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Correlated motions of two hydrodynamically coupled particles confined in separate
quadratic potential wells
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We report a study of the correlated motions of two hydrodynamically coupled colloidal particles, each of
which is trapped in a quadratic potential well defined by optical twegngtical trap$. By setting one of the
trapped particles into forced oscillation using oscillating optical tweezers, we measure the displacement and
phase shift of each of the particles over a wide frequency range. From the in-phase and out-of-phase motions
of both of the particles in the traps, we determine the correlated motions of the coupled mechanical system as
a function of frequency. A theoretical model is developed to calculate the response tensor of the coupled
mechanical system. The experimental results are in agreement with the prediction of the theoretical model.
This method may be extended to more general applications, such as the investigation of the micromechanical
properties of viscoelastic and/or heterogeneous media.
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[. INTRODUCTION ing “two-point microrheology”[5]. To further develop mi-
crorheology, it appears that the next logical step is to
Colloids, polymer solutions, microemulsions, and biologi- understand fundamentally how the viscoelasticity changes as
cal cells and tissues are intrinsically complex. The complexthe length scale between the probes is varied in a systematic
ity arises from two factors: interactions between the constituway. The work described below provides the basis for a dif-
ents, and the structural heterogeneity of the matéviaich ferent methodology to study the mechanical properties in the
occurs in a broad range of length sciless a result of the ~Microscopic environment of complex fluids.

interplay between the interactions and structural heterogene- !N this paper, we present a study of the correlated motion

ity, these systems often reveal rich dynamical responses iif @ Pair of hydrodynamically coupled colloidal particles
ach held in a harmonic potential well. The distance between

their mechanical properties over a wide range of frequencie? tential I b ied h that lenath
Because of the interest in the mechanical properties of thestge potential Wells can be varied suc at many leng

systems, various techniques have been developed to proggales can be explored. As a proof of principle, we choose a

their dvnamical behavior at the microscopic level. The re_S|mple viscous medium in which the potential wells for the
y P ' .two particles are created by optical tweez@ptical traps.

maining challenges are the predictions of the MICTOSCOPIG 6 fixed potential well created by the optical tweezers has

tsr:reuggjsrteesmbased on the microscopic viscoelastic properties 9{Ie same effect as a frequency independent elastic medium

] ) ) ) around the particle. The measurements of the correlated mo-

In a typical “single particle microrheology” study, ther- o of these two particles provide a test for a simplified
mal motions of Brownian particlefsl—5], or forced oscilla-  yjiscoelastic model in which the motion of both of the probe
tions of micron-sized probe particl¢§—9], are used to de- particles can be completely described by a response tensor of
termine the viscoelastic properties of soft materials arounghe coupled mechanical system.
the probe particles. Based on hydrodynamic methods, the The experimental arrangement, shown in Fig. 1, is similar
range of the probed materials extends to approximately ong that of Meiners and Quakd1]. However, instead of ex-
radius beyond the surface of the probe particle. Thus, thamining the temporal correlation functions of the two-
measured viscoelasticity will depend on the size of a prob@articles’ Brownian motions, we measure the phase and dis-
particle if the scale of the material inhomogeneity is compaplacement amplitude of both of the particles in response to
rable to the particle size. Therefore, it is not surprising thatan external sinusoidal perturbation on one of the particles.
results from single particle microheology studies sometimes
differ from those obtained from conventional rheometers.
Accordingly, one might expect the local viscoelastic proper-
ties to be comparable to the bulk viscoelastic properties only
after averaging over an extended range of the matg5jél.

To put the problem in theoretical perspective, Levine and
Lubensky showed that the longitudinal motions of two mi-
croscopic particles in local viscoelastic environments are
coupled by the mean viscoelasticity of the material between < R »
the particled 10]. Along the same vein, Crocket al. mea-
sured the “distinct” diffusion coefficient of colloidal pairs in FIG. 1. Two colloidal particles move in two separate
guar andF-actin solutions and reconciled the difference be-quadratic potential wells a distanBeapart, in a simple liquid with
tween the microscopic and macroscopic viscoelasticities ussdscosity 7.
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The amplitude and the phase shift of the particles’ motions 1
provide a complete description of the correlated motion. This  x11= (5. —s )k
approach provides advantages in both experimental ease and + 7> /Fou?

