenv andw was added in the
previous PA step, then add one more edge fromv to a ran-
domly chosen neighbor ofw. If there remains no pair to
connect, i.e., if all neighbors ofw were already connected t
v, do a PA step instead.

When a vertexv with m edges is added to the existin
network, we first perform one PA step, and then perform
TF step with the probabilityPt or a PA step with the prob
ability 12Pt . The average numbermt of the TF trials per
added vertex is then given bymt5(m21)Pt , which we take
as the control parameter in our model~see Fig. 1!. It should
be noted that our model reduces to the original BA mo
whenmt50.

The standard scale-free network model not only gener
networks with certain geometrical properties, it suggest
mechanism for the emergence of power-law degree distr
tions in evolving networks: New actors~vertices! in a social
context prefers to attach to more connected~‘‘well known’’ !
actors. The sociological interpretation for the triad formati
step is that after being acquainted with~linked to! w an actor
v is likely to be acquainted tow’s acquaintances as wel
This mechanism of the emergence of clustering is w
known, and was discussed under the name ‘‘sibling bi
already in Ref.@4#. Recently, Ref.@9# provided empirical
evidence for both the mechanisms of triad formation a
preferential attachment used in our construction algorithm

The clustered scale-free network algorithm defined ab
gives the same degree distribution as the standard scale
network, at least if every TF step follows a PA step. To s
this, first observe that in a PA step an arbitrary vertexv
increases its degree with the rate

Dkv

Dt
5A

kv

(
wPV

kw

for a PA step, ~3!

where the normalization factorA for one edge is determine
to be unity following Ref.@7#. For a TF step the averag
increase ofkv is proportional to the probability that a verte

FIG. 1. Preferential attachment and triad formation. In the pref-
erential attachment step~a! the new vertexv chooses a vertexu to
attach to with a probability proportional to its degree. In the tri
formation step~b! the new vertexv chooses a vertexw in the
neighborhood of the one linked to in the previous preferential
tachment step.3 symbolizes ‘‘not allowed to attach to’’~either
since no triad would be formed, or that an edge already exists!.
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in the neighborhoodw is linked in the PA step before, time
the inverse of that vertex’s degree~the probability thatv is
linked from w!:

Dkv

Dt
5

(
wP

Gvkw~1/kw!

(
wPV

kw

5
kv

(
wPV

kw

for a TF step, ~4!

where we have used the same normalization as in Eq.~3! and
Gv is the neighborhood ofv ~we use that the number o
vertices inGv is kv!. From Eqs.~3! and~4! the total rate for
one time step, composed ofmt TF steps andm2mt PA steps,
is expressed as

Dkv

Dt
5mtS kv

(
wPV

kw
D 1~m2mt!S kv

(
wPV

kw
D 5

kv

2t
, ~5!

which has the same form as the original BA model and th
results in

kv}t1/2. ~6!

Consequently, the degree of an arbitrary vertex increase
the square root of the time, which then yield the power-l
degree distribution:P(k);k23 @7#.

In the above discussion, we have assumed that a TF
always follows a PA step. If a TF step would be proceed
by another TF step the factorkw(1/kw) in Eq. ~4! would be
replaced bykw@1/(kw21)# that is a small correction when
kw is large~which it is likely to be by the definition of the PA
step!. And thus the resulting degree distribution would n
differ much from a power law. In Fig. 2, the degree distrib
tions P(k) at various values ofmt are displayed and we find
that at any value ofmt , the distribution is well described by
the power law with the exponenta'3 in P(k);k2a, as is
expected from the above analytic consideration.

t-

FIG. 2. Degree distribution for the scale-free network mod
with tunable clustering with parameter valuesm5m053, N5105

at various values ofmt : At any value ofmt , which determines the
average number of triad formations,P(k) exhibits a power-law be-
havior like the BA model corresponding tomt50.
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The parametermt in our model introduces the clusterin
effect into the system by allowing the formation of triads. W
only focus on the case ofm53 with expectation that othe
values ofm should give qualitatively the same behavior. O
expects then that for anym0 a finite mt gives a finite clus-
tering coefficientg in the thermodynamic limit ofN→`,
whereas formt50 ~the BA scale-free network model! g goes
to zero asN becomes larger. In Fig. 3~a!, g at various values
of mt is shown as a function of system sizeN. As expected,
we find thatg approaches to a finite nonzero value asN is
increased at nonzeromt , whereas the BA model, which cor
responds to the limiting case ofmt50 in our model, is con-
firmed to haveg50. Furthermore, we also observe that t
relation betweenmt and g is almost linear, as depicted i
Fig. 3~b!.

