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Roughness at the depinning threshold for a long-range elastic string
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In this paper, we compute to high precision the roughness exponentz of a long-range elastic string, at the
depinning threshold, in a random medium. Our numerical method exploits the analytic structure of the problem
~‘‘no-passing’’ theorem!, but avoids direct simulation of the evolution equations. The roughness exponent has
recently been studied by simulations, functional renormalization-group calculations, and by experiments~frac-
ture of solids, liquid meniscus in4He). Our resultz50.38860.002 is significantly larger than what was stated
in previous simulations, which were consistent with a one-loop renormalization-group calculation. Further-
more, the data are incompatible with the experimental results for crack propagation in solids and for a4He
contact line on a rough substrate. This implies that the experiments cannot be described by pure harmonic
long-range elasticity in the quasistatic limit.
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The statics and dynamics of elastic manifolds in rand
media govern the physics of a variety of systems, rang
from vortices in type-II superconductors@1# and charge den
sity waves@2# to interfaces in disordered magnets@3#, con-
tact lines of liquid menisci on a rough substrate@4#, and to
the propagation of cracks in solids@5#.

In most cases, the restoring elastic forces acting on a p
on the manifold are local, i.e., depend only on the deform
tion in its neighborhood. The corresponding short-ran
string has been the object of many theoretical and exp
mental studies. In the depinning limit, two different scenar
are possible: numerical simulations and analytical calcu
tions @6–8# have established that a string with an elas
restoring force breaks at the depinning threshold, while p
colation experiments and numerical studies on directed p
mers in random media@9,10# agree that in those system
with stronger than harmonic restoring forces the roughn
exponent isz50.63.

It has also been shown@5,11# that for a contact line of a
liquid meniscus or for crack propagation in a solid, the el
tic force is long range, rather than local. Nonlocal elastic
can be expected to modify the dynamic and static proper
of these systems and to change the critical exponents. In
paper, we compute one of these exponents, the rough
exponentz of a long-range elastic string at the depinni
thresholdf c .

The theoretical approaches are up to now based on
assumption that the motion of the line at the threshold
quasistatic. This means that velocity-dependent terms in
equation of motion of the deformation fieldh(x,t) are taken
to be irrelevant and that it can be derived from an ene
function which incorporates potential energy due to the d
ing force f and the disorder potentialh(x,h), as well as
elastic energy. According to this hypothesis, the equation
motion of the deformation field at zero temperature is

]

]t
h~x,t !5 f 1h~x,h!2kE dx1

h~x,t !2h~x1 ,t !

~x2x1!2
. ~1!
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The last term in this equation accounts for long-range res
ing forces. Let us note that measurements of local veloci
for a liquid 4He contact line@4# have cast doubts on th
validity of the quasistatic hypothesis for the present exp
ments.

The critical behavior of Eq.~1!, at the driving forcef
equal tof c , was studied by means of renormalization-gro
~RG! techniques. The one-loop calculations@12# gave a
roughness exponentz (1) equal to 1/3, which at a time wa
believed to be exact@12,13#. Early simulations based on ex
tremal long-range models@14,15# (z50.3560.02) and on
cellular automata@16# (z50.3460.02) found good agree
ment with this conjecture. However, experiments, both
crack propagation@17# and for a liquid4He contact line on a
rough substrate@4# have measured, nearf c , a systematically
larger exponent (z50.5660.03). Chauveet al. @8# recently
showed that higher-order terms contribute to the RG res
At two-loop order, they found an exponentz (2)50.47. The
large difference of the two-loop calculation with the lowes
order result let it seem conceivable that the experime
value could be explained by the model equation~1!. In fact,
the authors of Ref.@8# estimated the exponent to bez50.5
60.1, which did include the experimental results.

In this paper we present a very precise method to de
mine the roughness exponent atf c . We show that the expo
nent z has the value 0.38860.002. z is thus bigger than
what was suggested by earlier simulations~cf., however,
@18#! but is, at the same time, incompatible with the expe
mental situation.

The direct numerical simulation of the dynamics, esp
cially of long-range systems, in the depinning region, is e
tremely tedious because the velocity of the manifold va
ishes at the threshold, which is thus difficult to approa
@19,20#. Many authors, therefore, preferred to treat the pro
lem within the framework of cellular automaton mode
These approaches can be very useful, but are hardly ide
fiable with a continuum equation~concerning the long-range
case; cf. Refs.@16,21#!.