(a+ TS+)Si (a+75_)s>
w2+Si w?+s%

measurement sensitivify.2,13. (a+ 75 )os. (a+7S,)ws,
+i 2., 2 - 2, 2 ) ) ()
w+SsZ w°+Ss
Il. THEORY
€ { s s?
To describe the motions of the particles, we seek to find a X12= X21= 2.2 2.2
. . ' ; S;—s_)k + +
simple relation between the forces on the particles and the (84 our| | w™Fs- @ s,
motions of the particles in terms of a response tensor. Spe- S, ®S._
cifically, X,(®) = xnm(®)Fm(®), wherex, is the motion of +i el B (4)
thenth particle,F, is the external force on thath particle, * -
Xnm IS the complex response tensor of the system, wjth 2 2
m=1 or 2. In the case of a sinusoidal perturbation to one of o= 1 (1+2TS+2)S+ _ (1+ZTS‘;S‘)
the particles F, = constF,=0), the complex response tensor (s+—s-)konar 0 +Ssy 0" +S
is simply related to the correlated in-phase and out-of-phase 1 1
motions of the particles. Conversely, the measured phases o (1+7sJos.  (1+7S.)ws. ®)
and displacements of the two particles uniquely determine w?+s% w’+s ’

the elements of the response tensor.

To calculate the elements of the response tensor, we statheres_ ands. , the eigenvalues of the symmetric and
with the coupled differential equations for two hydrodynami- antisymmetric modes, are the poles of the response tensor in
cally coupled, identical, particles in two spatially separatecthe complex plan¢l5], and given by,

uadratic potential wellf11,14].
d P o114 ~(1+a) = (1- )2t 4aé
Si: 27_ [l (6)

X1 (1) =H1a( = KouXg +f1) + Hyo( —KoppXa+ f2),
wherea= k0t2/k0t1’ e=H 12/H 11 and 7= 1/(kOIlH 11) . The
response tensor is symmetric, however, since the potential
Xo(1) =Hoy( —KouXe+f1) +Hoxl( —kgoXo+f5), (1)  wells are not equal, in general, neither are the diagonal re-
sponse elements.

where Ill. EXPERIMENT
The experimental arrangement, shown in Fig. 2, consists
L o, 1 of two optical tweezers formed by focusing two indepen-
Hll_H22_6m7a' H12_H21_47”]R 2 dently steered, perpendicularly polarized laser bedins

=532 nm. Spectra Physics, Millenia Nd:Y\{Dusing a mi-
croscope objectivéOlympus, UPlanApo 108 NA 1.35) in

are the lowest order components, ifR1bf the Oseen Tensor an inverted microscop@lympus IX-70. Splitting the laser
[14] for motions in the longitudinal directions along the line beam with a polarizing beam splitt¢PBS]) creates two
between the centers of the two particlks; andk,, are the beams. The first laser bearR, polarized and steered by a
“spring constants” of the quadratic potential wels,is the homemade piezocontrolled mirravi2 (Physik Instrumente,
radius of each of the particle$;(t) andf,(t) are the ran- P830-40, forms the stationary optical tweezers. The second
dom Brownian forces, and is the viscosity of the liquid. laser beamS polarized, is steered by a high frequency pi-
The center-to-center distance between the partidResis  ezodriven mirror,M1 (Physik Instrumente, P$224), and
taken to be a constant because the experiments are carritmtms the oscillating optical tweezers. A sinusoidal signal
out under the conditions d®>x; andR>Xx,. Since we are created by a Stanford research systems frequency synthesizer
dealing with low Reynolds number fluid motion, the inertial (SRS DS-345is fed in a piezoelectric driveiPhysik Instru-
terms are neglected in El). mente,P863 to drive the steering mirror. The two beams

Because most of the details are shown in the Appendixiecombine at the polarizing beam splitter PBS2 before going
we simply state that the elements of the response tensor aigto the microscope. By adjusting the mirrdd,2, the sepa-
calculated in the following manner. The temporal autocorretation of the two beams can be varied.
lation and cross-correlation functions of the particles’ posi- A CCD (MT1 CCD 72 camera is used to generate a
tions are calculated from E¢L). The imaginary components video image of the trapped particle for optical alignment and
of the response tensor are then calculated from the correlaletermination of interparticle distand&lobal lab Image
tion functions by the fluctuation-dissipation theorem. TheSoftware and DT3155 Frame Grabber, both from Data Trans-
real parts of the response tensor are then determined from thations. The forward scattering intensity from each beam is
imaginary parts by the Kramers-Kronig relatiph5]. The  separately detected by the split photodiode, (Plamamatsu
elements of the response tensor are $4204). The output electrical current signal from the PD is
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Lock-in Amplifier @@ PD

