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Two-dimensional equilibrium surface roughness for dissociative dimer dynamics
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Equilibrium crystal surfaces, constrained to equilibrate by means of dissociative dimer deposition and
evaporation, have anomalous global surface roughness. We generalize earlier results for one-dimensional
interfaces to two dimensions. The global surface width scales with surface a@&?~ In[L/(In L)**] instead
of the conventional formW?~InL. The surface roughening transition does not change in nature, but its
location is subject to a large and slowly varying logarithmic finite-size-scaling shift.
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I. INTRODUCTION healing time argument of Noét al. from 1D to 2D. Next, in
Sec. V, we map the 2D evenness-constrained equilibrium
Every now and then a new direction of research sheds asurface partition function onto that of a 2D surface with an-
unexpected light on an older topic. In this instance, that oldenealed random fields that couple to the surface heights, and
topic is equilibrium surface roughness, and a study of nonuse this to derive the relatioyes~ L/(In L)+ analytically.
equilibrium driven surface growth triggered it. One- In Sec. VI we discuss the implications of the anomalous
dimensional 1D) surfaces lack equilibrium phase transitions, roughness to the roughening transition, and in Sec. VII we
but while being driven their stationary growing states cancomment on possible experimental realizations. We summa-
undergo roughening transitions. A recent example igize our finding in Sec. VIII.
directed-percolation-type roughenipt]. While generalizing
the latter to directed-Ising-type roughenif®3], Noh et al.

. o 2 . . Il. DISSOCIATIVE DIMER DYNAMICS
discovered that the equilibrium point in their phase diagram

had unusual properties. The surface witlth The dynamic process that gives rise to the global even-
1 ness constraint has in its bare bone version the following
201 V= = 2\ /h \2y—] 22 structure. Consider the so-called restricted solid-on-solid

WAL) L zr: ((he) = (h)%) =L, @ (RSOS model on a 1D or 2D lattice. Every lattice site con-

tains an integer-valued height variatlie=0,=1,£2,..., and

did not scale with the conventionglandom wallk exponent  nearest neighbors can differ only iyh=0,+1. The latter
a=73 but instead with what seemed to be a value close taneans that only surface steps of height one are allowed. The
a=13. The origin of this is a global conservation law, an RSOS model has a long history in the theory of surface
evenness constraint on the occurrences of every surfageughening transitionésee e.g., Ref.8]).
height, due to the dissociative dimer deposition and evapo- Impose now the following dimer-type deposition and
ration dynamics. They related this to even-visiting randomevaporation rule on the RSOS model. Particles can arrive on
walks (RW) [4], i.e., RW required to visit every site an even and leave the surface only in paifas dimers Choose at
number of times. In follow-up studig®,6], it was shown random, two nearest neighbor sites on the lattice. The surface
that the valuer= 1% is exact, using a mapping to Lifshitz tails heights of both sites are increased or decreased by one unit
[7] in the density of states of 1D fermions in non-Hermitian (with equal probabilitiesbut only when those two sites are
random fields. at equal heights, and when the new configuration would not

In this paper we address the issue whether somethingiolate the RSOS rulgonly single height stepsThis simu-
similar happens in two-dimensional surfaces. We show thalates the deposition and the evaporation of horizontal dimers.
the global surface roughness is again anomalous, i.e., th@he dimers are dissociative in the sense that the identity of a
instead of the conventional logarithmic finite-size diver-dimer is lost after it is deposited, and that a particle can
gence, W?~InL, the width diverges a8?~In Ly, With an  arrive on and leave the surface with a different partner.
effective surface sizé .~ L/(InL)Y Moreover, the sur- This type of dynamics was studied recently in one dimen-
face roughening transition temperature has a large ansion[2] and it was found that the equilibrium surface width
slowly converging logarithmic finite-size-scaling correction. does not scale witee= 3, as in conventional surface dynam-

