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Localized random lasing modes and a path for observing localization
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We demonstrate that a knowledge of the density of states and the eigenstates of a random system without
gain, in conjunction with the frequency profile of the gain, can accurately predict the mode that will lase first.
Its critical pumping rate can also be obtained. It is found that the shape of the wave function of the random
system remains unchanged as gain is introduced. These results were obtained by the time-independent transfer
matrix method and finite-difference time-domain methods in a one-dimensional model. They can also be
analytically understood by generalizing the semiclassical Lamb theory of lasing in random systems. These
findings provide a path for observing the localization of light, such as looking for the mobility edge and
studying the localized states.
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Localization theory and laser theory were both developed In this paper, we explore the evolution of the wave func-
in the 1960s. The propagation of quantum and classicaion without and with gain, by the time-independent transfer
waves in disordered media is well understddf] while laser  matrix theory[15—-19, as well as by time-dependent theory
physics has been well establishgd3] at the same time. It [12,13. The emission spectra can also be obtained. In addi-
was always assumed that disorder was detrimental to lasirigpn, we can also use the semiclassical theory of laE2g]
action. However, Letokhoy4] theoretically predicted the to obtain analytical results for the threshold of lasing, as well
possibility of lasing in a random system, called a “randomas Which mode will lase first. This depends on the gain pro-
laser.” Only after the experimental observations by Lawandyfile, as well as on the quality fact@ of the modes before
et al. [5], were random laser systems studied intensivelygain is introduced.

[6—19). Since then, many experiments have been carried out Our system is essentially a one-dimensional simplification
that showed a drastic spectral narrowji6§and a narrowing  Of the real experimentg8,9]. It consists of many dielectric

of the coherent backscattering pda. Recently, additional layers of real dielectric constast,=2.56 (&¢ is the di-
experiments[8,9] showed random laser action with sharp electric permeability of free spacef fixed thickness i,
lasing peaks. To fully explain such an unusual behavior of=100 nm), sandwiched between two surfaces, with the
stimulated emission in random systems, many theoreticadpacing between the dielectric layers assumed to be a ran-
models were constructed. John and P&h@] studied the dom variablea,=ay(1+ W), whereas=200 nm and\ has
random lasing system by combining the electron numbef random value in the range ¢f-0.7,0.7. We choose a
equations of energy levels with the diffusion equation.30-cell random system, as the first system of our numerical
Bergeret al.[11] obtained the spectral and spatial evolutionstudy. In Fig. 1a), we present the results for the logarithm of
of emission from random lasers by using a Monte Carlothe transmission coefficient as a function of frequericy
simulation. Very recently, Jiang and Soukouli2,13, by  These results were obtained by using the transfer matrix
combining a finite-difference time-domaiffDTD) method  techniques introduced in Refl5]. Notice that we have three
with interplay of localization and amplification. They ob- typical resonance peakslenotedP,, P,, and P3) in the
tained[12,13 the field pattern and the spectral peaks of lo-frequency range of 600 to 660 THz. As one can see from Fig.
calized lasing modes inside the system. They were able td(a), the linewidths of the three modes are differd®4. has
explain[12,13] the multiplepeaks and the nonisotropic prop-the smallest linewidth and therefore the larg@stwhile P,
erties in the emission spectra, seen experimenf8l§]. Fi-  has the largest linewidth and therefore the small@siVe
nally, the mode repulsion property which gives saturation ofhave also numerically calculated the wave functions corre-
the number of lasing modes in a given random laser systersponding to these three peaks and indeed find out that the
was predicted. This prediction was checked experimentallynore localized wave function is the one with the larger

by Caoet al.[14]. All the results above were obtained for the case without gain.

One very interesting question that has not been answered According to the semiclassical theory of laser physics
by previous studies is, what is the form of the wave function[2,3], we generally use a polarization due to gy,
in a random laser system? How does the wave function in e epx(w)E=¢¢[ x'(w) +ix"(w)]E to introduce amplifying
random system change as one introduces gain? Does theedium effects. Both'(w) and xy"(w) are proportional to
wave function retain its shape in the presence of gain? Anthe outside pumping rat®, and can be expressed by the
other very interesting point is whether we can predigiri- parameters of the gain mater{&0].
ori which mode will lase first. What will be its emission  To determine which peak will lase first, we can again use
wavelength? If we understand these issues, we will be able tie time-independent transfer matrix mettjede Eq.(4) of
design random lasers with the desired emission wavelengthRef. [15]] with a frequencyindependengain, which means
In addition, we will be able to use the random laser as a toothe width of the gain profile is very large. It is well under-
to study the localization properties of random systems. stood that time-independent thedid5—-19 for random la-
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FIG. 1. (a) Logarithm of transmission coefficient vs frequency -
of a 30-cell random system with three typical peaks. The dotted line ox109 s . \/\/\/\/\N\/
shows the frequency dependence of the gain prdfileLogarithm 0 500 1000 1500 2000
of the transmission coefficient yg' for the three peaks shown in X,
(a) with a frequency-independent gaig” is proportional to the ) o
pumping rateP, . FIG. 2. Amplitude of the electric field of the 30-cell system vs