FIG. 2. A schematic of the

T L t g_s‘w dual-tweezers setup. HW is a half-
A-B i/ |

PA wave plate, ND, neutral density
o illuminating filter, PBS, polarizing be_am split-
lamp ter, M1 and M2 are piezocon-
v DB CDSR trolled mirrors, PS, piezopower
| PC |<—i VCR cCD supply, DB dichroic mirror to al-
1 - - OBJ BS low the laser beam to reflect and
telescope long wavelength illuminating light
2 1 to pass, and PA is the polarization
analyzer. The second piezocon-
5 PZT o ave ﬁ trolled mirror M2 is k(_ept station-
- 4 | PBS2 ary for the two-particle experi-
=1 ments, and can oscillate for
HW ND1 p{ F2 ND2 ,_ﬁ_l ﬂ P wave calibrating the spring constant of
ol . ; the P wave trap. In the diagram,
—i—i—> § | = o the sample is located immediately
- PBS1 to the right of the objective lens

expander OBJ.
PS2

fed into a lock-in amplifie(Stanford Research, SR83@nd  straightforward transformation is used to obtain the motion
the reference signal is taken from the frequency synthesizen the stationary lab frame from the motion determined by
(SRS DS-34} that is, also used to drive the oscillating mir- the lock-in amplifier from the PD signal in the moving ref-
ror M1. In this arrangement, the lock-in amplifier measureserence framedetails of which are given in the following
the magnitude and the phase shift of the signal from thesection.

photodiode detector, where the measured phase shift is rela- To ensure that no other particles are present in the vicinity
tive to that of the driving signal. The forward scattering of of the particle under investigation, a dilute aqueous suspen-
the laser beam diffracted by a silica particle fixed at thesion of 1.6um diameter silica spheréBuke Scientific, Palo
cover glass is used to establish the reference for determininglto, California) is placed in a flow cell. An individual
the frequency dependence of the steering mirror’s displacesphere is isolated in each of the optical traps, and filtered
ment and phase shift. From the phase shift of the oscillatingleionized water flushes away the excess particles.

mirror motion and that of the moving particle, both relative

to .the signal of_the funption generator, we obtain thg phase IV. EXPERIMENTAL RESULTS
shift of the moving particle relative to that of the oscillating
tweezerq13]. To determine the spring constakg,, of an optical trap, a

The telescope, composed of the lens gdirf2, is ar-  particle is trapped in an oscillating optical trap that moves
ranged such that the location Mf1 andM 2 are conjugate to Perpendicular to the optical axis with a displacement de-
the back focal plane of the objective. Thus, any rotationabcribed byA cost) whereA is the amplitude of the trap and
motion of the laser beams duebl or M2 is pivoted at the  is the angular frequency. Since the system has low Rey-
back focal plane of the objective lens. The positiondvaf nolds number, mathematically, a damped harmonic oscillator
and M2 are important to ensure that the laser intensity reWithOUt the inertia term describes the problem. It can be
mains approximately constant when the laser beam oscillateghown readily that the particle’s position follows the equa-
laterally at the focal plane of the microscope objective lenstion
Furthermore, the split PD is located at the plane conjugate to
the focal plane of the objective so that the rotational motion X(t)=D(w)cod wt—&(w)] )
of the tweezers produces a rotational motion of laser beam
that is pivoted at the surface of the PD. The proper locatiofvhere
of the PD can be found by moving the PD along the optical

axis near the calculated conjugate plan until no sidress D(w) _ 1 and S=tan ! 8
than 1% compared to that of the signal with a trapped par- A (1+7%0?)? (ro) (8
ticle in motion can be detected at the oscillating frequency

of M1 in the absence of a particle in the trap. and 7= 6w nalky.