The outline of this paper is as follows. In Sec. Il we ics, but with the anomalous exponeat=3 instead. The
review the most basic version of dissociative dimer dynamvalue a= 3 is highly generic. Equilibrium long range order
ics leading to the global evenness constraint. In Sec. lll weannot exist in 1D and therefore the probability to make an
generalize the 1D results of Noét al. to semi-infinite N up or down step while walking along an equilibrium surface
X L lattices and show that the width still scales with 1. is uncorrelated beyond a definite correlation length. This im-
This involves a representation of the equilibrium surface as plies that the interface width scales similar to the dispersion
RW inside aN-dimensional tube. In Sec. IV we present our of a random walker, i.eq=3.
numerical data for & X L lattice and generalize the so-called  Dissociative dimer dynamics circumvents this generic
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0.45 - roughness exponent does not indeed change. Consider a walk
R along the equilibrium XL surface from one edge to the
other(from x=0 tox=L). Thex coordinate plays the role of
04 f? 1 time and going up or down along the surface is the RW
é aspect. The walk does not obey the evenness constraint along
one specific channelj=1 or y=2, because dimers can be
deposited in two orientations, along and perpendicular to the
channel. However, if you walk twice, one time in each chan-
nel, then the constraint is still obeyed for the two combined
walks. The evenness constraint is weakened, but obviously
still present.
On a formal level, the connection between the random
' walk and surface roughness follows from the well-known
0 0.035 0.07 . . . o
1 transfer-matrix formalism for evaluating the partition func-
L tion of the surface. Let us first consider a 1D lattice with
FIG. 1. The effective values af in Eq. (2) vs the inverse ot monomer.-type dynamidmo evenness constrainThe Iabms
are shown for XL surfaces(diamonds, 2x L surfaces(circles, ~ N @ndno in the partition functionZ(n|ne) represent fixed
and 3x L surfacessquareswith L=16, 32, 64, 128, and 256. boundary conditions of the surface at both erdsn at site
0, andh=n at sitex. Z(n|ny)« obeys the recursion relation
picture by imposing a nonlocal constraint on the Gibbs dis-
tribution. Particles are deposited at each height level in pairs, Z(N[No)x+1=Z(N[Ng)x+Z(n—1[no)x+Z(n+1[no)y,
and therefore the RW must visit each level an even number )
of times. This is a nonlocal constraint, due to the dissociative

character of the dynamics. For example, on a locally fla . ) :
surface segment, two dimers are able to land next to ea e reinterpreted as the time evolution of a 1D random walker
' with Z(n|ng), the unnormalized probability to find the

other, but next, the two particles in the middle are allowed to " ) ' .
switch partners and evaporate together leaving two disconV@!ker at positiom at timet=x starting from positiom, at
nected monomers behind. Repeated processes such as fiae t=0. . . .

leave no local trace of the dimer nature of the dynamics, but €t Us generalize this to the two channel lattioenow
globally every height level needs to be occupied an evel?ECOMES & two-component vector; (ny,nz). The transfer-
number of times. In contrast, nondissociative dimer dynamMatrix-type recursion relation

ics obeys the constraint locally and therefore yields the

035 r

Olesr

03

0.25

hich is a discrete version of the diffusion equation and can

. . _ l .
conveqtlonal scaling exponent=3, just as monomer Z(Ny,Ny|Ng)yr1= > z(nl_ml,nz_mz|no)x1 (4)
dynamics. mq, My
IIl. SEMI-INFINITE LATTICES could be easily solved numerically because the transfer ma-

trix is still finite. However, for the sake of the evenness con-

We start with a generalization of the one-dimensional 1straint, we will pursue that Eq4) resembles again a diffu-
XL lattice results of Nohet al. to NXL lattices withN  sion equation and again can be reinterpreted as the time
=2,3, .... On the one hand, having several channels insteaglolution of a RW, but this requires some care and the intro-
of one weakens the evenness constraint and may be sufficietitiction of an absorbing wall.
to alter thea= 3 exponent. On the other hand, critical expo-  This is a walk on a 2D latticer(; ,n,). The dimension of
nents change typically only with dimension, and théée the walker's space is equal to the number of channels and not
channel lattices are still 1D systems at large length scales.to the dimension of the surfac&(1x) represents tha,

Our simulation results are shown in Fig. 1. We plot thecoordinate and(2x) then, coordinate of the walker at time
effective values ofe as functions of the system sizefor  t=x. For example, when the walker is located at $#g5) at
N=2 and 3, evaluated as time t=10, the surface height at sit&, 10 is equal toh

=4, and at sitg2, 10 equal toh=5.
IN[W(L)/W(5L)] The integer-valued summation labets and m, in Eq.
aef(L)= In2 : 2 (4) are subject to the RSOS condition that nearest neighbor
surface columns can differ only bh=0,=1. This trans-
The roughness exponent remains closertes for both N lates into two restrictions: First, at every moment in time, the
=2 andN=3. The convergence is not impressive but com-two coordinates of the walker can differ only by—n;
parable to that in the original one channel case. These large 0,=1. So the walk is restricted in thex{,n,) plane to a
finite-size-scaling corrections are explained at the end of thistrip centered along the diagonal;=n,, as illustrated in
section. Fig. 2. In other words, the walk remains quasi-one-