x/Xg, With Xo=5 nm, for the pealP, in Fig. 1a.(a) Without gain,

sers can be used to obtain the threshold for lasing. At thresfiacident fieldE;,.=1 V/m; (b) with near-threshold gainR, =7.2
old, the transmission coefficiefit goes to infinity. In Fig. X 10/s), incident fieldE;,c=1 V/m; (c) the lasing field with over-
1(b), we plot log(T) versusy” for the three peakB;, P,, th_reshold pumping rateP(,=_2>< 10'/s) . Bc_)th (.a) and _(b) are ob-
and P5. In Fig. 1(b), P5, which has the large€®, has the tained by the transfer matrix method while) is obtained by the
smallest threshold for lasing. So, in the frequency-FDTD method and laser theory.
independent gain case, the transfer matrix method indicates
that the mode with larges) will lase first. We have also shape remains almost the same. This is a very interesting
used the transfer matrix method with a frequency-dependemgsult, which is generic since it was also obtained for other
gain profile, given as a dotted line in Figal We choose the localized or “extended” states.
central frequency ab,= w,/2m=618.56 THz, which is ex- To check if indeed this surprising property is also present
actly betweenP; and P,, and its width to beAf, is the full time-dependent theofi2,13 of semiclassical la-
=Aw,/2m=15 THz. In this case, when we increase theser theories with Maxwell equations, we repeat our calcula-
pumping rateP, , we find thatP, will lase first and therP;.  tion for this case too. While in the time-independent theory
So two important conditions determine which mode will laseevery mode is independent and amplification is not saturated,
first; the first is the quality factor of the mode and the secondhis is not true for a real lasing system. In a real lasing
is the gain profile. Experimentally, quite often only part of system, modes will compete with each other. As was dis-
the random medium has been pumped. Then a third factgussed in Ref[12], in a shortsystem, the first lasing mode
comes in, i.e., the spatial overlap of the mode function andvill suppress all other modes, so we observe only one lasing
the gain region. mode even for a large pumping rate. This is exactly the case

The next issue we address is the shape of the wave fungvhen we use the FDTD method to simulate our 30-cell sys-
tion, as one introduces gain. In Fig(a® we present the tem with an over-threshold gain whose gain profile is the
amplitude of the electric field versus distance fér same as given in Fig.(d). At first, the electric field is a
=626.6 THz, which corresponds to the pdakof Fig. 1(a).  random one due to spontaneous emission; then a strong las-
In Fig. 2b), we show the wave function with near-threshold ing mode evolves from the noisy background and a sharp
gain at the exact high-peak frequencyRy. Both Figs. 2a) peak appears in the emission spectrum after Fourier trans-
and 2b) are obtained by the time-independent transfer maform. The stable field profile of the FDTD calculation is
trix method. Notice that in the presence of gain, the shape dfiven in Fig. Zc), where the wave function is the same as in
the wave function in Fig. (®) is almost the same as that Figs. 2a) and 2b), but the amplitude is very large. The
without gain in Fig. 2a). The only change is its amplitude, emission spectrum of this case is obtained, and gives a sharp
which increases uniformly. Actually, by keeping the incidentpeak very close to the resonant pé&kof Fig. 1(a). We also
amplitude the same, when we increase the gain from zero tohecked the wave functions as well as the lasing threshold as
the threshold value, we find that the amplitude of the waveve shifted the gain profile. If the central frequency of the
function increases from a small to a very large value, but itgain profile is neaP;, the P; mode will lase first, and the
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shape of the wave function d?; remains unchanged. We 40
have also checked the above ideas for a larger £, where

¢ is the localization lengthsystem. In such a strong local-

ized case, the form of the wave function remains unchangec

as one introduces gain.

The numerical results that are presented above can b 20
explained by the semiclassical Lamb thed®] of laser
physics. According to Lamb theory, the Maxwell equation of |
the random laser system can be written as

Ahial

IE(X,1) G2E(X,1) 0
—V2E(X,t) + poo pm +M08(X)T
log,(T)
‘92Pgain(xat)
= o & N

460

where u is the permeability of free spac&(x,t) is the
electric field, and the dielectric constastx) is determined
by the random configuration of the systemis not just the
common conductivity loss, but can be interpreted as the totd]
mode loss including the surface loss of the system by radia>
tion. The polarization due to gaiy,i,(x,t) [20] is the same

as the one defined above.
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FIG. 3. Logarithm of the transmission coefficiefitthe emis-
sion intensityl ., and the gain profile vs frequendyfor a 80-cell
ramdom systems. In the inset, wave functions of two modes are

Equation (3) is the time-dependent amplitude equation.