However, there is an additional analytical structure in t
problem, as first noticed by Middleton@23# for the con-
tinuum models. For short-range lattice models@10,22#, we
used this additional information to compute the critical stri
©2002 The American Physical Society01-1
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~the blocked string atf c) in an extremely efficient way, bu
without actually simulating the time evolution of the syste
On the lattice, the long-range model does not seem to
open to such an approach, but the continuum model is, a
will show in this paper.

To proceed, we discretize the variablex(x→xi ,i
51, . . . ,L) in Eq. ~1! and writehi

t instead ofh(xi ,t). The
complete string at time t is thus given by ht

5$h1
t ,h2

t , . . . ,hL
t %, where thehi

t are real periodic variable
for which hi1M and hi are identified. Periodic boundar
conditions are also applied inL: hL1 i5hi . The equation of
motion ~1! is adapted to accommodate the periodic bound
conditions. We have computed the long-range forcef el by
summing over periodic images, as others have done be
us @14,15#, obtaining

f el@hi #5 (
i 151

L21

@2c8~ i 1 /L !2p2/sin2~p i 1 /L !#
hi

t2hi 1
t

L2
,

~2!

wherec5dG(x)/dx andG(x) is the gamma function. Dif-
ferent calculations, without the sum of images, gave an id
tical result forz. A random potentialV( i ,hi) acts on each
site of the string. Our choice of the random potential
shown in Fig. 1. It allows to obtain a differentiable potent
with h( i ,hi)52]V( i ,hi)/]hi .

The ‘‘no-passing’’ rule@23# establishes the following: if
two stringsh and h̃ do not cross at a given timet ~say,hi

t

,h̃i
t ; i ), they will not cross at any later time. Another im

portant property of Middleton’s theorem states that if, at
initial time t init , the velocitiesv i

t are non-negative for alli,
they will remain so for all later timest.t init . It follows from
this property that, once we have found a forward mov
stringht init, we can be sure that snapshots of the string at l
times will never cross. In fact, the stringsht for t.t init will
form a noncrossing family with non-negative velocitie
which satisfies the following conditions:

FIG. 1. Example of a random potential on thei th site with
periodic boundary conditions (M532). The circles are Gaussia
random numbers with zero mean and unit variance, assigne
evenly spaced pointshi51,2, . . . ,M . These numbers are then in
terpolated by a periodic cubic spline, in order to yield a continuo
random potentialV( i ,hi).
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~ i! hi
t>hi

t8 ; i for t.t8.t init ,

~ ii ! hi
t→hi

t8 for t.t8.t init , t→t8,
~3!

~ iii ! v~hi
t!>0 ; i for t.t init ,

~ iv!
]

]t
hi

t5v~hi
t! from Eq. ~1!.

The velocity v(hi
t) is given, as usual, byv(hi

t)5

2]E@ht#/]hi
t whereE@ht# is the energy of the configuratio

ht. In this context, we have made the following observatio
if our only aim is to obtain the critical string, rather than
simulate the true time behavior, it is sufficient to gener
continuous noncrossing families satisfying~i!, ~ii !, and~iii !,
without imposing~iv!. In this case,t would not be the physi-
cal time, but simply an ordering index; only then are t
three conditions~i!, ~ii !, and~iii ! independent.

To assure that we can drop the condition~iv!, we have to
guarantee that no member of such a family will ever cros
blocked stringhblock @by definitionv(hi

block)[0], if ht init did

not. Let us suppose the contrary: ifht* were the first member
which touches the blocked line in one pointi @as shown in

Fig. 2~a!#, the random force forhi
block andhi

t* would become

equal, but the elastic term would givev(hi
t* ),v(hblock).

This would be a violation of condition~iii !. Conversely, it is
easy to see that such a family can always be continued u
a blocked line, because it suffices to find a single pointi with
positive velocity to continue the construction.