The numerical results fow suggest that we seek an ana- dimensional after all. Second, due to the same RSOS rule,
lytical generalization of the even-visiting random walk rep- each positional component andn, of the random walk can
resentation of the system and from that show that the surfagghange only by 0 ort1 during each time steg,=x—x
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with A, the largest eigenvalue of their transfer matrices. In
Eq. (3), \o is simply equal to 3, i.e., the same common factor
that normalizes the transition probabilities. Such a simple
common factor does not exist for E@l) because the num-
bers of sites to which the walker can hop are different at
diagonal and off-diagonal sites. This lack of conservation of
probability can still be incorporated in the random walk rep-
resentation by interpreting the boundaries of the strips as
so-called absorbing walls. In the absence of the walls, the
common factor would have been equal to The remaining
exponentially decaying factong/3%)* represents the absorp-
tion by the walls. Moreoven 3-type factors drop out of the
calculation of thermodynamic averages, which in the random
walk representation is equivalent to performing all averages
with respect to the so-called surviving ensemble only.

In a free 2D random walk, the fluctuations in the two-
components decouple. They do so also in our random walk
with absorbing walls on the strip, because we average over
the surviving ensemble only. This implies that in the direc-

FIG. 2. The 2L (2 channel equilibrium surface representation tion parallel to the strip, the root-mean-square displacement
as a random walk on a strip with absorbing walls. The surfacescales with the conventional power as
coordinate along the channel represents time in the random walk.

The surface heights in the first and second channel represent the &(H~t1? 8)
andn, coordinates of the walker. The shaded area is an example of

a plaquette with Ising spiB(2)= = 1. The heavy solid lines are the at time scales much larger than a characteristic correlation
absorbing walls. See the text for more details. time arising from the range of hopping distances of the RW
during each time step. The root-mean-square displacement in

+1. Itis easy to see that the walker can jump to only six newthe perpendicular directiorg, (t) remains finite due to the
positions from any diagonal sitey;=n,, and to only five ~Presence of walls. Thus we recoveithough in a somewha_t
from every off-diagonal oney; # n, (in addition to not mov- contrived manngrthe well-known result that for a semi-
ing at all. infinite 2XL lattice with L—«, the equilibrium surface
In the equilibrium Gibbs distributions for the RSOS Wwidth still scales as in 1D, withW=[{&(L)+&F (L)}/2]"?
monomer-type surface dynamics, all surface configurations- LY2
have equal probabilities. This is reflected in E4) by the Let us return now to the reason for constructing this ran-
fact that all transition probabilities are equal. However, thisdom walk interpretation, i.e., to deal with the evenness con-
recursion relation does not represent yet a proper Mastegtraint. For the one channel lattice, the core step towards the
equation for a random walk because it does not conservanalytic derivation ofa=3 was the introduction of Ising
probability. A Master equation needs to be of the genericvariables to keep track of where the RW has been before. An
form Ising spinS,= =1 was associated with each site, and flipped
for each time interval the RW resided on that site. The even-
ness constraint was enforced by requiring that at time
Z(n|Ng)es 1= >, wW(n’,nZ(n’|ng);, (5  all spins point in the same direction as at titlse0. We need
n’ only to establish a generalized equivalent formulation to
demonstrate that the surface roughness exponent retains its
and the transition probabilitiesw(n’,n), must conserve 1D valuea=1$ on the two channel lattice.
probability from any state’, i.e., Introduce an Ising spirs(n)=*+1 to each diagonal site
(n,n), and associate it with the plaquette consisting of sites
2 ;o (n—=1,n), (n,n+1), (n+1,n), (n,n—1), and(n, n) on the
2, w(n',n)=1. ®)  strip (shown as the shaded area for 2 in Fig. 2. This spin
is flipped for each unit time interval the walker resides on
. . . (n=1,), (n,n+1), (n+1,n), or (n,n—1). S(n) does not
The one channel transfer-matrix equation of motion, @By. flip when the walker resides on the diagonal site ) be-

is of this form; except that we have to divide all transition :
. cause then the number of occurrences of heighicreases
probabilities by a common factor, equal to 3. The two chan-

nel transfer-matrix equation of motion, E@) does not sat- by_an f?venhnumgeh(ll,ﬁ)=h(2,x)_=n. No];[fedt_hat tWCI) I_smg.
isfy Eq. (6). spins flip when the walker occupies an off-diagonal site, i.e.,

S(n) andS(n+1) for the site f,n+1).

