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Two-dimensional equilibrium surface roughness for dissociative dimer dynamics
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Equilibrium crystal surfaces, constrained to equilibrate by means of dissociative dimer deposition and
evaporation, have anomalous global surface roughness. We generalize earlier results for one-dimensional
interfaces to two dimensions. The global surface width scales with surface sizeL asW2; ln@L/(ln L)1/4# instead
of the conventional formW2; ln L. The surface roughening transition does not change in nature, but its
location is subject to a large and slowly varying logarithmic finite-size-scaling shift.
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I. INTRODUCTION

Every now and then a new direction of research sheds
unexpected light on an older topic. In this instance, that ol
topic is equilibrium surface roughness, and a study of n
equilibrium driven surface growth triggered it. On
dimensional~1D! surfaces lack equilibrium phase transition
but while being driven their stationary growing states c
undergo roughening transitions. A recent example
directed-percolation-type roughening@1#. While generalizing
the latter to directed-Ising-type roughening@2,3#, Noh et al.
discovered that the equilibrium point in their phase diagr
had unusual properties. The surface widthW,

W2~L !5
1

L (
r

~^hr
2&2^hr&

2!.L2a, ~1!

did not scale with the conventional~random walk! exponent
a5 1

2 but instead with what seemed to be a value close
a5 1

3 . The origin of this is a global conservation law, a
evenness constraint on the occurrences of every sur
height, due to the dissociative dimer deposition and eva
ration dynamics. They related this to even-visiting rand
walks ~RW! @4#, i.e., RW required to visit every site an eve
number of times. In follow-up studies@5,6#, it was shown
that the valuea5 1

3 is exact, using a mapping to Lifshitz tail
@7# in the density of states of 1D fermions in non-Hermiti
random fields.

In this paper we address the issue whether somet
similar happens in two-dimensional surfaces. We show
the global surface roughness is again anomalous, i.e.,
instead of the conventional logarithmic finite-size dive
gence,W2; ln L, the width diverges asW2; ln Lfree with an
effective surface sizeL free;L/( ln L)1/4. Moreover, the sur-
face roughening transition temperature has a large
slowly converging logarithmic finite-size-scaling correctio

The outline of this paper is as follows. In Sec. II w
review the most basic version of dissociative dimer dyna
ics leading to the global evenness constraint. In Sec. III
generalize the 1D results of Nohet al. to semi-infiniteN
3L lattices and show that the width still scales witha5 1

3 .
This involves a representation of the equilibrium surface a
RW inside aN-dimensional tube. In Sec. IV we present o
numerical data for aL3L lattice and generalize the so-calle
1063-651X/2002/65~2!/026104~9!/$20.00 65 0261
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healing time argument of Nohet al. from 1D to 2D. Next, in
Sec. V, we map the 2D evenness-constrained equilibr
surface partition function onto that of a 2D surface with a
nealed random fields that couple to the surface heights,
use this to derive the relationL free;L/( ln L)1/4 analytically.
In Sec. VI we discuss the implications of the anomalo
roughness to the roughening transition, and in Sec. VII
comment on possible experimental realizations. We sum
rize our finding in Sec. VIII.

II. DISSOCIATIVE DIMER DYNAMICS

The dynamic process that gives rise to the global ev
ness constraint has in its bare bone version the follow
structure. Consider the so-called restricted solid-on-so
~RSOS! model on a 1D or 2D lattice. Every lattice site co
tains an integer-valued height variablehr50,61,62,..., and
nearest neighbors can differ only byDh50,61. The latter
means that only surface steps of height one are allowed.
RSOS model has a long history in the theory of surfa
roughening transitions~see e.g., Ref.@8#!.

Impose now the following dimer-type deposition an
evaporation rule on the RSOS model. Particles can arrive
and leave the surface only in pairs~as dimers!. Choose at
random, two nearest neighbor sites on the lattice. The sur
heights of both sites are increased or decreased by one
~with equal probabilities! but only when those two sites ar
at equal heights, and when the new configuration would
violate the RSOS rule~only single height steps!. This simu-
lates the deposition and the evaporation of horizontal dim
The dimers are dissociative in the sense that the identity
dimer is lost after it is deposited, and that a particle c
arrive on and leave the surface with a different partner.

