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Growing scale-free networks with tunable clustering
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We extend the standard scale-free network model to include a “triad formation step.” We analyze the
geometric properties of networks generated by this algorithm both analytically and by numerical calculations,
and find that our model possesses the same characteristics as the standard scale-free networks such as the
power-law degree distribution and the small average geodesic length, but with the high clustering at the same
time. In our model, the clustering coefficient is also shown to be tunable simply by changing a control
parameter—the average number of triad formation trials per time step.
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A great number of systems in many branches of sciencées a vertex separated by exactly one eddeor thosek,

can be modeled as large sparse graphs, sharing many gewighbors, there can exist at most

metrical propertie$l]. For example: social networks, com-

puter networks, and metabolic networks of certain organisms k

all have a logarithmically growing average geodéstwortest ( 2”) =k,(k,—1)/2

path length/ and an approximately algebraically decaying

distribution of vertex degree. In addition to this, social net-

works typically show a high clustering, or local transitivity: €dges connecting two df, vertices. If one definef(T",)|

If personA knowsB andC, thenB andC are likely to know ~ as the number of actual edges existing in the network con-

each other. necting those neighbors, the local clustering coefficient is
Works on the geometry of social networks, which is thewritten as[6]

main focus of the present paper, have originated from Rapo-

port’s studies of disease spread|2j, and have been further |&T )|
developed in Refs[3,4]. General mathematical models for Yo= T 1)
random graphs with a structural bias are called the Markov ( 2" )

graphs and were studied in Rg5]. In the physics literature,
networks with high clustering are commonly modeled by the
small-world network model of Watts and Stroga#'S) [6], From the above definition, it is clear thatis a measure of
while networks with the power-law degree distribution by the relative number of triad€ully connected subgraphs of
the scale-free network model of Baraband Albert(BA) three vertices Note also thaty is strictly in the intervalO,

[7]. Although both models have a logarithmically increasing1] with the upper limit attained only for a fully connected
/ with the network size, each model lacks the property ofgraph. In a social acquaintance network, for example 1

the other model: the WS model shows a high clustering buif everyone in the network knows each other. It should be
without the power-law degree distribution, while the BA noted that even though the BA model successfully explains
model with the scale-free nature does not possess the highe scale-free nature of many networks, it has0O and thus
clustering. In this work, we propose a network model thatfails to describe correctly networks with the high clustering,
hasboth the perfect power-law degree distributiamd the  such as social networks.

high clustering. Furthermore, in our model, the degree of the We below review briefly the BA model of the scale-free
clustering, measured by the clustering coefficiésge be- network and present our model for the scale-free network
low), is shown to be tunable and thus controllable by adjustwith the high clustering. The BA modél7] is defined as

ing a parameter of the model. follows:

We start from the definition of a network as a gragh (i) Initial condition: To start with, the network consists of
=(V,£), whereV is the set of vertices anél is the set of m, vertices and no edges.
edges[8]. An edge connects pairs of vertices ihand not (i) Growth: One vertex with m edges is added at every

more than one edge may connect a specific pair of verticesime step. Timet is identified as the number of time steps.
To quantify the clustering, Watts and Strogatz introduced the (iii) Preferential attachmeitPA): Each edge of is then
clustering coefficienty=(y,) with the averagg:---) for all  attached to an existing vertex with the probability propor-
vertices inV. The local clustering coefficieng, for the ver-  tional to its degree, i.e., the probability for a vertexo be
texv is defined as follows: Suppose that the verntelxask, attached tw is [15]

neighborgk, is called the degree of the vertex a neighbor

Kw
Pw= . (2
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FIG. 1. Preferential attachment and triad formatiolm the pref- Rq0-3 |
erential attachment stgp) the new vertex) chooses a verted to i
attach to with a probability proportional to its degree. In the triad
formation step(b) the new vertexv chooses a vertex in the 10~
neighborhood of the one linked to in the previous preferential at- F
tachment stepXxX symbolizes “not allowed to attach toleither 10-5
since no triad would be formed, or that an edge already exists
In the BA model, the growth step is then iteratiid=|)] FIG. 2. Degree distribution for the scale-free network model
times, and for each growth step the PA step is iterated with tunable clustering with parameter values=m,=3, N=10°
times form edges of the newly added vertex at various values afn; : At any value ofm,, which determines the