In the one channel case, the Ising spins act as gate keepers
along the chain, and the RW cannot pass sitethout flip-
Z(n|ng)x~Ng., (@) ping its spinS(n). Similarly, in the two channel case, the

Partition functions scale in “timet=x exponentially as
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RW moves on the quasi-1D strip and again a line of Ising L5
spins act as gate keepers. Topologically and at large length 9
scales, the situations are equivalent and theredomeust be i
the same as in 1D. I

One detail seems different. On the chain, the walker is L ® i

unable to pass site without flipping its spinS(n), while on @9694; cﬁf
the strip, it can pass through plaquettewithout flipping TS ®
S(n). That might seem an essential difference, but it is not. A I

relaxed model where a spin is flipped stochastically when the 05

walker passes, was shown by Nehal. in the context of the

purely 1D surface to belong to the same universality class as

the deterministic spin flip model. This followed most clearly

from the transfer-matrix equivalence to Lifshitz tails in the 0
density of states of 1D fermions in non-Hermitian random

fields. The random walker is the fermion and the Ising spins L

generate the random potentiake Ref[5] for details. FIG. 3. Semilog plot of the mean-square displaceng@fit) of
The generalization tNXL surfaces is straightforward. he random walk in the tube described in Sec. IV as a function of

The RW moves in &\-dimensional tubdi.e., still remains (ime | for 2<L <40 with the total random walk time equal to the

effectively 1D and the evenness constraint still requires onlygimension of the tubular random walk spadeThe solid line fits

a single line of Ising spins positioned along the body diagothe form ¢2(L)=0.272InL as predicted by Eq11).
nal of the tube. Each flips when the walker comes within

range;S(n) flips every time any coordinate of the RW posi-
tion is equal ton. We conclude from the above evenness- W3(L)=
constrained RW construction that the roughness exponent

must indeed retain its 1D value= 3 for all finite N. ) ) ] ]

Let us return to our numerical results. The shapes of thdith K¢ the so-called effective Gaussian coupling constant
curves in Fig. 1 represent so-called finite-size-scaling corredhat in the RSOS model &t— = (our numerical simulations
tions. These corrections are larger and more complex thafkes the specific valués=0.9[8]. The goal is to find out
for the purely 1D one channel latti¢&]. This can be under- how the evenness constraint affects this on a global scale.
stood qualitatively as follows. Fdi=1, the evenness con- [N the random walk representation of the preceding sec-
straint is ineffective at small such thata.y [see Eq.(2)]  tion, we need to take the limit where the dimension of the
decreases monotonically from a value near the free uncoriube (N) and the random walk timel) diverge simulta-
strained RW exponent=1 at smallL towardsa=1% at L neously, as\=L—o. This diminishes the usefulness of the
— 0. [A characteristic crossover system sizeould be con- RW representation. For example, according to &), the
structed in terms of the ratio betwednand length scale foot-mean-square displacement of the RW along the body
Lied(L) over which the surface fluctuations are unimpededdiagonal of the tube must scafer monomer dynamigsas
by the evenness constraiht;.{L) is defined in the healing
time argument of Sec. 1V. &(L)~(LInL)*2 (13)

In contrast, theN=2 andN=3 curves start off from a o _ . .
value near 0, overshoat= %, and then bend backwards. At ThIS might seem at odds ywth the canonlgﬂ power im-
smallL<N, the surface behaves as if it is 2D and as if theplied by the RW interpretation; but only until one remembers
evenness constraint is absent, i/~ (InL)*2 This ex- that the walk is truly random only at time scalesmuch
plains why the curves start off at=0. The surface starts to larger than a characteristic correlation time arising from the
behave one dimensional beyohe-N, but initially remains ~ maximum hopping distance of the walker during each time
still unaware of the evenness constraint, such thatdhe Step, and realizes that the latigrojected along the tube’s
curves in Fig. 1 overshodtowardsa=2) and only back body diagonalis proportional toyN, and thus diverges si-

1 10

27TKGmL, (10)

over at largei. where the evenness constraint kicks in. ~ multaneously withL. For the sake of curiosity, we checked
and confirmed Eq{(11) numerically. Figure 3 shows the
IV. ROUGHNESS ON L XL LATTICES average root-mean-square displacemea(L)z[{gf(L)

+£%(L)}L]Y? of the RW as a function of = N.