This type of dynamics was studied recently in one dime
sion @2# and it was found that the equilibrium surface wid
does not scale witha5 1

2 , as in conventional surface dynam
ics, but with the anomalous exponenta5 1

3 instead. The
valuea5 1

2 is highly generic. Equilibrium long range orde
cannot exist in 1D and therefore the probability to make
up or down step while walking along an equilibrium surfa
is uncorrelated beyond a definite correlation length. This
plies that the interface width scales similar to the dispers
of a random walker, i.e.,a5 1

2 .
Dissociative dimer dynamics circumvents this gene
©2002 The American Physical Society04-1
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picture by imposing a nonlocal constraint on the Gibbs d
tribution. Particles are deposited at each height level in pa
and therefore the RW must visit each level an even num
of times. This is a nonlocal constraint, due to the dissocia
character of the dynamics. For example, on a locally
surface segment, two dimers are able to land next to e
other, but next, the two particles in the middle are allowed
switch partners and evaporate together leaving two disc
nected monomers behind. Repeated processes such a
leave no local trace of the dimer nature of the dynamics,
globally every height level needs to be occupied an e
number of times. In contrast, nondissociative dimer dyna
ics obeys the constraint locally and therefore yields
conventional scaling exponenta5 1

2 , just as monomer
dynamics.

III. SEMI-INFINITE LATTICES

We start with a generalization of the one-dimensiona
3L lattice results of Nohet al. to N3L lattices with N
52,3, ... . On the one hand, having several channels ins
of one weakens the evenness constraint and may be suffi
to alter thea5 1

3 exponent. On the other hand, critical exp
nents change typically only with dimension, and theseN
channel lattices are still 1D systems at large length scale

Our simulation results are shown in Fig. 1. We plot t
effective values ofa as functions of the system sizeL for
N52 and 3, evaluated as

aeff~L !5
ln@W~L !/W~ 1

2 L !#

ln 2
. ~2!

The roughness exponent remains close toa5 1
3 for both N

52 andN53. The convergence is not impressive but co
parable to that in the original one channel case. These l
finite-size-scaling corrections are explained at the end of
section.

The numerical results fora suggest that we seek an an
lytical generalization of the even-visiting random walk re
resentation of the system and from that show that the sur

FIG. 1. The effective values ofa in Eq. ~2! vs the inverse ofL
are shown for 13L surfaces~diamonds!, 23L surfaces~circles!,
and 33L surfaces~squares! with L516, 32, 64, 128, and 256.
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roughness exponent does not indeed change. Consider a
along the equilibrium 23L surface from one edge to th
other~from x50 to x5L!. Thex coordinate plays the role o
time and going up or down along the surface is the R
aspect. The walk does not obey the evenness constraint a
one specific channel,y51 or y52, because dimers can b
deposited in two orientations, along and perpendicular to
channel. However, if you walk twice, one time in each cha
nel, then the constraint is still obeyed for the two combin
walks. The evenness constraint is weakened, but obvio
still present.

On a formal level, the connection between the rand
walk and surface roughness follows from the well-know
transfer-matrix formalism for evaluating the partition fun
tion of the surface. Let us first consider a 1D lattice w
monomer-type dynamics~no evenness constraint!. The labels
n and n0 in the partition functionZ(nun0)x represent fixed
boundary conditions of the surface at both ends,h5n0 at site
0, andh5n at sitex. Z(nun0)x obeys the recursion relation

Z~nun0!x115Z~nun0!x1Z~n21un0!x1Z~n11un0!x ,
~3!

which is a discrete version of the diffusion equation and c
be reinterpreted as the time evolution of a 1D random wal
with Z(nun0)x the unnormalized probability to find th
walker at positionn at timet5x starting from positionn0 at
time t50.

Let us generalize this to the two channel lattice.n now
becomes a two-component vector,n5(n1 ,n2). The transfer-
matrix-type recursion relation

Z~n1 ,n2un0!x115 (
m1 ,m2

Z~n12m1 ,n22m2un0!x1
~4!

could be easily solved numerically because the transfer
trix is still finite. However, for the sake of the evenness co
straint, we will pursue that Eq.~4! resembles again a diffu
sion equation and again can be reinterpreted as the
evolution of a RW, but this requires some care and the in
duction of an absorbing wall.

This is a walk on a 2D lattice (n1 ,n2). The dimension of
the walker’s space is equal to the number of channels and
to the dimension of the surface.h(1,x) represents then1
coordinate andh(2,x) then2 coordinate of the walker at time
t5x. For example, when the walker is located at site~4, 5! at
time t510, the surface height at site~1, 10! is equal toh
54, and at site~2, 10! equal toh55.