In order to incorporate the high clustering we modify the average number of triad formatiorR(k) exhibits a power-law be-
above BA algorithm by adding an additional step: Triad for-havior like the BA model corresponding to,=0.
mation (TF): If an edge between andw was added in the
previous PA step, then add one more edge fiono a ran-  in the neighborhoodv is linked in the PA step before, times
domly chosen neighbor ofv. If there remains no pair to the inverse of that vertex’s degrétne probability that is
connect, i.e., if all neighbors aff were already connected to linked fromw):

v, do a PA step instead.

When a vertexo with m edges is added to the existing ST k(1K)
network, we first perform one PA step, and then perfforma Ak, @2  © """
TF step with the probability?; or a PA step with the prob- At =
ability 1—P,. The average numben, of the TF trials per > Ky > Ky
added vertex is then given log,= (m—1)P,, which we take wey wey

as the control parameter in our modsée Fig. 1 It should o )
be noted that our model reduces to the original BA modelVhere we have used the same normalization as inEand
whenm,=0. r, is thg nelghborhood ob (we use that the number of

The standard scale-free network model not only generateéertices inl', is k). From Eqs.(3) and(4) the total rate for
networks with certain geometrical properties, it suggests &€ time step, composed wk TF steps anan—m; PA steps,
mechanism for the emergence of power-law degree distribd$S expressed as
tions in evolving networks: New acto(sertices in a social
context prefers to attach to more connectédell known” ) Ak, -m Ky +(m—m,) Ky _ k_ (5)
actors. The sociological interpretation for the triad formation At ' 2 K ' 2 2t’
step is that after being acquainted witinked to) w an actor w w
v is likely to be acquainted tev's acquaintances as well.

This mechanism of the emergence of clustering is wellyhich has the same form as the original BA model and thus
known, and was discussed under the name “sibling bias’results in

already in Ref.[4]. Recently, Ref[9] provided empirical

evidence for both the mechanisms of triad formation and kvoctllz_ (6)
preferential attachment used in our construction algorithm.

The clustered scale-free network algorithm defined aboveonsequently, the degree of an arbitrary vertex increases as
gives the same degree distribution as the standard scale-frgge square root of the time, which then yield the power-law
network, at least if every TF step follows a PA step. To seejegree distributionP(k)~k 2 [7].
this, first observe that in a PA step an arbitrary vertex In the above discussion, we have assumed that a TF step
increases its degree with the rate always follows a PA step. If a TF step would be proceeded

by another TF step the factéy,(1/k,,) in Eq. (4) would be

v

for a TF step, (4

v

weV weV

Ak, K, replaced byk,[1/(k,—1)] that is a small correction when

NI for a PA step, (3 ks large(which it is likely to be by the definition of the PA
> ky step. And thus the resulting degree distribution would not
weV differ much from a power law. In Fig. 2, the degree distribu-

tions P(k) at various values ofn, are displayed and we find
where the normalization fact@x for one edge is determined that at any value o, the distribution is well described by
to be unity following Ref.[7]. For a TF step the average the power law with the exponemt~3 in P(k)~k™?, as is
increase ok, is proportional to the probability that a vertex expected from the above analytic consideration.
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04f (b) - scale-free network model with the parameters-my=3 and at
= 031 : various values ofn,. Although / becomes larger witlm,, / is
02l 4 found to behave logarithmically as a function Nf
0.1 B . .
It is shown that/ becomes larger am, is increased, as

0' | I Iy (U [ ) | . . .
¥5 02 04 06 08 10 12 14 16 expected. Furthermore Fig. 4 shows that the increagé isf
™ logarithmic for allm;.
FIG. 3. (a) Clustering coefficienty vs the network sizeN at By mimicking principles in network formation, a genera-

various values of the average numier of triads per time step. tion_al_gorithm can construct _gra_phs_ with certai_n topolo_gi_cal
Straight lines show asymptotic values gfat eachm,. Form,  Statistics, such as a degree distribution, clustering coefficient,