We now turn our attention to dissociative dimer dynamics  Before we present our numerical results for the evenness-
on atruly 2DL XL lattice. For monomer-type dynamics, it is constrained surface width in 2D, we like to present an edu-
well known that the height-height correlation function di- cated guess of what the behavior might be by generalizing
verges logarithmically, the so-called healing length argument of Nethal. [2] from
1D to 2D. This argument was the least rigorous of their ana-
lytical results, but explained the anomalous exponests

= — 2y
9N ={(Pr+ry=hr)) 7Kg Inr, © at a simple intuitive level. In 1D and also for all our semi-
infinite N X L surfaces of the preceding section, the argument
and the surface width scales as runs (in a somewhat modified forjras follows.
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Consider the semi-infinitBl X L surface. There must exist 0.9
a crossover length scalg, larger than the surface widtk
but much smaller than the total channel lendgthwithin
which the evenness constraint can be ignored and the surfaci

fluctuates freely such that the surface width increases as 07 ,// g )
L
W( Lfree) -~ Lfreellzv (12) NB e . :":‘.’/‘6

just as in 1D monomer dynamics. The basic premise of the
healing length argument is that at larger length scales the
surface must be preoccupied satisfying the evenness con

; . . oy
straint such that the surface width does not increase any fur- L
ther. Then, we need only to find out hdwg,. scales withL. 03 [ s . .
Divide the surface strip @x<L into segments of length 23 24 23 26
Liee- Choose one of these segments and mark all surface L(L/WUZ)

heights that are visited an odd number of times in that seg-

ment. It is known that these defect surface heights are uni- FIG. 4. Semilog plots of equilibrium surface width®? on L
formly distributed within the rangeh|<O(W) such that XL lattices for monomer dynamicésquares and dissociative
their number is also proportional ¥ [5]. Suppose that the dimer dynamicgcircles both as functions of. The slopes of the
surface compensates for these defects one-by-one along teigaight-line fits yield the values d{¢ [defined in Eq.(10)]: K¢
rest of the strip(ignoring that the additional surface fluctua- =0.916 (monomey and 0.988(dimep. The diamonds show the
tions introduce new defects as well as repair, simultaneouslygame dimer dynamics data plotted\a$ vs L/W*2 That line has
other old ones The average root-mean-square distance th&arly the same slope as that with the squaresnomer dynamids
surface must fluctuate vertically to reach that specific defect®Ke=0.914 in agreement with E417).

height i i ional h i ical
eight is again proportional ta, and that requires a typica The crucial features are the logarithms and the 1/4 power.

horizontal length intervalhx~Lgee. SO every segment of The f qinate f the | ithmic di f
length Lgee leads to only one repair on average. Since there € former onginate from the loganthmic divergence ot un-

: constrained surface roughness in 2D and the latter from the
need to baw of them, it follows that scaling of the number of blocksL(Lee®, with dimension
D.
L
1 ~W, (13 Compared to the conventional logarithmic divergence,
free Eqg. (10), the lattice sizel is replaced by a logarithmically

modified effective lengthl_qee~L/(In L)Y Logarithmic ef-
fects are notoriously difficult to confirm numerically, except
L~WW2 and W~L3 (14) when you expect them.
' In Fig. 4, we present our numerical simulation results.
g . . 2 .

such that for allNXL lattices the roughness exponent is 1 ne equilibrium surface width* for monomer and dimer
equal toa=1. dynamics are plotted on semi-log scales as functions of the

For the generalization of this argumentltocL lattices, ~ SySteém size. for L=8, 16, 32, and 64squares and circles,
we divide the 2D lattice in blocks of Sidg, X L ee. Within respectively. The slope of the monomer curve cgnﬁr_ms the
each block the surface fluctuates as if the global evenned@lu€Ks=0.9 of Eq.(10). The dimer roughness line is also
constraint does not exist, and the surface width scales &t linear, but with a reduced slope, which means that its
W2~ (27K &)~ In Lyee. Assume that oddly visited surface surface roug_hness cou!d be f|tténj_1 this range of Iength_
heights are uniformly distributed just as in 1D and therefore>c@/€$ by @ simple logarithm, but with an enhanced effective
that their number is proportional td/. The same repairing Kg. However, when we plotv versusL/W as sug_ges_ted
scheme as above predicts again one repair on average g&f Eds-(16) and(17), the slope of theagain straightline is

and, using Eq(12), that

block, i.e., the same as in the monomer case, i.e., we regain the correct
value of K. Therefore, we conclude that for dissociative
L \2 dimer dynamics, Eqg16) and(17) are indeed correct. In the
(L ) ~W, (15 next section, we put this result on a more rigorous analytic
free footing.