The integer-valued summation labelsm1 and m2 in Eq.
~4! are subject to the RSOS condition that nearest neigh
surface columns can differ only byDh50,61. This trans-
lates into two restrictions: First, at every moment in time, t
two coordinates of the walker can differ only byn22n1
50,61. So the walk is restricted in the (n1 ,n2) plane to a
strip centered along the diagonal,n15n2 , as illustrated in
Fig. 2. In other words, the walk remains quasi-on
dimensional after all. Second, due to the same RSOS rul
each positional componentn1 andn2 of the random walk can
change only by 0 or61 during each time step,t5x→x
4-2
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TWO-DIMENSIONAL EQUILIBRIUM SURFACE . . . PHYSICAL REVIEW E 65 026104
11. It is easy to see that the walker can jump to only six n
positions from any diagonal site,n15n2 , and to only five
from every off-diagonal one,n1Þn2 ~in addition to not mov-
ing at all!.

In the equilibrium Gibbs distributions for the RSO
monomer-type surface dynamics, all surface configurati
have equal probabilities. This is reflected in Eq.~4! by the
fact that all transition probabilities are equal. However, t
recursion relation does not represent yet a proper Ma
equation for a random walk because it does not conse
probability. A Master equation needs to be of the gene
form

Z~nun0! t115(
n8

w~n8,n!Z~n8un0! t , ~5!

and the transition probabilities,w(n8,n), must conserve
probability from any staten8, i.e.,

(
n

w~n8,n!51. ~6!

The one channel transfer-matrix equation of motion, Eq.~3!
is of this form; except that we have to divide all transitio
probabilities by a common factor, equal to 3. The two ch
nel transfer-matrix equation of motion, Eq.~4! does not sat-
isfy Eq. ~6!.

Partition functions scale in ‘‘time’’t5x exponentially as

Z~nun0!x;l0
x , ~7!

FIG. 2. The 23L ~2 channel! equilibrium surface representatio
as a random walk on a strip with absorbing walls. The surf
coordinate along the channel represents time in the random w
The surface heights in the first and second channel represent thn1

andn2 coordinates of the walker. The shaded area is an examp
a plaquette with Ising spinS(2)561. The heavy solid lines are th
absorbing walls. See the text for more details.
02610
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with l0 the largest eigenvalue of their transfer matrices.
Eq. ~3!, l0 is simply equal to 3, i.e., the same common fac
that normalizes the transition probabilities. Such a sim
common factor does not exist for Eq.~4! because the num
bers of sites to which the walker can hop are different
diagonal and off-diagonal sites. This lack of conservation
probability can still be incorporated in the random walk re
resentation by interpreting the boundaries of the strips
so-called absorbing walls. In the absence of the walls,
common factor would have been equal to 32. The remaining
exponentially decaying factor (l0/32)x represents the absorp
tion by the walls. Moreover,l0

x-type factors drop out of the
calculation of thermodynamic averages, which in the rand
walk representation is equivalent to performing all avera
with respect to the so-called surviving ensemble only.

In a free 2D random walk, the fluctuations in the tw
components decouple. They do so also in our random w
with absorbing walls on the strip, because we average o
the surviving ensemble only. This implies that in the dire
tion parallel to the strip, the root-mean-square displacem
scales with the conventional power as

j i~ t !;t1/2, ~8!

at time scales much larger than a characteristic correla
time arising from the range of hopping distances of the R
during each time step. The root-mean-square displaceme
the perpendicular direction,j'(t) remains finite due to the
presence of walls. Thus we recover~although in a somewha
contrived manner! the well-known result that for a semi
infinite 23L lattice with L→`, the equilibrium surface
width still scales as in 1D, withW5@$j i

2(L)1j'
2 (L)%/2#1/2

;L1/2.
Let us return now to the reason for constructing this ra

dom walk interpretation, i.e., to deal with the evenness c
straint. For the one channel lattice, the core step towards
analytic derivation ofa5 1

3 was the introduction of Ising
variables to keep track of where the RW has been before
Ising spinSn561 was associated with each site, and flipp
for each time interval the RW resided on that site. The ev
ness constraint was enforced by requiring that at timet5x
all spins point in the same direction as at timet50. We need
only to establish a generalized equivalent formulation
demonstrate that the surface roughness exponent retain
1D valuea5 1

3 on the two channel lattice.
Introduce an Ising spinS(n)561 to each diagonal site

(n,n), and associate it with the plaquette consisting of si
(n21,n), (n,n11), (n11,n), (n,n21), and~n, n! on the
strip ~shown as the shaded area forn52 in Fig. 2!. This spin
is flipped for each unit time interval the walker resides
(n21,n), (n,n11), (n11,n), or (n,n21). S(n) does not
flip when the walker resides on the diagonal site~n, n! be-
cause then the number of occurrences of heightn increases
by an even number,h(1,x)5h(2,x)5n. Note that two Ising
spins flip when the walker occupies an off-diagonal site, i
S(n) andS(n11) for the site (n,n11).

