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We study the statistics of wave functions in a ballistic chaotic system. The statistical ensemble is generated
by adding weak smooth disorder. The conjecture of Gaussian fluctuations of wave functions put forward by
Berry [J. Phys. A10, 2083 (1977] and generalized by Hortikar and Sredni¢ihys. Rev. Lett80, 1646
(1998; Phys. Rev. B57, 7313(1998] is proven to hold on sufficiently short distances, while it is found to be
strongly violated on larger scales. This also resolves the conflict between the above conjecture and the wave
function normalization. The method is further used to study ballistic correlations of wave functions in a random
magnetic field.
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INTRODUCTION IMGedry,fs)

C(rl’rZ):fdrlm—Gc(rr)’ 3
Understanding of statistical properties of eigenfunctions s

of a quantum system whose classical counterpart is chaotighereG. is a semiclassical Green’s functig4]. This pro-

and their relation to the underlying classical dynamics is ongosal was supported by the observat[@j that the result

of the key problems studied in the field of quantum chaosgptained in Ref[6] for two-point correlations in a diffusive

Among various applications, wave function correlations aresystem is consistent with the Gaussian statistics.

important for statistics of electron transport through quantum The conjecturg1), (3), while physically very appealing,

dots, see Refd.1,2] and references therein. It was conjec- gpyiously requires a formal derivation. Furthermore, when

tured by Berry[ 3] that an eigenfunction of a classically cha- taken literally, this conjecture contradicts the wave function
otic system(*billiard” ) can be represented as a random SuUngrmalization,

perposition of plane waves with fixed absolute vatus the

wave vector(determined by the enerdy?/2m=E, wherem

is the mass and we sét=1). This implies Gaussian statis- f dr[ (|2 () g2(r D)= (2D #*(r)[)]=0, (4)

tics of the eigenfunction amplitudé(r),
since the integrand is equal @?(r,r’)>0 according to Eq.

B o s o, , (2). Therefore, limits of validity of this conjecture have to be
P{yecex _EJ dordr’ g (r)C(r,r)¢(r") |, (1) understood. All this points to a need of a systematic study of

wave function statistics in ballistic systems, which is the aim

determined solely by the correlation functiome consider a of the present paper.

two-dimensional system
EIGENFUNCTION STATISTICS IN A BALLISTIC SYSTEM

Cry,r) =" (r)p(ra))=Jo(Klri—ra/v.  (2) In order to speak about the wave function statistics
P{y(r)}, one should first define an ensemble over which the
Here =1 or 2 for a system with preservedespectively, averaging goes. Such an ensemble can be gendraldyy
broken time reversal symmetry/ is the system area, adg  adding to a system under consideration a random potential
the Bessel function. For definiteness, we will consider theéJ(r) characterized by a correlation functiow/(r—r’)
case3=2 below; generalization to systems wih=1 is  =(U(r)U(r’)) with a correlation lengttd. Parameters of
straightforward. this random potential are assumed to satlsfy<d<I <L
Hortikar and Srednicki4] noticed that Eqs(1), and(2),  <l, wherelg (I) is the single-particlérespectively, trans-
which do not depend on any details of the dynamics, mayort) mean free path, ant is the characteristic size of the
only be valid for sufficiently small spatial separation. They system. The conditioh,>L follows from the requirement
generalized Berry’s hypothesis and conjectured the Gaussiahat the additional disorder does not influence the classical
statistics (1) with a more general, system-specific kerneldynamics of the system, while the inequality<L guaran-
C(rq,r) replacing Eq(2), tees that the ensemble of quantum systems is large enough to
produce meaningful result. Note that the potential is smooth,
kd>1, sincel, /I~ (kd)2. On the technical side, introduc-
*Also at A. F. loffe Physico-Technical Institute, 194021 St. Pe-ing the additional random potential allows us to apply, with a

tersburg, Russia. proper generalization, methods developed earlier for diffu-
TAlso at Petersburg Nuclear Physics Institute, 188350 St. Petersive systemgsee Ref[8] for a review.
burg, Russia. After the ensemble averaging, the problem is described by
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a ballistic o model of a supermatrix fiel@(r,n) with the  (usually neglected in the-model calculationsare of the
action[9-11,7 next order iny and may be naively thought to vanish in the

limit »—0 performed in Eq(6), this is not so, since&),
x5~ 1. As a result, we get in the zero-mode approximation