and therefore
V. SURFACE ROUGHNESS IN RANDOM MEDIA

L~ WY%e2KaW, (16) Solid-on-solid models come in several variations. The
RSOS model we used above, where nearest neighbor col-
In the limit of largeL, we can invert Eq(16) to umns can differ only byAh=0, +1, is the most convenient
for numerical simulations. The so-called discrete Gaussian
W2(L)~ In L _ 17) model [9,10], Whert_e th_eAh refstriction is relaxed and re-
27Kg | (InL)Y* placed by a Gaussian interaction energy
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E 1 ) (21) is the partition function of a surface restricted to fluctu-
Alh]=—==>K > (h,—h;)? (18)  ate between two such hard walls
between nearest neighbor columhs,andh,, (the meaning Z,f:E H 0(E—1|h]) [exg(—A[h,]). (22
{ht| r

of the () brackets in the summatipnis more appealing in r
analytical discussions. In this section we use the latter. T

'It'_?_e gl;)balt_evenneﬂs]s (;olrrstrglnt can be mgo}rc_porqtetd n thI%ngth scale behavior. First, below the equilibrium roughen-
partiion function n the following manner. Detine integer- ing transition the integer-valued height variablgs=0, =1,
valued variables,, one for every surface height. Notice _

that th A iated with ific latti it +2, ..., can be approximated by real-valued continuous vari-
at they are not associated with any Specilic 1atlice Sitey, o q \yith the coupling constalitrenormalized to its Gauss-
Eachvy, is equal to the number of times surface height level

h in th ii fi i Th tition f ian valueKg. This is well known from the theory of con-
appears In the specific contiguration. 1he partiion TUnc~ g yti4n4) syrface rougheni§-13]. Second, we can replace

tion, subject to the global evenness constraint, can be Writte{he hard impenetrable walls by soft ones and approximate
as
by

he two following modifications cannot affect the large

zZ=, [H E(1+zvh)
[ h 2

exa—Alh D), (19 Z,= {;} 8((h2)— e?)exp—Alh,]), (23)

with fugacity z=—1. Every configuration in which any of where the trace runs over ordinary configurations of the

thevy’s is odd receives zero weight. Gaussian model but restricted to the subset where the root-
Next, we introduce randomness degrees of freedpm mean-square surface width in each configuration is equal to

=0, 1 associated with those same surface height levels and The evaluation ofZ, is elementary. Compared to the

write the partition function as Gaussian partition functiorg, =2, exp(~Alh]), it gains

an exponential factor,

Z= ex;{—; (ucop+Iin2)—Alh ], (20

§§~ dm; eXF{—%KGZ, (hr_hr/)z
with z=exp(- ). Equation(20) can be interpreted as the thel r.r’)

partition function of an equilibrium surface in the presence

of annealed random external fields,} that suppress the +27-rim2 (h?—gz)

occurrences of specific surface heights. The noise is global in '

the sense that the random variableaffects surface height ~ Zyexp] —agL2 exp( — 4mKgé?)], (24)

level h equally at every positiom along the surface. For

every occurrence of height leve) the Boltzmann weight is  \yherea,= 7/16. Finally, the surface width of the annealed

multiplied by a factoz whenc,=1 (and not ifc,=0). The  gnsemble average follows from Eqg1) and (24) using the
fugacity parametez allows us to interpolate between mono- method of steepest descent as

mer and dimer dynamics becausezatl we retrieve the
conventional discrete Gaussian partition function.

We are following in this closely the analogous formula- ; §2P(2§)Z§
tion for the 1D surface by Nobkt al.[5]. They found that in Weme ———
1D z=0 acts as a special point, a stable fixed point in the 2 P(28) 2,
sense of renormalization transformations with alll<z é

<1 as its basin of attraction. We will show that this remains

true in 2D. > ex—2£In2—agl?exp( —4mKgé?)]
The limit z=0 is special. The fugacity Boltzmann factors é H 0 a ¢

becomes functions,z®’n— §(cvy), such that the surface is

strictly prohibited to pass through all height levels for which > exfd —2éIn2—agl? exp( — 47K gé?)]
¢,=1. Each of them acts as an impenetrable barrier and the ¢

surface is restricted in its vertical height fluctuations to wan- 1 L

der between two such randomly placed walls. The partition " SnKg In (N7 (25)