In the one channel case, the Ising spins act as gate kee
along the chain, and the RW cannot pass siten without flip-
ping its spinS(n). Similarly, in the two channel case, th

e
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4-3



in
ng

r i

t.
th

s
ly
e
m
in

.

nl
go
in
i-
s

ne

th
re
h

-

o

e

t
he

e

ic
is
i-

ant

le.
ec-
he

e

ody

rs

the
me

-
d

ss-
du-
ing

na-

i-
ent

of
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RW moves on the quasi-1D strip and again a line of Is
spins act as gate keepers. Topologically and at large le
scales, the situations are equivalent and thereforea must be
the same as in 1D.

One detail seems different. On the chain, the walke
unable to pass siten without flipping its spinS(n), while on
the strip, it can pass through plaquetten without flipping
S(n). That might seem an essential difference, but it is no
relaxed model where a spin is flipped stochastically when
walker passes, was shown by Nohet al. in the context of the
purely 1D surface to belong to the same universality clas
the deterministic spin flip model. This followed most clear
from the transfer-matrix equivalence to Lifshitz tails in th
density of states of 1D fermions in non-Hermitian rando
fields. The random walker is the fermion and the Ising sp
generate the random potential~see Ref.@5# for details!.

The generalization toN3L surfaces is straightforward
The RW moves in aN-dimensional tube~i.e., still remains
effectively 1D! and the evenness constraint still requires o
a single line of Ising spins positioned along the body dia
nal of the tube. Each flips when the walker comes with
range;S(n) flips every time any coordinate of the RW pos
tion is equal ton. We conclude from the above evennes
constrained RW construction that the roughness expo
must indeed retain its 1D valuea5 1

3 for all finite N.
Let us return to our numerical results. The shapes of

curves in Fig. 1 represent so-called finite-size-scaling cor
tions. These corrections are larger and more complex t
for the purely 1D one channel lattice@2#. This can be under-
stood qualitatively as follows. ForN51, the evenness con
straint is ineffective at smallL such thataeff @see Eq.~2!#
decreases monotonically from a value near the free unc
strained RW exponenta5 1

2 at smallL towardsa5 1
3 at L

→`. @A characteristic crossover system sizeL could be con-
structed in terms of the ratio betweenL and length scale
L free(L) over which the surface fluctuations are unimped
by the evenness constraint;L free(L) is defined in the healing
time argument of Sec. IV.#

In contrast, theN52 andN53 curves start off from a
value near 0, overshoota5 1

3 , and then bend backwards. A
small L,N, the surface behaves as if it is 2D and as if t
evenness constraint is absent, i.e.,W;(ln L)1/2. This ex-
plains why the curves start off ata.0. The surface starts to
behave one dimensional beyondL;N, but initially remains
still unaware of the evenness constraint, such that tha
curves in Fig. 1 overshoot~towardsa. 1

2 ! and only back
over at largerL where the evenness constraint kicks in.

IV. ROUGHNESS ON LÃL LATTICES

We now turn our attention to dissociative dimer dynam
on a truly 2DL3L lattice. For monomer-type dynamics, it
well known that the height-height correlation function d
verges logarithmically,

g~r !5^~hr1r0
2hr0

!2&.
1

pKG
ln r , ~9!

and the surface width scales as
02610
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W2~L !.
1

2pKG
ln L, ~10!

with KG the so-called effective Gaussian coupling const
that in the RSOS model atT→` ~our numerical simulations!
takes the specific valueKG.0.9 @8#. The goal is to find out
how the evenness constraint affects this on a global sca

In the random walk representation of the preceding s
tion, we need to take the limit where the dimension of t
tube ~N! and the random walk time~L! diverge simulta-
neously, asN5L→`. This diminishes the usefulness of th
RW representation. For example, according to Eq.~10!, the
root-mean-square displacement of the RW along the b
diagonal of the tube must scale~for monomer dynamics! as

j i~L !;~L ln L !1/2. ~11!

This might seem at odds with the canonicalAL power im-
plied by the RW interpretation; but only until one remembe
that the walk is truly random only at time scalesL much
larger than a characteristic correlation time arising from
maximum hopping distance of the walker during each ti
step, and realizes that the latter~projected along the tube’s
body diagonal! is proportional toAN, and thus diverges si
multaneously withL. For the sake of curiosity, we checke
and confirmed Eq.~11! numerically. Figure 3 shows the
average root-mean-square displacement,j(L)5@$j i

2(L)
1j'

2 (L)%/L#1/2 of the RW as a function ofL5N.
Before we present our numerical results for the evenne

constrained surface width in 2D, we like to present an e
cated guess of what the behavior might be by generaliz
the so-called healing length argument of Nohet al. @2# from
1D to 2D. This argument was the least rigorous of their a
lytical results, but explained the anomalous exponenta5 1

3

at a simple intuitive level. In 1D and also for all our sem
infinite N3L surfaces of the preceding section, the argum
runs ~in a somewhat modified form! as follows.