The precise positioning of the PD is necessary to guaran- In the scheme of detecting the particle motion mentioned
tee that the signal detected by the PD is purely due to thebove, the position of the particle is measured relative to the
lateral translation motion of particle relative to that of the moving reference frame of the oscillating trap. One can make
laser tweezers. Since the laser tweezers are oscillating sina-straightforward transformation(w)=A—x'(w), to con-
soidally, the PD signal is measured relative to a moving refvert the motion relative to the oscillating frani@enoted by
erence frame, not to the rest laboratory frafis]. A  x'), to the motion relative to the stationary laboratory frame
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FIG. 3. Typical calibration data for the determination of the FIG. 4. The norfrzalized Eovvkerfspr)]ectrall_bdeljsﬂB:SfD versus
spring constant of an optical trap. The solid and dash lines indicatgeque?;iy asl_rzcc_)nll ence c Iecl 0 (; €ca |d_rat|0r_1 05/: s?rlng con-
the real and imaginary parts of the response of a single dampe ant. € soll <|:||rcdes are_cadc%_atel accor |n@(tjsmh @ rr(])_rf? .
harmonic oscillator given by Eq11), with k,=0.0125 dyn/cm. the exp.erlr.nenta Y etermlne. ISP aceme.nt and phase shitt using

the oscillating tweezers technique. The solid line is the experimen-
. tally determined normalized PSD. The dash line is calculated values
(denoted by>,<). In terms c.)f th? measureq phask and dls'. of 1/(1+ 7°»?) with 7=6mnalky, With ky=>0.0125 dyn/cm.
placementD’ of the particle in the moving frame, the dis-
placemenD and phase shif§ in laboratory frame are given

2kgT T 2kgT D(w)sin 8(w)]
by _ B _ B
{(X(@)x(0)) Kot 1+ 7w Kot Aw '
D2=D'2-2AD cog §')+ A2, 9) (13
D’ sin(8") In Fig. 4, the solid circles are the experimentally deter-
S=tan ! m) (100  mined[D sin(8)/Aw], the solid line is the normalized PSD

such that its asymptotic value at low frequency is 1. The
. . - dashed line is the calculated values of H{(#w?) with
.The spring constant can be obtgmed by fitting E8), =6mnalky, and ky,=0.0125 dyn/cm. Tlhitg fac)t that the
With Ko =0, 10 th? response obtalneq by the. Iabf)r""torydashed Iinoe, fits so \7vell to both the normalized PSD and the
frame phase and displacement of the single particle in watep

[13]. Specificall ata obtained by the same particle in an oscillating trap,
- =P Y gives a confidence check to the calibration of a trap spring
Deid 1 1 , constant.
= = +i ) For the two-particle experiment, one particle is held in
x(@) Aky Kot 1+ w? : 1+ 7w’ (11)

each of the tweezers and isolated in the manner described

_ o above. The oscillating trafirap 1 is set into sinusoidal mo-
A typical data set taken for a trapped particle in water atjon along the line connecting the particles’ centers over a

room temperature is shown in Fig. 3. Her&: frequency range of 4£f<6000 Hz while the second trap
=0.0125 dyn/cm is obtained without adjustable parametersemains stationary at a distanBeaway. Since the second

Reports by others have found that the heating of the particlgap is stationary, the motion of the particle in the stationary
by optical tweezers, at the level of a few milliWatts of laserrap is measured relative to stationary laboratory frame. The
power, is negligiblg 16]. In the determination of trap spring gscillation amplitude of trap 1 is kept at 20 nm, at least 20
constant we assume the viscosity of water around the particigimes less than the minimum separation distance between the
to be the same as the viscosity at ambient temperature. Weyrticles. The distance between the centers of the particles is
use the same procedure to determine the spring constant fgetermined by video image analysis with an accuracy of 20
each trap, and the values so obtained are used in the followpy. The particles are held at a distance of approximately 20

ing experiments. _ _ um from the cover slip to avoid wall effects.
Trap spring constants so determined are checked against 1o test for possible optical interference between the traps,

the power spectrum methdd7] with a R2000 Rapid Sys- the particle from the stationary trap is removed, and the

tems Spectrum Analyzer for a stationary trap configuratiorphase shift of the particle in the oscillating trap is measured
similar to that described above. According to the fluctuation-as 3 function of the distance between the two traps. For trap

dissipation theorem, EqA9), the power spectrum of the separation distances greater than one-half of the particle ra-
position fluctuation of an isolated particle is dius, the measurements indicate that the empty trap has no
significant effect on the motion of the first particle. Optical
2kgT ") (12) interference between the two tweezers when both the par-
XA @). ticles are in the traps is considered insignificant due to the

following reasons. First, the particle’s diameter is about three
Following Eq.(11) we see that the power spectrum densitytimes the optical wavelength, therefore, the optical fields

(PSD can be written as scattered off the particles are mostly in the forward direction.

