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PHYSICAL REVIEW E, VOLUME 65, 02510(R)

Alberto Ross® and Werner Krauth
CNRS-Laboratoire de Physique Statistique, Ecole Normalérupe, 24, rue Lhomond, 75231 Paris Cedex 05, France
(Received 27 July 2001; revised manuscript received 8 October 2001; published 23 January 2002

In this paper, we compute to high precision the roughness expdneih& long-range elastic string, at the
depinning threshold, in a random medium. Our numerical method exploits the analytic structure of the problem
(“no-passing” theoremy, but avoids direct simulation of the evolution equations. The roughness exponent has
recently been studied by simulations, functional renormalization-group calculations, and by expefiraents
ture of solids, liquid meniscus ifHe). Our result=0.388+0.002 is significantly larger than what was stated
in previous simulations, which were consistent with a one-loop renormalization-group calculation. Further-
more, the data are incompatible with the experimental results for crack propagation in solids antHfer a
contact line on a rough substrate. This implies that the experiments cannot be described by pure harmonic
long-range elasticity in the quasistatic limit.
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The statics and dynamics of elastic manifolds in randomrThe last term in this equation accounts for long-range restor-
media govern the physics of a variety of systems, rangingng forces. Let us note that measurements of local velocities
from vortices in type-Il superconductodr] and charge den- for a liquid “He contact line[4] have cast doubts on the

sity waves[2] to interfaces in disordered magn¢8, con-  yalidity of the quasistatic hypothesis for the present experi-
tact lines of liquid menisci on a rough substrfdd, and t0  ments.

the propagation of cracks in soligis]. , _ The critical behavior of Eq(1), at the driving forcef
In most cases, the restoring elastic forces acting on a poindy 3| tof ., was studied by means of renormalization-group
on the manifold are local, i.e., depend only on the deformatRG) techniques. The one-loop calculatiofis2] gave a

tion in its neighborhood. The corresponding short-rangg, \ahness exponert? equal to 1/3, which at a time was
string has been the object of many theoretical and experigajieved to be exadtl2,13. Early simulations based on ex-

mental studies. In the depinning limit, two different scenariostremal long-range modelgl4,15 (Z=0.35+0.02) and on

f_\re poessgjler; numer;cgll_ sr;m(ljjl?tglotns art1c_j anal_;t/gcal Ca}lcutl.aizellular automatd 16] ({=0.34+0.02) found good agree-
|onts[_ _f] avs eska Itsthe d atas rtlr?g V;' Id anh_el aStChent with this conjecture. However, experiments, both in
restoring force breaxs at the depinning threshold, while perg, . propagatiofil7] and for a liquid*He contact line on a
colation experiments and numerical studies on directed pol

Yr i
mers in random medig9,10] agree that in those systems rough substratg4] have measured, neég, a systematically

, ; . larger exponent{=0.56+0.03). Chauveet al. [8] recently
with stronger than harmonic restoring forces the roughnesghowed that higher-order terms contribute to the RG result
exponent is£=0.63. '

. At two-loop order, they found an exponeff®)=0.47. The
i L|1t| dhzse2::(?“28;”1‘5:]8;’;&111?? ;ct’iroi ﬁ]ogtgg}ign,?hge?as_large difference of the two-loop calculation with the lowest-
9 : propag ' -~~~ order result let it seem conceivable that the experimental
tic force is long range, rather than local. Nonlocal elasticity

; : ; 2 value could be explained by the model equatith In fact,
can be expected to modify the dynamic and static propertlet%e authors of ReES] estim)z;ted the expo?]ent'f t}c: le=0.5
of these systems and to change the critical exponents. In this y '

¥ 0.1, which did include the experimental results.

paper, we compute one of these exponents, the roughnessI hi ; hod to d

exponent{ of a long-range elastic string at the depinning . n this paper we present a very precise method to deter-

thresholdf mine the roughness exponentfat We show that the expo-
c-

The theoretical approaches are up to now based on thréentg has the value 0.3880.002.  is thus bigger than

. What was suggested by earlier simulatiofcs., however,

assu_mptl_on th?‘t the motion of th? line at the thresho_ld '118]) but is, at the same time, incompatible with the experi-
guasistatic. This means that velocity-dependent terms in thmental situation

equation of motion of the deformation fielqx,t) are taken The direct numerical simulation of the dynamics, espe-
to be irrelevant and that it can be derived from an energy '

function which incorporates potential energy due to the driv-Clally of long-range systems, in the depinning region, is ex-

ing force f and the disorder potentiap(x.h), as well as tremely tedious because the velocity of the manifold van-

elastic enerav. According to this hvpothesis. the equation o- hes at the threshold, which is thus difficult to approach
motion fthgya formati gn field t)z/pr i m’ rat rqi 19,20. Many authors, therefore, preferred to treat the prob-
otion of the deformation Tield at zero temperature 15 lem within the framework of cellular automaton models.