FIG. 3. Semilog plot of the mean-square displacementj2(L) of
the random walk in the tube described in Sec. IV as a function
time L for 2<L<40 with the total random walk timeL equal to the
dimension of the tubular random walk spaceN. The solid line fits
the formj2(L)50.272 lnL as predicted by Eq.~11!.
4-4
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Consider the semi-infiniteN3L surface. There must exis
a crossover length scaleL free larger than the surface widthN
but much smaller than the total channel lengthL, within
which the evenness constraint can be ignored and the su
fluctuates freely such that the surface width increases as

W~L free!;L free
1/2, ~12!

just as in 1D monomer dynamics. The basic premise of
healing length argument is that at larger length scales
surface must be preoccupied satisfying the evenness
straint such that the surface width does not increase any
ther. Then, we need only to find out howL free scales withL.

Divide the surface strip 0,x,L into segments of length
L free. Choose one of these segments and mark all sur
heights that are visited an odd number of times in that s
ment. It is known that these defect surface heights are
formly distributed within the rangeuhu,O(W) such that
their number is also proportional toW @5#. Suppose that the
surface compensates for these defects one-by-one alon
rest of the strip~ignoring that the additional surface fluctu
tions introduce new defects as well as repair, simultaneou
other old ones!. The average root-mean-square distance
surface must fluctuate vertically to reach that specific de
height is again proportional toW, and that requires a typica
horizontal length intervalDx;L free. So every segment o
lengthL free leads to only one repair on average. Since th
need to beW of them, it follows that

L

L free
;W, ~13!

and, using Eq.~12!, that

L;WW2 and W;L1/3, ~14!

such that for allN3L lattices the roughness exponent
equal toa5 1

3 .
For the generalization of this argument toL3L lattices,

we divide the 2D lattice in blocks of sizeL free3L free. Within
each block the surface fluctuates as if the global evenn
constraint does not exist, and the surface width scale
W2;(2pKG)21 ln Lfree. Assume that oddly visited surfac
heights are uniformly distributed just as in 1D and theref
that their number is proportional toW. The same repairing
scheme as above predicts again one repair on average
block, i.e.,

S L

L free
D 2

;W, ~15!

and therefore

L;W1/2e2pKGW2
. ~16!

In the limit of largeL, we can invert Eq.~16! to

W2~L !;
1

2pKG
lnF L

~ ln L !1/4G . ~17!
02610
ce

e
e
n-
r-

ce
g-
i-

the

ly,
e
ct

e

ss
as

e

per

The crucial features are the logarithms and the 1/4 pow
The former originate from the logarithmic divergence of u
constrained surface roughness in 2D and the latter from
scaling of the number of blocks, (L/L free)

D, with dimension
D.

Compared to the conventional logarithmic divergen
Eq. ~10!, the lattice sizeL is replaced by a logarithmically
modified effective length,L free;L/( ln L)1/4. Logarithmic ef-
fects are notoriously difficult to confirm numerically, exce
when you expect them.

In Fig. 4, we present our numerical simulation resul
The equilibrium surface widthW2 for monomer and dimer
dynamics are plotted on semi-log scales as functions of
system sizeL for L58, 16, 32, and 64~squares and circles
respectively!. The slope of the monomer curve confirms t
valueKG.0.9 of Eq.~10!. The dimer roughness line is als
quite linear, but with a reduced slope, which means that
surface roughness could be fitted~in this range of length
scales! by a simple logarithm, but with an enhanced effecti
KG . However, when we plotW2 versusL/W1/2 as suggested
by Eqs.~16! and~17!, the slope of the~again straight! line is
the same as in the monomer case, i.e., we regain the co
value of KG . Therefore, we conclude that for dissociativ
dimer dynamics, Eqs.~16! and~17! are indeed correct. In the
next section, we put this result on a more rigorous analy
footing.