We assume that the system satisfies the slowly varying'r_sf we can use it to determine the'threshold condition when
approximation(it is always satisfied if we care about the —x"(@)=1/Qy. For our system, with homogeneous pump-

stable lasing staje So E(x,t) =Eq(t) ém(X)exp(—iot) (our  ing, we have
later discussion shows that the separation of the spatial and

time parts of the wave function is reasonablghereE(t)

is the field amplitudeg,(x) is the normalized wave func-

tion, andw is the frequency of the field. The surface loss of

1+4(wa— Q)P Aw?

o 4

the mode isr,=eqw/Qp,, WhereQm is the quality factor of  \where Co=[(ay+bg)/ao](YcMeeowal w,/ ¥, Ng7018?) is a
the mode. Thus, we get two equatid@s for the real and the  constant. Equatiof¥) indeed shows that the threshold value

imaginary terms of Eq(l):

of lasing is inversely proportional to the quality facQr

Second, Eq(3) gives us the stable amplitude of the field

VZhm(X)+ pole(X) +eox' (X, @) ]0?dpn(x)=0,  (2)

when the gain is over threshold. Actually, the gain is satu-

rable, x"(w)xAN«1/(1+C, E|?) [20], in real systems
and in our FDTD model[12,13. With an over-threshold

IEm(1) :( 1 )sowEm(t) @

ot —x'(@0)— 5~

m

gain, Ey(t) will increase and the gain parametgf(w,E)
2¢ will decrease until—x"(w,E,)=1/Q,,; then the field is

stable. So Eq(3) also determines the amplitude of the stable

where ;zfgs(x)dx/L is the spatially averaged
dielectric constant inside the system, ang’(w)

field for over-threshold pumping cases.
Our numerical and analytical results clearly suggest that
states of the random system with gain can easily lase, pro-

= [5dm(X)* X" (X, @) pu(x)dX/L is the spatially averaged vided theirQ factor is large. These findings provide a path
gain. The last integral is done to take into account the overfor observing localization of light. Since localized states
lap between the wave function and the spatial region of gainhave largeQ values, they will lase with a small pumping
Equation(2) determines the field distribution, quality fac- rate. On the other hand, strongly fluctuating extended states
tor Qp,,, and vibration frequencw of the lasing mode. The have smallelQ values because of the radiation loss on the
term eox’ (X,w) will cause the vibration frequency to shift surface of the system and can lase only after a stronger
away from the original eigenfrequency of the mode, calledoumping. In a real experiment, even in the presence of ab-

the pulling effect For a well-defined mode, general,,
>1, we need a very small gain to lase. Thel(x,w)<<1,
the pulling effect is very weak, and=Q,,, where(},, is

sorption, if the gain profile is close to the mobility edge,
there is going to be a discontinuity in the critical pumping
rate needed for lasing. Localized states will lase first at a low

the eigenfrequency of the mode. So the wave function of thgumping rate, while extended states need a high pumping
lasing mode should be similar to the eigenfunction of therate. In Fig. 3, we present the results of for the density of
mode. Theoretically, we can use the perturbation method tetates vs frequendyfor a 1d quasidisordered system. On the

obtain w and the wave function.
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=468 THz and the other “extended” dt=485 THz. In  results clearly demonstrate that the shape of the wave func-
addition the emission intensity, vsf is also shown with gain  tion remains unchanged as gain is introduced into the sys-
P,=101/s, which demonstrates that the localized modegem. The role of the gain is to just increase uniformly the
will lase first. In a more realistic 3D case, we expéclvs  amplitude of the wave function without changing its shape.
frequency to have many peaks for the localized region andhese results can be understood by generalizing the semi-
no peaks in the extended region for a given pumping ratelassical Lamb theory of lasing in random systems. These
[21]. It would be very interesting if this discontinuity can be findings can help us to unravel the conditions for observing
observed experimentally. the localization of light, as well as for manufacturing random
In summary, we have used the time-independent transfeéasers with specific emission wavelengths.
matrix method and the FDTD method to show that all lasing
modes come from the eigenstates of the random system. A
knowledge of the eigenstates and the density of states of the Ames Laboratory is operated for the U.S. Department of
random system, in conjunction with the frequency profile ofEnergy by lowa State University under Contract No.
the gain, can accurately predict the mode that will lase firstW-7405-Eng-82. This work was supported by the Director
as well as its critical pumping rate. Our detailed numericalfor Energy Research, Office of Basic Energy Sciences.
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