function factorizes and reduces to
This is the same scaling form as proposed in the preceding
= P(26)Z, 21 section from the healing argument, EG7).
% (26)2, @1 The above derivation remains equally valid for small val-
ues ofz aroundz=0. There, the surface can tunnel through
where P(2¢) is the probability of finding two neighboring the walls, but with exponentially small probabilitigsropor-
c,=1 walls at a distancAh=2¢ apart. Walls are placed at tional to the length of the intersection contouestually re-
random with probability; such thatP(2¢£)=272¢. Z,in Eq.  sembling more closely the soft walls in the above derivation.
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At the positivez side, it is intuitively reasonable that=1  apart. They favor integer values lof That free energy scales
(the monomer dynamics points the horizon and limiting logarithmically with distance, and a single one costs, there-
point for this type of scaling. At the negativeside, the fore, an amount of free energy=(w/Kg)InL or f
horizon extends to and apparently includes the paimt = (w/Kg—2)InL if we allow it to be at any position in 2D
—1. The numerical results and also the healing argument adpace. The temperatuke; = /2 where the latter is equal to
the preceding section suggest this. This is also intuitivelyzero is the famous KT estimate for the transition tempera-
consistent. Negative values nimply an imaginary chemical ture. (Recall that the coupling constaKi; is measured in
potential and therefore a mix of positive and negative Bolt-units ofkgT such that g~ T~ 1). This is how this works for
zmann weights that cancel out against each other; this emnonomer dynamics.

hances the exponentially decaying nature of tagnn For dimer dynamics the two sine-Gordon “charges” inter-
weight factors, and preserves this decay ever-at- 1. act logarithmically, just as in Eq26) but only at distances
smaller thanlL .. Closer to the lattice size the interaction
VI. ROUGHENING TRANSITIONS levels off such that a single excitation now costs

The surface is presumed to be above the roughening tran- -
sition temperaturd g in most of the above discussion. For f= i INLfee—2InL. 27
example, although Egg19) and (20) apply to all T, it is ¢
correct to approximate the discrete Gaussian height variableg,g yields, by setting =0 and using Eq(17),
by continuous Gaussian ones only for Tg. Everywhere in
the rough phase the global surface roughness has a logarith- 1 bo+In(InL)*
mic correction, Eq.(17), to its conventional simple loga- Ke=5m1-——mi | (29)
rithm. The natural question arises whether and/or how this

influences the nature of the surface roughening phase transjsiin ) a constant. This is a significant finite-size-scaling
tion. In this section we will show that the evenness constraintqrrection. both in magnitude and in the slowness with

has no effect on the properties of the roughening transition iy hich it scales with.. The transition appears to happen at a
the thermodynamic limit, but gives rise to strong finite-size-higher temperature. For example, lat 1000 (larger than

scaling corrections, including an apparent shift in the transiy, ost experimental surface heterogeneity lengtta), the
tion temperature. ) . shift is of order
Equilibrium surface roughness has been a topic of active

research over several decades. The roughening is an example ATk In(InL)¥
of a Kosterlitz-ThoulesgKT) transition[14]. Experimental T—:T~7%. (29
realizations include helium crystal surfadd$], metal sur- R
faces[16], and organic crystalgl7].
The anomalous roughness exists only at a global scale. VIl. EXPERIMENTAL REALIZATIONS

o N 1/4 .
Within the crossover length scalgree—L/(InL)™" (defined The scope of this paper is foremost theoretical, i.e., to

in Sec. IV), the surface fluctuates freely in disregard of the how h inalv benian tonological tion |
global evenness constraint; i.e., inside the bulk the equilibrS ow how a seemingly benign topological conservation 1aw
rium surface remains indistinguishable from that in monome n t_he dynam|c_s s'grongly affects the eq“"'b““”_‘ state. Ex-
dynamics, and since phase transitions are ruled by the bulﬁerlmental reallza_tlons of th_e evenness constraint _shoul(_j be
ossible to establish, but this requires careful considerations

::Tssrsoughenmg transition must remain in the KT unlversalltyand collaborations with experimentalists. For example,

The “evenness boundary effect” is, however, very Strong_molecular-type bonded molecules such gsdok promising,

We will approach this from the perspective of the original bgt li\nfortutnz?;ily, mir?to\l/:/d ?:]tr;e dmcrzle;:ules dc;i nr?tvv(ijtlrfsogr_i f
argument by KT where they estimated the transition temai€- AS @ starting po € Incude here a sectio abrie

perature by the free energy of a single vortex in, e.g., superg'sg?nis'lz n r?}g:;];smgjéﬁsgsngslr;egﬁzreni'e ant and perfectl
fluid films [14]. The discreteness of the height variables, _ >'P'€ | ! _pertectly
suited to discover fundamental scaling laws associated with