V. SURFACE ROUGHNESS IN RANDOM MEDIA

Solid-on-solid models come in several variations. T
RSOS model we used above, where nearest neighbor
umns can differ only byDh50, 61, is the most convenien
for numerical simulations. The so-called discrete Gauss
model @9,10#, where theDh restriction is relaxed and re
placed by a Gaussian interaction energy

FIG. 4. Semilog plots of equilibrium surface widthsW2 on L
3L lattices for monomer dynamics~squares! and dissociative
dimer dynamics~circles! both as functions ofL. The slopes of the
straight-line fits yield the values ofKG @defined in Eq.~10!#: KG

50.916 ~monomer! and 0.988~dimer!. The diamonds show the
same dimer dynamics data plotted asW2 vs L/W1/2. That line has
nearly the same slope as that with the squares~monomer dynamics!,
i.e., KG50.914 in agreement with Eq.~17!.
4-5
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A@hr#5
E

kBT
5

1

2
K (

^r ,r8&
~hr2hr8!

2, ~18!

between nearest neighbor columns,hr andhr8 ~the meaning
of the ^ & brackets in the summation!, is more appealing in
analytical discussions. In this section we use the latter.

The global evenness constraint can be incorporated in
partition function in the following manner. Define intege
valued variablesvh , one for every surface height. Notic
that they are not associated with any specific lattice s
Eachvh is equal to the number of times surface height le
h appears in the specific configuration. The partition fun
tion, subject to the global evenness constraint, can be wr
as

Z5(
$hr%

F)
h

1

2
~11zvh!Gexp~2A@hr# !, ~19!

with fugacity z521. Every configuration in which any o
the vh’s is odd receives zero weight.

Next, we introduce randomness degrees of freedomch
50, 1 associated with those same surface height levels
write the partition function as

Z5 (
$c,h%

expF2(
h

~mchvh1 ln 2!2A@hr#G , ~20!

with z5exp(2m). Equation~20! can be interpreted as th
partition function of an equilibrium surface in the presen
of annealed random external fields$ch% that suppress the
occurrences of specific surface heights. The noise is glob
the sense that the random variablech affects surface heigh
level h equally at every positionr along the surface. Fo
every occurrence of height levelh, the Boltzmann weight is
multiplied by a factorz whench51 ~and not ifch50!. The
fugacity parameterz allows us to interpolate between mon
mer and dimer dynamics because atz51 we retrieve the
conventional discrete Gaussian partition function.

We are following in this closely the analogous formul
tion for the 1D surface by Nohet al. @5#. They found that in
1D z50 acts as a special point, a stable fixed point in
sense of renormalization transformations with all21<z
,1 as its basin of attraction. We will show that this rema
true in 2D.

The limit z50 is special. The fugacity Boltzmann facto
becomed functions,zchvh→d(chvh), such that the surface i
strictly prohibited to pass through all height levels for whi
ch51. Each of them acts as an impenetrable barrier and
surface is restricted in its vertical height fluctuations to wa
der between two such randomly placed walls. The partit
function factorizes and reduces to

Z5(
j

P~2j!Zj , ~21!

where P(2j) is the probability of finding two neighboring
ch51 walls at a distanceDh52j apart. Walls are placed a
random with probability1

2 such thatP(2j)5222j. Zj in Eq.
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~21! is the partition function of a surface restricted to fluct
ate between two such hard walls

Zj5(
$hr%

F)
r

u~j2uhru!Gexp~2A@hr# !. ~22!

The two following modifications cannot affect the larg
length scale behavior. First, below the equilibrium roughe
ing transition the integer-valued height variableshr50, 61,
62, ..., can be approximated by real-valued continuous v
ables with the coupling constantK renormalized to its Gauss
ian valueKG . This is well known from the theory of con
ventional surface roughening@9–13#. Second, we can replac
the hard impenetrable walls by soft ones and approximateZj

by

Z̄j5(
$hr%

d~^h2&2j2!exp~2A@hr# !, ~23!

where the trace runs over ordinary configurations of
Gaussian model but restricted to the subset where the r
mean-square surface width in each configuration is equa
j. The evaluation ofZ̄j is elementary. Compared to th
Gaussian partition function,Z05S$hr%

exp(2A@hr#), it gains
an exponential factor,

Z̄j;E dm(
$hr%

expF2 1
2 KG (

^r ,r8&
~hr2hr8!

2

12p im(
r

~hr
22j2!G

;Z0 exp@2a0L2 exp~24pKGj2!#, ~24!

wherea05p/16. Finally, the surface width of the anneale
ensemble average follows from Eqs.~21! and~24! using the
method of steepest descent as

W2;

(
j

j2P~2j!Zj

(
j

P~2j!Zj

;

(
j

j2 exp@22j ln 22a0L2 exp~24pKGj2!#

(
j

exp@22j ln 22a0L2 exp~24pKGj2!#

;
1

2pKG
lnF L

~ ln L !1/4G . ~25!

This is the same scaling form as proposed in the preced
section from the healing argument, Eq.~17!.