S Q]=Strin E—I:|+i1;A—|§f dn’Q(r,n")w(n,n’)
VA1) () ) am—1=Kq(r1,72) = Kq(r1) —Kq(r2) +Kq

Vv
_TJ d?rdndn’ StQ(r,n)w(n,n")Q(r,n’), (12)

(terms of still higher orders im produce corrections small in

®) the parameteA 7,<1), where
whereH is the Hamiltonian of the systefwithout disordey, o
v is the density of statesy(n,n’)=27vW(k|n—n’|) is the kq(r):V*lJ’ d?r'kq(r,r"),

scattering cross section by the random potential, @l a

unit vector characterizing the direction of velocity on the

energy surface. On the scaked Eq. (5) reduces to the form K :szf d2rd?r'ky(r,r'). (13
proposed in Refg§12,13. The two-point correlation function a a

of the wave function intensities is expressed in this approach o .
as[8,7] P PP The contribution of nonzero modes is found to[Fg

pA V(g2 (r ) (1) Inzm=Tg(r1,r2), (14
(P(rp)A(r)])= Ilm?([Gll(rlvrl)GZZ(rLrZ) -
70 where HB(rl,rz)=HB(r1,r2)—H(B°)(r1,r2) describes the
+G1alr1,12)Gox(r2.r ) Dgaps  (6) (integrated over direction of velocityprobability of classical
propagation fronr, tory,

whereA is the mean level spacin(j‘q is the Green'’s function
in the fieldQ, HB(rler):f f dn;dnyD(ring,rany),
-1

G= E—I:|+i7;A—|§fdn’Q(r,n’)w(n,n’) )

LD=(mv) Y 8(r1—ry)8(n;—ny)—V71], (15

and the subscripts 1, 2 refer to the advanced-retarded decowith the contributionl'l(,B'(’)(r1 ,I,) of direct propagatioribe-
position (the boson-boson components being implied/e fore the first event of disorder scatterjrexcluded. The sym-
first evaluate Eq(6) in the zero-mode approximatioQ(r)  pol £ in Eq. (15) denotes the Liouville operator characteriz-
=Qo. The Green’s functioi7) is given in the leading order ing the classical motiofil4].
by We analyze now the total result given by the sum of Egs.
. , , (12) and (14). First of all, we stress that it satisfies exactl
Go(r,r') =i ImGR(r,r")Qo+ReG (r,r"), ®  the constrain(4) of wave function normalization. Next, wey
. . L consider sufficiently short distancef,; —r,|<ls. In this
GR(r,r)=(r[(E-H+i/279) *|r"). (9 case the correlation function is dominated by the first term in
the rhs of Eq.(12), returning us to the resul(tL0). Further-
more, we can generalize this result to higher correlation
functions,

If the pointsr,r’ are separated by a distangd ¢ from the
billiard boundary, Eq. (9) reduces to InGR(r,r’)=
—avdo(K|r—r'|)e”I"=""I”s Substituting Eq(8) in Eq. (6)
and expanding the actiofb) up to the linear-ingy term, (P (r)(ry) g™ (ro)w(r)))
S Q]=mvnV StrQuA, one finds, in full analogy with the

f diffusi tems, 1 n—
case O Ifusive systems _ 2v(n 1)| |Im(27TV77) 1
V(|2 (r) g2(r2)])=1+Kq(rq,r2), (10)
N1
Ko(r.r)=ImGR(r,r ) ImGR(r',n)/(mv)?, (11 E 11 77_ pipoi T T o) :
=t Q]

with the two contributions on the rhs of E(LO) originating
from the terms(G,,G,,) and(G;,G,y) in Eq. (6), respec- Wwhere the summation goes over all permutatioref the set
tively. The result(10), corresponding exactly to the conjec- {1,2,...n}, p;=1 for i=1,..., n—1, andp,=2. If all the
ture (1), (3) of the Gaussian statistics, is in conflict with the pointsr;,r{ are within a distance<l¢ from each other, the
wave function normalization, as explained above. leading contribution to this correlation function is given by
To resolve this problem, we evaluate the tef@;,G,,) the zero-mode approximation with higher-order termsyin
more accurately by expanding the Green’s functiono the  neglected[i.e., by the same approximation which leads to
order 5 and the actior{5) to the orders?. While these terms  Eq. (10)], yielding
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n duction of additional weak disorder may be considered as a
VY (ry)p(ry)...* (ry) ¢(r(1)>=2 IT fecr, i) technical trick, the reason for which is explained below.
o =1 We consider a white-noise RMB(r) with the correlation
function
fe(r,r’)=—ImGR(r,r")/(mv). (16)
(B(NB(r'")Yy=ré?r—r"), TI'<k? (18