=0,=1,%=2, ..., in the discrete Gaussian solid-on-solid model - ) .
plays the same role as those vortices. This might be somg_urface growth, but they are rather simple minded when it

what surprising, but follows mathematically from a so-calIed_cl:_(;rgseeS dga:FeacjkL?]geo?ilgicéf i?n;?;t \r’(\;'wthaﬁ;lﬁl r:;gﬁgcrjn:?]tis'h
duality transformatiori11]. In the rough phase, the heights level of histication i y tg 43l Th 9
can be treated as continuous variables and this represents tﬁ#e of sophistication n recen yeafss]. € evenness

“vortex-free phase.” Consider the so-called sine-Gordon® ect represents a topological feature that will be preserved

correlation function in the Gaussian model, in which this with increased realism. After |dent|fynjg a suitable experi-
are continuous mental system, the evenness constraint needs to be embed-

ded into the appropriate more detailed theoretical descrip-

(exp{ZTri(hHrO—hro)]>=exr[—%(277)2g(r)]~r*2”’KG, tion. However, at this stage, it suffic_es to focus on general
(26) aspects, in particular those that possibly upset the conserva-
tion law.

[see also Eq9)]. The logarithm of this is the free energy of  The condition in our model that th¥, molecules land
placing two topological objects, exp@ih), at a distance only horizontally is not a serious constraint, because the mol-
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ecule must dissociate as well. The latter requires that thehange the global width. It still scales anomalouslyVss
binding energy between the two atoms be weaker or at best L', just as in purely 1D surfacd®,5].
be of the same order of magnitude as the bonding energies In truly 2D L X L surfaces, the global surface roughness is
inside the solid. In that case, both atoms strongly prefer to balso anomalous, but the effect is weaker. The surface width
close to the surface, and a vertically landed molecule willscales logarithmically as
quickly decay. )

A more serious issue is surface diffusion, which is omitted WA(L) ~INn Lpree (30
in our model. The evenness constraint is preserved as ang &inilar to conventional monomer dynamics, but with a loga-
a surface wanders around on the same terrace, but is lo {

. s 108 hmically corrected effective surface size
when surface atoms jump across steps to lower or higher

levels. Diffusion across steps is reduced by the presence of L
so-called Schwoebel barridrs9]. If those barriers are strong Ltree™ (nD)™ (3D

enough, the jumps will occur infrequently enough that the
evenness constraint remains satisfied at length scales largée surface roughening transition does not change in nature,
compared to the heterogeneity length scale of the experimemut its location is subject to a large and slowly varying loga-
tal surface. The latter is the length scale at which defectgithmic finite-size-scaling shift, E¢29).
such as impurities pin and limit the surface dynamics; this These results remain valid when the evenness constraint is
length rarely exceeds 1000 A. only statistically obeyed. Moreover, the analytic derivation in
Moreover, recall that the anomalous surface roughness iSec. V involves a mapping onto a surface model with an-
stable with respect to a variation in the fugacity parameter nealed randomly placed barriers, placed horizontally to the
in Eq. (19), i.e., it remains present when the evenness consurface, that inhibit the vertical surface fluctuations. The sur-
straint is not strictly obeyed but only statistically. Thereforeface roughness of those surfaces behaves the same as the
it might well be that diffusion across steps preserves the&venness constrained ones.
anomalous roughness beyond the above estimate. This issueFinally, 2D represents a critical dimension for ordinary
needs further theoretical study. equilibrium surface roughness. This follows trivially by
Finally, the search for experimental realizations need nokvaluating the surface roughness in the Gaussian approxima-
be limited to dimer-type dynamics. The anomalous globakion, W~ L, with a=(2— D)/2 (logarithmic inD=2). The
surface roughness exists and is the sameXfptype disso-  surface width does not diverge in dimensioBs>2 and
ciative dynamics with anp>1. This was found to be true the surface remains asymptotically flat. Still, the healing
earlier in 1D[5], and follows also in 2D from generalizing length and random field arguments can be generalized to

our analytic arguments. higher dimensions: Lee~L2P/@H0) and W~ (Lied®
~LPE=D)(2+D) 5o, for example, irD=3, monomer dy-
VIll. SUMMARY namics yieldsW~L %2 and dissociative dimer dynamics

In this paper we studied how equilibrium surface rou h_W~L*3’5. The evenness constraint always flattens the sur-
pap q INtace at a global scale.

ness in two-dimensional surfaces is affected by a global con-
straint that every surface height be present an even number
of times in every configuration. We presented numerical and
analytic evidences. This research is supported by the National Science Foun-

In semi-infiniteN X L surfaces, the evenness constraint isdation under Grant No. DMR-9985806, and by the Brain
weakened compared to thexL surface, but not enough to Korea 21 Project.
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