The above derivation remains equally valid for small v
ues ofz aroundz50. There, the surface can tunnel throu
the walls, but with exponentially small probabilities~propor-
tional to the length of the intersection contours! actually re-
sembling more closely the soft walls in the above derivati
4-6



t
el
l
lt
e

ra
r

bl

r
-
th
n
in

n
e
s

tiv
m

a

he
ilib

e
u

lity

g
a
m

pe

de
m
ed
ts
ts
on

f

s
e-

ra-

r-

n

ng
ith
t a

to
aw
x-
be

ions
le,

i-
rief

ctly
ith

n it
ts.

high

ved
ri-
bed-
rip-
ral
rva-

ol-

TWO-DIMENSIONAL EQUILIBRIUM SURFACE . . . PHYSICAL REVIEW E 65 026104
At the positivez side, it is intuitively reasonable thatz51
~the monomer dynamics point! is the horizon and limiting
point for this type of scaling. At the negativez side, the
horizon extends to and apparently includes the pointz5
21. The numerical results and also the healing argumen
the preceding section suggest this. This is also intuitiv
consistent. Negative values ofz imply an imaginary chemica
potential and therefore a mix of positive and negative Bo
zmann weights that cancel out against each other; this
hances the exponentially decaying nature of theuzuvhch

weight factors, and preserves this decay even atz521.

VI. ROUGHENING TRANSITIONS

The surface is presumed to be above the roughening t
sition temperatureTR in most of the above discussion. Fo
example, although Eqs.~19! and ~20! apply to all T, it is
correct to approximate the discrete Gaussian height varia
by continuous Gaussian ones only forT.TR . Everywhere in
the rough phase the global surface roughness has a loga
mic correction, Eq.~17!, to its conventional simple loga
rithm. The natural question arises whether and/or how
influences the nature of the surface roughening phase tra
tion. In this section we will show that the evenness constra
has no effect on the properties of the roughening transitio
the thermodynamic limit, but gives rise to strong finite-siz
scaling corrections, including an apparent shift in the tran
tion temperature.

Equilibrium surface roughness has been a topic of ac
research over several decades. The roughening is an exa
of a Kosterlitz-Thouless~KT! transition @14#. Experimental
realizations include helium crystal surfaces@15#, metal sur-
faces@16#, and organic crystals@17#.

The anomalous roughness exists only at a global sc
Within the crossover length scaleL free;L/( ln L)1/4 ~defined
in Sec. IV!, the surface fluctuates freely in disregard of t
global evenness constraint; i.e., inside the bulk the equ
rium surface remains indistinguishable from that in monom
dynamics, and since phase transitions are ruled by the b
the roughening transition must remain in the KT universa
class.

The ‘‘evenness boundary effect’’ is, however, very stron
We will approach this from the perspective of the origin
argument by KT where they estimated the transition te
perature by the free energy of a single vortex in, e.g., su
fluid films @14#. The discreteness of the height variables,hr
50,61,62, ..., in the discrete Gaussian solid-on-solid mo
plays the same role as those vortices. This might be so
what surprising, but follows mathematically from a so-call
duality transformation@11#. In the rough phase, the heigh
can be treated as continuous variables and this represen
‘‘vortex-free phase.’’ Consider the so-called sine-Gord
correlation function in the Gaussian model, in which thehr ’s
are continuous,

^exp@2p i ~hr1r0
2hr0

!#&5exp@2 1
2 ~2p!2g~r !#;r 22p/KG,

~26!

@see also Eq.~9!#. The logarithm of this is the free energy o
placing two topological objects, exp(62pih), at a distancer
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apart. They favor integer values ofh. That free energy scale
logarithmically with distancer, and a single one costs, ther
fore, an amount of free energyf 5(p/KG)ln L or f
5(p/KG22)lnL if we allow it to be at any position in 2D
space. The temperatureKG5p/2 where the latter is equal to
zero is the famous KT estimate for the transition tempe
ture. ~Recall that the coupling constantKG is measured in
units ofkBT such thatKG;T21!. This is how this works for
monomer dynamics.

For dimer dynamics the two sine-Gordon ‘‘charges’’ inte
act logarithmically, just as in Eq.~26! but only at distances
smaller thanL free. Closer to the lattice size the interactio
levels off such that a single excitation now costs

f .
p

KG
ln L free22 lnL. ~27!

This yields, by settingf 50 and using Eq.~17!,

KG.
1

2
pF12

b01 ln~ ln L !1/4

ln L G , ~28!

with b0 a constant. This is a significant finite-size-scali
correction, both in magnitude and in the slowness w
which it scales withL. The transition appears to happen a
higher temperature. For example, atL51000 ~larger than
most experimental surface heterogeneity lengths@16#!, the
shift is of order

DTR

TR
.

ln~ ln L !1/4

ln L
'7%. ~29!