P h(x,t)—h(x,,t) These approaches can be very useful, but are hardly identi-
—h(x,t)=f+ n(x,h)—kf dxl’—zl'_ (1) fiable with a continuum equatiofzoncerning the long-range
Jt (X—Xyq) case; cf. Refs[16,21)).

However, there is an additional analytical structure in this

problem, as first noticed by Middletof23] for the con-

*Email address: rosso@Ips.ens.fr tinuum models. For short-range lattice modEl®,22, we
"Email address: krauth@Ips.ens.fr; http://www.lps.erisKrauth used this additional information to compute the critical string
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FIG. 1. Example of a random potential on tih site with FIG. 2. (a) No-passing theoremh” (filled circles and hv'o

periodic boundary conditionsM=32). The circles are Gaussian (open circles If h'" approache$i®®* in a pointi, the disorder

random numbers with zero mean and unit variance, assigned tmrces become equal, but the elastic teinepresented by arrows

evenly spaced points;=1,2, ... M. These numbers are then in- preventsh' from exceedingh®°* for t>t*. (b) Algorithm. The

terpolated by a periodic cubic spline, in order to yield a continuouspoint i of the string(filled circles is moved fromh; to h{ in one

random potentiaV(i,h;). step. Betweer; andh; , the string’s velocity in remains positive
and is zero ah; . A blocked configuration is drawfopen circles

(the blocked string af.) in an extremely efficient way, but our string may approach this configuration, but cannot pass it.

without actually simulating the time evolution of the system.

On the lattice, the long-range model does not seem to be (j) hi=h'" Vi for t>t'>ty,

open to such an approach, but the continuum model is, as we

will show in this paper.

To proceed, we discretize the variabR(x—X;,i (i) him=hi for t>t">ty, t-t’,
=1,...L) in Eq. (1) and writeh! instead ofh(x; ,t). The (3
complete string at timet is thus given by ht (i)  v(h)=0 Vi for t>t,
={hi,h}, ... hi}, where thenh! are real periodic variables

for which h;+M and h; are identified. Periodic boundary 9
conditions are also applied I h,_,;=h;. The equation of (iv) Ehit=v(hit) from Eqg. (1).
motion (1) is adapted to accommodate the periodic boundary

conditions. We have computed the long-range foi€eby
summing over periodic images, as others have done befo
us[14,15, obtaining

[Ehe velocity v(hj) is given, as usual, byv(h)=
— gE[h']/ah} whereE[h'] is the energy of the configuration
h'. In this context, we have made the following observation:
L—1 hi_ht if our only aim is to obtain the critical string, rather than to
felh,]= 2 (20 (i, IL) — w2l sir?(mi IL)] iy simulate the true time behavior, it is sufficient to generate
G . 1 L2’ continuous noncrossing families satisfyitig (i), and(iii),
(2)  without imposing(iv). In this caset would not be the physi-
cal time, but simply an ordering index; only then are the

where y=dI'(x)/dx andT'(x) is the gamma function. Dif- three conditiongi), (i), and(iii) independent.
ferent calculations, without the sum of images, gave an iden- TO assure that we can drop the condition, we have to
tical result for£. A random potential(i,h;) acts on each guarantee that no member of such a family will ever cross a
site of the string. Our choice of the random potential isblocked stringh®°® [by definitionv (h7°*)=0], if h'int did
shown in Fig. 1. It allows to obtain a differentiable potential not. Let us suppose the contraryhif were the first member
with #(i,h;)=—dV(i,h;,)/oh;. which touches the blocked line in one poinfas shown in
The.“no-passwlg" rule[23] establlshe-s the-followmg:t if Fig. 2(a)], the random force foh?° andh}* would become
tw~o stringsh andh do not cross at a given time(say, h; equal, but the elastic term would gi\m(hit*)<v(hblock)_
<h{ Vi), they will not cross at any later time. Another im- This would be a violation of conditiofiii ). Conversely, it is
portant property of Middleton’s theorem states that if, at aneasy to see that such a family can always be continued up to
initial time t;,;;, the velocitiesv! are non-negative for all  a blocked line, because it suffices to find a single powith
they will remain so for all later times>t,,;; . It follows from  positive velocity to continue the construction.
this property that, once we have found a forward moving In previous workg419], the critical line was computed by
stringhtint, we can be sure that snapshots of the string at latedirect simulation of Eq(1). Notice that the discretization of