In previous works@19#, the critical line was computed by
direct simulation of Eq.~1!. Notice that the discretization o
time can pose difficult problems; during the interval timeDt
the motion does not respect Middleton’s theorem and, the
fore, is not guaranteed to halt in front of a blocked string

to

s

FIG. 2. ~a! No-passing theorem:ht* ~filled circles! and hblock

~open circles!. If ht* approacheshblock in a point i, the disorder
forces become equal, but the elastic term~represented by arrows!
preventsht from exceedinghblock for t.t* . ~b! Algorithm. The
point i of the string~filled circles! is moved fromhi to hi8 in one
step. Betweenhi andhi8 , the string’s velocity ini remains positive
and is zero athi8 . A blocked configuration is drawn~open circles!:
our string may approach this configuration, but cannot pass it.
1-2
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The construction of continuous noncrossing families
strings presents a much more powerful, completely rigor
approach. As indicated in Fig. 2, we consider in pract
families in which at a given instant only a single coordina
i moves. Coordinatei is then advanced~from hi to hi8) until
its velocity vanishes@„v(hi8)50#. This is of course not done
by simulation, but in a single step, by computing the zeros
v(hi). To simplify our numerical work, we have represent
the continuous random potential as a spline~a piecewise
third-order polynomial inh), as further explained in Fig.~1!.
This allows us to solve for the closest zero of the veloc
function from a quadratic equation. The only parameter
this procedure is the minimal velocity below which thetotal
string is assumed blocked, and which serves to terminate
iteration. We have varied this nonessential parameter by
orders of magnitude, and shown that the critical forces
exponents are extremely well stabilized.

An initial forward-moving stringht init is very easy to ob-
tain. We have remarked that our iterative algorithm, which
completely rigorous, converges extremely quickly to
blocked string if such an object exists. A bisection meth
then allows us to obtain the critical driving forcef c , and the
critical string. We stress again that, by construction,
blocked string is never passed.

We have run this algorithm on a large number of samp
with L5M . Sample sizes varied fromL58 to L52048. We
compute the mean-square elongationW2(L) of a critical
string hc as

W2~L !:5^~hc2^hc&!2& ~4!

In Eq. ~4!, ^hc&51/L( ihi
c , while the overbar stands fo

an average over the disorder. Our data extrapolate very
and a mean-square analysis including the data fromL
5Lmin516 up to L52048 yieldsz50.38860.002. In the
inset of the figure, we show that this mean-square anal
does not systematically depend onLmin , the smallest sample
size included in our fit, for sizes larger thanLmin58 ~as can
be seen in Fig. 3, theL58 data are too low!.

We believe that the linear scaling (L,M )→(aL,aM )
@22# is the correct way to approach the thermodynamic lim
in this system, for whichz,1. This has also been assum
in all previous work on this and related systems@16,19,20#.
We have explicitly checked that the result for the roughn
exponent does not depend on the ratioL/M , as is evident
@22#. More importantly, one should expect identical resu
even for scalingsM;Lz8 for z8.z, as the critical line only
correlates sites on a scaleLz. This is indeed what we find.

As an example, we show in Fig. 3 data for a scalingM
5L1/2. For these systems, the critical force is smaller and
extension of the critical line is smaller, but the roughne
02510
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exponent is unchanged, lending further credit to our value
the roughness exponent, and to the tight error bar. Too s
values ofM cannot reasonably be studied on a finite syste
because the critical line may then wind around the perio
box, introducing spurious effects, which are difficult to i
clude into a finite-size analysis. It is for this reason that
have not studied values ofz8 very close, or identical toz.

In conclusion, we have obtained the roughness expon
for long-range elastic strings by a numerical procedure wh
respects the analytic structure in the problem~no-passing
theorem! and allows to obtain very high precision. Our a
proach can certainly be extended to other problems, and
would in particular be interested in simulation metho
which allowed to study, e.g., the KPZ equation@24# directly
in the continuum. This is most important, as it has be
shown that the effect of discretizations can be very diffic
to control @25#.

The large difference of the result with the experimen
value shows that the theoretical model of these proce
will certainly have to be modified in an essential way. O
possibility is that velocity-dependent terms have to be ta
into account. This appears reasonable, as large local ve
ties have been observed in the experiments.

The authors would like to thank P. Le Doussal, S. Mou
net, and E. Rolley for very helpful discussions.

FIG. 3. Mean-square elongationW2(L) as a function of system
sizeL for the long-range elastic force given by Eq.~1!. Upper~full !
line: linear scalingM5L for system sizes betweenL58 and L
52048. The interpolating line corresponds to a roughness expo
z50.38860.002. Inset: roughness exponentsz obtained for system
sizesL>Lmin vs Lmin . Lower ~broken! line: sublinear scalingM
5L1/2 yields identical values for the roughness exponent.
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