VII. EXPERIMENTAL REALIZATIONS

The scope of this paper is foremost theoretical, i.e.,
show how a seemingly benign topological conservation l
in the dynamics strongly affects the equilibrium state. E
perimental realizations of the evenness constraint should
possible to establish, but this requires careful considerat
and collaborations with experimentalists. For examp
molecular-type bonded molecules such as N2 look promising,
but unfortunately, in solid N2 the molecules do not dissoc
ate. As a starting point we include here a section with a b
discussion of the most essential features.

Simple models such as ours are meant and perfe
suited to discover fundamental scaling laws associated w
surface growth, but they are rather simple minded whe
comes to making direct contact with actual experimen
Those detailed theories of crystal growth have reached a
level of sophistication in recent years@18#. The evenness
effect represents a topological feature that will be preser
with increased realism. After identifying a suitable expe
mental system, the evenness constraint needs to be em
ded into the appropriate more detailed theoretical desc
tion. However, at this stage, it suffices to focus on gene
aspects, in particular those that possibly upset the conse
tion law.

The condition in our model that theX2 molecules land
only horizontally is not a serious constraint, because the m
4-7
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ecule must dissociate as well. The latter requires that
binding energy between the two atoms be weaker or at
be of the same order of magnitude as the bonding ener
inside the solid. In that case, both atoms strongly prefer to
close to the surface, and a vertically landed molecule w
quickly decay.

A more serious issue is surface diffusion, which is omitt
in our model. The evenness constraint is preserved as lon
a surface wanders around on the same terrace, but is
when surface atoms jump across steps to lower or hig
levels. Diffusion across steps is reduced by the presenc
so-called Schwoebel barriers@19#. If those barriers are stron
enough, the jumps will occur infrequently enough that t
evenness constraint remains satisfied at length scales
compared to the heterogeneity length scale of the experim
tal surface. The latter is the length scale at which defe
such as impurities pin and limit the surface dynamics; t
length rarely exceeds 1000 Å.

Moreover, recall that the anomalous surface roughnes
stable with respect to a variation in the fugacity parametez
in Eq. ~19!, i.e., it remains present when the evenness c
straint is not strictly obeyed but only statistically. Therefo
it might well be that diffusion across steps preserves
anomalous roughness beyond the above estimate. This
needs further theoretical study.

Finally, the search for experimental realizations need
be limited to dimer-type dynamics. The anomalous glo
surface roughness exists and is the same forXn-type disso-
ciative dynamics with anyn.1. This was found to be true
earlier in 1D@5#, and follows also in 2D from generalizin
our analytic arguments.

VIII. SUMMARY

In this paper we studied how equilibrium surface roug
ness in two-dimensional surfaces is affected by a global c
straint that every surface height be present an even num
of times in every configuration. We presented numerical a
analytic evidences.

In semi-infiniteN3L surfaces, the evenness constraint
weakened compared to the 13L surface, but not enough t
s.

tt

G

s,
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change the global width. It still scales anomalously asW
;L1/3, just as in purely 1D surfaces@2,5#.

In truly 2D L3L surfaces, the global surface roughness
also anomalous, but the effect is weaker. The surface w
scales logarithmically as

W2~L !; ln L free, ~30!

similar to conventional monomer dynamics, but with a log
rithmically corrected effective surface size

L free;
L

~ ln L !1/4. ~31!

The surface roughening transition does not change in nat
but its location is subject to a large and slowly varying log
rithmic finite-size-scaling shift, Eq.~29!.

These results remain valid when the evenness constrai
only statistically obeyed. Moreover, the analytic derivation
Sec. V involves a mapping onto a surface model with a
nealed randomly placed barriers, placed horizontally to
surface, that inhibit the vertical surface fluctuations. The s
face roughness of those surfaces behaves the same a
evenness constrained ones.

Finally, 2D represents a critical dimension for ordina
equilibrium surface roughness. This follows trivially b
evaluating the surface roughness in the Gaussian approx
tion, W;La, with a5(22D)/2 ~logarithmic inD52!. The
surface width does not diverge in dimensionsD.2 and
the surface remains asymptotically flat. Still, the heali
length and random field arguments can be generalized
higher dimensions: L free;L @2D/(21D)# and W;(L free)

a

;LD(22D)/(21D). So, for example, inD53, monomer dy-
namics yieldsW;L21/2 and dissociative dimer dynamic
W;L23/5. The evenness constraint always flattens the s
face at a global scale.
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