times will never cross. In fact, the string$ for t>t;; will time can pose difficult problems; during the interval tiche
form a noncrossing family with non-negative velocities, the motion does not respect Middleton’s theorem and, there-
which satisfies the following conditions: fore, is not guaranteed to halt in front of a blocked string.
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The construction of continuous noncrossing families of ' ' '
strings presents a much more powerful, completely rigorous 10 395 [
approach. As indicated in Fig. 2, we consider in practice - I
families in which at a given instant only a single coordinate i l [’
i moves. Coordinateis then advance¢from h; to h{) until
its velocity vanishe§(v (h{) =0]. This is of course not done
by simulation, but in a single step, by computing the zeros of
v(h;). To simplify our numerical work, we have represented
the continuous random potential as a splif@e piecewise
third-order polynomial irh), as further explained in Figl).
This allows us to solve for the closest zero of the velocity
function from a quadratic equation. The only parameter in
this procedure is the minimal velocity below which tteal
string is assumed blocked, and which serves to terminate our 0.1 ' :
iteration. We have varied this nonessential parameter by four 1 10 100 1000
orders of magnitude, and shown that the critical forces and L
exponents are extremely well stabilized.

An initial forward-moving stringh'i is very easy to ob- FIG. 3. Mean-square elongatiai?(L) as a function of system
tain. We have remarked that our iterative algorithm, which issjzel for the long-range elastic force given by Ed). Upper(full)
completely rigorous, converges extremely quickly to aline: linear scalingM =L for system sizes between=8 andL
blocked string if such an object exists. A bisection method=2048. The interpolating line corresponds to a roughness exponent
then allows us to obtain the critical driving forég, and the  ¢{=0.388+0.002. Inset: roughness exponefitsbtained for system
critical string. We stress again that, by construction, asizesL=L, VS Ly,. Lower (broken line: sublinear scalingvl
blocked string is never passed. =12 yields identical values for the roughness exponent.

We have run this algorithm on a large number of samples

with L=M. Sample sizes varied from\;ﬁs toL=2048. We  gxnonent is unchanged, lending further credit to our value of
compute the mean-square elongatidft(L) of a critical ¢ roughness exponent, and to the tight error bar. Too small
stringh® as values ofM cannot reasonably be studied on a finite system,
TGN because the critical line may then wind around the periodic
2 - c__ Cc\\2
WHL):=((h*={h%)%) “) box, introducing spurious effects, which are difficult to in-
In Eq. (4), (h%=1/L3;h®, while the overbar stands for clude into a finite-size analysis. It is for this reason that we

an average over the disorder. Our data extrapolate very wellave not studied values gf very close, or identical tg.
and a mean-square analysis including the data fiom In conclusion, we have obtained the roughness exponent

—L,.,=16 up toL =2048 yields¢=0.388=0.002. In the for long-range elastic strings by a numerical procedure which

inset of the figure, we show that this mean-square analysi%‘:SpeCtS the analytic structure in the probléno-passing

does not systematically depend bg;,, the smallest sample eorem and alloyvs to obtain very high precision. Our ap-
size included in our fit, for sizes larger thanp,,=8 (as can proach can ce_rtamly be gxtended o oth_er proplems, and we
be seen in Fig. 3 the;8 data are t00 low " would in particular be interested in simulation methods

We believe that the linear scaling. (M)— (alL,aM) which allowed to study, e.g., the KPZ equati@4#] directly

[22] is the correct way to approach the thermodynamic limit" the continuum. This IS most important, as it has. peen
in this system, for whichi<1. This has also been assumed shown that the effect of discretizations can be very difficult
in all previous work on this and related systefii$,19,2Q. to E:r(;]ntrlol[ZS]a_ﬁ £ th it with th . tal
We have explicitly checked that the result for the roughness € ‘arge direrence of the resuit wi € experimenta
exponent does not depend on the rdtiM, as is evident value shows that the theoretical model of these processes

[22]. More importantly, one should expect identical resultsWIII C.eft.a'”.'y have to b.e modified in an essential way. One
even for scalingd/ ~L? for ¢'>¢, as the critical line only possibility is that velocity-dependent terms have to be taken

. & This is i . into account. This appears reasonable, as large local veloci-
correlates sites on a scdlé. This is indeed what we find. a5 have been observed in the experiments.

As an example, we show in Fig. 3 data for a scalMg
=L'2 For these systems, the critical force is smaller and the The authors would like to thank P. Le Doussal, S. Mouli-
extension of the critical line is smaller, but the roughnesset, and E. Rolley for very helpful discussions.
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