This result is identical to the stateme of the Gaussian
statistics of eigenfunctions. We have thus proven that th
conjecture of Refs]3,4] holds within a spatial region of an
extension<l|g, with the kernelC(r4,r,) given by Eqs(16)
and(9).

We turn now to the behavior of the correlator
{|#%(r) ¥(r,)]) at larger separations,—r,|>ls. In this
situation, the correlations are dominated by the contribution””. o : o
(14) of nonzero modes. Let us further noteythat the smoot rledgl-type oscillations | y*(ry) y(r2)|) deca}y W'th In-
part of the zero-mode contributiofi2) (i.e., with Friedel- cr2ea5|2ng |r21—r2|. [The smc_)cl)th part is  simply
type oscillations on the scale of the wavelength 27/k ([7(ra) ¢=(r2)[) = (mk|ry—ra]) =+ for all |ry—ro|<ly,

suppressed is exactly equal toII®). Therefore, the L. as follows from Eq(17).] . .
. ) B : In the case of a random potential the scale for the vanish-
smoothed correlation function is given by the classical.

ropagator ing of oscillations is set by the single-particle mean free path
propagator, Is. An attempt to get an analog of this result by deriving
directly the ballisticc model via averaging over the RMF
2/1,1.2 2 1
VEI9Ar) ¢ (r2) D smooti= 1=Tlg(r1,r2), 17 fails, since the equation fors obtained within the self-
consistent Born approximatidisCBA) leads to an infrared-

independent of the relation between—ro| andls. The  giyergent and gauge-dependent re$@s]. This is a mani-
mean free paths manifests itself only in setting the scale on fastation of the fact that in the case of a RMF the single-

H H 2 2
which the oscillatory part of|*(r1)°(r2)|) gets damped. anicle relaxation rate depends on geometry of the problem.
A result for the variance of matrix elements related to Eq. 14 overcome this problem, we add an additional weak
(17) was obtained in Refl15] by a semiclassical method. 5n40m potential with the mean free pafff much longer
Note, however, that the semiclassical treatment of Re&f] .1 the length scale of interest set by the RMfich we

is only j_ustified if one introduqes a syffjciently Iarge level will find below). Averaging over this random potential, we
broadeningy> A, while calculating statistical properties of a jarive thes model in a given realization of the RMF. As

single eigenﬂrj]nctionhrequiris t?g "m’iK;A; seelz_ E%(F) . explained above, the two-point correlation function of eigen-
Since we have shown that fog<L the applicability of ¢, i intensities on a scale,—r,|<I%"is given by Egs.

the Gaussian statisti¢s), (3) is restricted to the scalesl, . . o
one may be tempted to ask whether increasingeyondL gg)dz;md(ll). Therefore, the desired oscillatory contribution

would be favorable from this point of view. The answer is

no; in contrast, foyigL a further inprease df; reduces the_ (kP r)) ruE= —(7v) 2Re(GR(r1,r2)GR(r5,r1))rve.
range of applicability of the Gaussian statistics. Indeed, it is (19)
not difficult to show that fol;>L the Green’s functior{9)

has the form ING™(ry,r;) = —mrJo(K|r1—r,|) (we assume  where GR=(E—H+i/2:2%) 1 is the Green’s function in a
for simplicity that the points q, rp are sufficlently far from  given realization of the RMF, an@ -)rur denotes averag-
the boundary only for |r;—r,|<Ig, whereTs=L?Is. At  ing over the RMF realizations. Thisecond averaging can
larger distancesjr;—r,|=Ts, the Green's function shows be performed with use of the path integral formaligh7].
irregular oscillations with a characteristic amplitude The product of the two Green’s functions in E49) can be