From the above observations, we conclude that our mo
exhibits both the scale-free nature and the high clusterin
the same time, while the WS model~the BA model! lacks the
former ~the latter! property. We note that in many real ne
works, both properties usually coexist, and thus believe
our model is more realistic. The triad formation step in o
model, which inevitably gives a high clustering coefficie
is expected to make the average geodesic length larger
in a BA network, since the edge for the triad could have be
used to connect two vertices separated by a large distan
only the preferential attachment step was allowed. Howe
the characteristic path length, defined as the average o
geodesic length,l , is found to behave logarithmically with
the sizeN, the same behavior as the WS model and the
model. In Fig. 4, we presentl vs N at various values ofmt .

FIG. 3. ~a! Clustering coefficientg vs the network sizeN at
various values of the average numbermt of triads per time step.
Straight lines show asymptotic values ofg at eachmt . For mt

Þ0, g approaches a nonzero value asN is increased.~b! g(N
→`) vs mt : The clustering coefficient can be varied systematica
by changingmt .
02610
el
at

at
r
,
an
n
if

r,
he

A

It is shown thatl becomes larger asmt is increased, as
expected. Furthermore Fig. 4 shows that the increase ofl is
logarithmic for allmt .

By mimicking principles in network formation, a genera
tion algorithm can construct graphs with certain topologi
statistics, such as a degree distribution, clustering coeffici
and so on. However, it should be emphasized that these k
of algorithms cannot claim to uniformly sample the e
semble of networks with specific statistical properties. T
drawback exists even in more general classes of rand
graphs where structural biases, such as clustering, are
posed@5,10#.

Recently, Klemm and Equı´luz @11# have proposed a net
work model based on a finite memory of vertices, i.e., ve
ces become inactive and do not get new edges after a fi
number of time steps, and have shown that their growth
deactivation model exhibits both the high clustering and
scale-free nature. Our model provides an alternative poss
ity to achieve the same feature, the clustered scale-free
ture, based on our frequent everyday experience on how
are acquainted by newcomers:B becomesA’s new friend
since B is introduced by one ofA’s friends. Even in the
network of scientific citations, it is likely that authors o
paperA refer paperB since they have foundB when they
read a famous review paperC @12#. This then has close re
semblance to our model, the TF step accompanied by the
step. In Ref.@13#, a model with both the high clustering an
the scale-free distribution has also been suggested. How
the power-law degree distribution was assigned to the
work to start with, and the next following steps were devis
not to change the degree at each vertex. In other words
power-law distribution in Ref.@13# was not an emerging
property in the model, which is different from the BA mod
as well as our model in this work. Very recently, we ha
learned about the work by Davidsen, Ebel, and Bornho
@14#, which is based on the same observation of triad form
tion as ours and has been shown to possess similar net
properties, i.e., the high clustering, small average geod
length, and a scale-free distribution. We believe, howev
that our model has some advantage in describing netw
that grow in time, whereas the network model in Ref.@14#
has fixed network size.

FIG. 4. The characteristic path length for the arbitrary cluste
scale-free network model with the parametersm5m053 and at
various values ofmt . Although l becomes larger withmt , l is
found to behave logarithmically as a function ofN.
7-3
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In conclusion, we have proposed an algorithm for gene
tion of growing networks with power-law degree distrib
tion, a logarithmic increase of the average geodesic len
and a finite clustering. The last two properties make the g
erated graphs qualify as a small-world network in the Wa
and Strogatz sense, in addition to their scale freeness.
simple relation between the coefficientmt andg further in-
creases the usefulness of the suggested algorithm, maki
possible to tune the clustering coefficient in a system
way.
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Note added in proof:We have become aware of anoth
model generating a clustered scale-free network@16#. This
model is similar to the special casem5m052, mt51 of our
model, with the initial PA step replaced by a purely rando
selection of vertices.

This work was supported in part by the Swedish Natu
Research Council through Contract Nos. F 5102-659/2
and E 5106-1643/1999.
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