7&(), y approaches a nonzero value Msis increased.(b) ’)’(N and so on. HOWeVer, it should be emphasized that these kinds
—®) vsm, : The clustering coefficient can be varied systematicallyOf algorithms cannot claim to uniformly sample the en-
by changingm, . semble of networks with specific statistical properties. This
drawback exists even in more general classes of random
graphs where structural biases, such as clustering, are im-

The parametem, in our model introduces the clustering posed[5,10]

effect into the system by allowingthe formatign of triads. We Recently, Klemm and Edluz [11] have proposed a net-
only focus on the case afi=3 with expectation that other o model based on a finite memory of vertices, i.e., verti-
values ofm should give qualitatively the same behavior. Oneéceg pecome inactive and do not get new edges after a finite
expects then that for anyy a finite m; gives a finite clus-  nymper of time steps, and have shown that their growth and
tering coefficienty in the thermodynamic limit oN—,  deactivation model exhibits both the high clustering and the
whereas fom;=0 (the BA scale-free network modej goes  scale-free nature. Our model provides an alternative possibil-
to zero asN becomes larger. In Fig.(8), y at various values ity to achieve the same feature, the clustered scale-free na-
of m, is shown as a function of system sike As expected, ture, based on our frequent everyday experience on how we
we find thaty approaches to a finite nonzero valueNigs  are acquainted by newcomerB: becomesA’'s new friend
increased at nonzer, , whereas the BA model, which cor- since B is introduced by one of's friends. Even in the
responds to the limiting case of,=0 in our model, is con- network of scientific citations, it is likely that authors of
firmed to havey=0. Furthermore, we also observe that thepaperA refer paperB since they have foun@ when they
relation betweerm, and y is almost linear, as depicted in fead a famous review pap€[12]. This then has close re-
Fig. 3(b). semblance to our model, thg TF step acc_ompanled_by the PA
From the above observations, we conclude that our modéjt€P- In Ref[13], a model with both the high clustering and
exhibits both the scale-free nature and the high clustering a{Ee scale-free distribution has also been suggested. However,

the same time, while the WS modghe BA mode) lacks the the power—law.degree distribution was assigned to the_ net-
former (the lattey property. We note that in many real net- work to start with, and the next following steps were devised

works, both properties usually coexist, and thus believe thart]Ot to change the degree at each vertex. In other words, the

. o : : . ower-law distribution in Ref[13] was not an emergin
our model is more realistic. The triad formation step in our? 113] ging

del. which inevitablv ai hiah cl . fici property in the model, which is different from the BA model
model, which inevitably gives a high clustering coefficient, oo\ as our model in this work. Very recently, we have

is expected to make the average geodesic length larger thalh, neq ahout the work by Davidsen, Ebel, and Bornholdt
in a BA network, since the edge for the triad could have beefy 4] \hich is based on the same observation of triad forma-
used to connect two vertices separated by a large distanceijb, as ours and has been shown to possess similar network
only the preferential attachment step was allowed. Howevelyrgperties, i.e., the high clustering, small average geodesic
the characteristic path length, defined as the average of thength, and a scale-free distribution. We believe, however,
geodesic length/’, is found to behave logarithmically with that our model has some advantage in describing networks
the sizeN, the same behavior as the WS model and the BAhat grow in time, whereas the network model in Ré#]
model. In Fig. 4, we present vs N at various values afn, . has fixed network size.
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In conclusion, we have proposed an algorithm for genera- Note added in proofWe have become aware of another
tion of growing networks with power-law degree distribu- model generating a clustered scale-free netwdd. This
tion, a logarithmic increase of the average geodesic lengtimodel is similar to the special case=my=2, m,=1 of our
and a finite clustering. The last two properties make the genmodel, with the initial PA step replaced by a purely random
erated graphs qualify as a small-world network in the Wattse|ection of vertices.
and Strogatz sense, in addition to their scale freeness. The
simple relation between the coefficiemt and y further in- This work was supported in part by the Swedish Natural
creases the usefulness of the suggested algorithm, makingResearch Council through Contract Nos. F 5102-659/2001
possible to tune the clustering coefficient in a systemati@and E 5106-1643/1999.
way.
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