nd assume that the size of the systém,s sufficiently
arge. On length scales longer than the transport mean free
pathl,=4k/T this problem is described by the conventional
unitary-class diffusiveoc model[10] so that the results ob-
tained for diffusive systems3] apply. We will be interested,
however, in wave function correlations on much shorter—
iallistic—length scales. Specifically, we will study how the

|GR(ry,r,)|~ 71(KI) "2 independent ofir,—r,|, which  Written as

are physically due to the interference of waves multiply re- w0 r(TH=R

flected from the boundary. Therefore, only |at—r,|<T <GR(RaO)GR(OaR)>RMF:f dTldef ~DryDry

the first term in Eq(12) will dominate and the statistics will 0 i(0)=0

be Gaussian. Xexgi(E+i275%)(T,1+T,)
+1Skin— Srwmels (20

RANDOM MAGNETIC FIELD

In the above we studied the wave function statistics of avhere Skin:fgldt mi{/2+ fgzdt mi5/2, and Sgyr=1"$n0/2,
given chaotic system by generating an ensemble of quantumith s,, denoting the nonoriented area between the two tra-
systems with the help of an additional random potentialjectoriesr,(t) andr,(t). The integral(20) is dominated by
Now we use the same approach to study the wave functiothe pairs of paths being close to each other and correspond-
statistics in a random magnetic figl@MF). In this case, an ing to an almost uniform and straight motion from ORoTo
ensemble is defined from the very beginning and the intromake this explicit, it is useful to perform the change of vari-
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ables[17], introducingr=r;—r,, p=(r,+r,)/2, t.=(T; tioned dependence of the single-particle relaxation rate on
+T,)/2, andt_=T,—T; (t,>t_). The RMF-induced part the geometry of the problem in the case of RMF.
of the action takes then the form The scald ; was obtained in Ref.18] from consideration
of certain Green’s function with an obscure physical mean-
ol e ing. We have demonstrated that the lenbjldetermines an
SRMF_?L defr- (vl (22) observable quantity—the scale of decay of the oscillatory
part of the wave function correlation function.
wherev=k/m is the particle velocity, and we have spfit
into components parallelr{) and perpendicularr¢) to p
~R/t, . While the integrals ovep andr' are essentially the
same as for a free particle, that over has the form of the We have studied the wave function statistics in a chaotic
Feynman integral for a one-dimensional particle in the po-allistic system. The corresponding statistical ensemble is
tential i(vT'/2)|x|. The corresponding Green's function defined by adding a smooth random potential, satisfying
g(x,x’,t) reads in the frequency representatiorxatx’=0  >| >| . The first inequality preserves the ballistic dynam-
(which is what we need in view of the boundary conditionsics, while the second one ensures that the ensemble of quan-
onrt). tum systems is sufficiently large and provides meaningful
statistics. By using the ballistie-model approach we have

CONCLUSIONS

i —1/3 i i—2/3
00w)=— . Vel Sl ) 59 shown that the conjecture of Gaussian fluctuations of wave
g( ’ '(U) (mTO) =23 ’ ( ) . .. .
2 A’ (=i PwTo) functions[3,4] holds on sufficiently short distancés —r;|

<lg, while it is strongly violated on larger scales. Our re-

sults solve, in particular, the problem of inconsistency of the

o= (4mMIT%?)18, (23) conjecture of Gaussian statistics with the wave function
normalization.

This leads to the following result for the oscillatory part of ~ We have further applied these results to study the decay of

where Ai(z) is the Airy function, and

the wave function correlation function Friedel-type oscillations in the correlation function
{|#*(r1)¥%(r,)|) in a RMF. In this case averaging over an
V([ 2(r) g2(ro) ) pae additional weak random potential yields Gaussian fluctua-
, tions of wave functions in a given realization of the RMF.
sin(2kr), r<lo The remaining averaging over the RMF realizations per-
=— sin(2kr+[o|r/2l g— m/12) (24)  formed via the path integral formalism leads to the result
™ U2y S (24). The scald for the decay of oscillationgplaying the
X (arllo)exi = V3| &olr/2ol, r>lo role of the single-particle mean free pdth is given by Eq.
wherer=|r;—r,|, {o=—1.05 is the lowest zero of A{z), (23), providing physical meaning to a length found in Ref.
andl,=v7,. [18] from some formal consideration.

We thus find that the oscillations are suppressed on the
scale~1y=v 9= (4k/T?)°. Note thatl, is parametrically
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