(X(@)x(0))=

w
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FIG. 6. The imaginary part of the diagonal),,(w), and off-

FIG. 5. The real part of the diagongl; 11(w), and off-diagonal, dlagdo_tr_lal,)( 12(“;)_’ cgm_l?ﬁnents OT thetrelsgotnse tensr?r for th_tehsame
x'12(®), components of the response tensor for two Ané-silica Eon : '_I(_)r?s asl_dlg:_. - 1he (;):pe_nmer_l al data are s (:Wn fWI error
particles in quadratic potential wells held at a distafRce3.32a a(rjs.4 e solid lines are the imaginary components of Egs.
apart. The experimental data are shown with error bars. The soli" .

lines are the real components of E3). and (4). . . .
P ® @ dissipation of the particle in the oscillating trap. The fact that

energy is shared between the two particles appeared as the

Indeed, the ratio of scattered light intensity in the forwardpronounced dip in the cross-correlation functions of the par-
direction to that of the perpendicular direction is more thanticles as measured by Meiners and QuikH.
1000: 1[18]. Second, since the two tweezers are formed by Physically, the fact that”,,(w) is negative results from a
laser beams that are perpendicularly polarized to each othafegative phase lag between the oscillating trap and the par-
only the first particle trapped by the laser beam polarizedicle in the stationary trap. This is most readily understood by
perpendicular to the line connecting the two particles carconsidering a case at low frequencies, when the phase lag
scatter light in the perpendicular direction, where the seconédetween the particle in the oscillating trap, and oscillating
particle is located. Thus, the optical interference at the searap is near zero. At the time wheq =0, the particle has a
ond particle is negligible because the field scattered from thenaximum velocity, resulting the transmission of maximum
first particle is weak and polarized perpendicularly to theforce to the second particle at the speed of sound. As a result,
field that traps the particle. At the first particle, the magni-the second particle is moved towaxkd=X, max. Similarly,
tude of the optical interference between the trapping fieldvhenx;=x; . the particle has a zero velocity, resulting in
and the second order scattered light is insignificant. Neago force on the second particle such that the second particle
field effects are negligible in this study, since the separationelaxes back tx,=0. Thus the second particle s90° out
distances between the particles is always greater than org phase with the driving force at very low frequencies. At
wavelength. larger frequencies, as the viscous damping effects become

From the ratio of the motion in the stationary laboratory more important, the phase shift increases and becomes posi-
frame, x,(w), and the external driving force of the oscillat- tive above a characteristic crossover frequency.
ing tweezers(sinusoidal perturbationF;=Aky,, (A is the It is worth noting that the zero crossover pointyify ()
amplitude of the oscillating trapwe obtain the elements of corresponds to a maximum iR’ (w). The frequency at
the response tensaf;y(w) andyz(w) [15]. The phase shift, \hich the crossover occurs is.=\s.s_, and the maxi-
absent from the typical noise power spectrum measurementgyum in the real part of the off-diagonal component of the
provides a direct determination of both the real and imagi'response tensor is,
nary parts of the response tensor.

The real and imaginary components of the elements of the , B —€ B 3a 14
response tensok () and y,1(w) = x1x(®), are shown in X 12 wc) = kou7(S.+S_) 2Rky(l+a)’ (14
Figs. 5 and 6, respectively, for a separation distance of
2a/R=0.602 withk,;=0.02 dyn/cm andv=0.425. The ex- Measurements are taken at several particle separations to

perimental data are averaged over three sets of measunest the dependence gf 15(w.) on the separation distan&e
ments. The solid lines are the theoretical predictions of thé~igure 7 shows the experimental valuesydf(w.) and the
response tensor from Eq€3) and (4), without adjustable theoretical prediction given in Eq14). The data point at
parameters. The results compare very well for all the ele2a/R=0.692 is not in statistical agreement with the predic-
ments. The diagonal elemegt,, a linear combination of tion. Including higher order terms ina2R in the Oseen Ten-
Xx11 @nd x1», is not measured. sor does not account for the discrepancy. However, the dis-
It is important to note, in Fig. 6, that”,5( ) is negative  crepancy could arise from the repulsive electrostatic force
in a well-defined frequency region. The negative values obetween the two charged colloidal particles at close proxim-
x"12(w) indicate a net energy gain of the particle in theity, as explained below. The digital images of the two par-
stationary trap. The apparent energy gain of the second paticles are found to be slightly farther apart than the spacing
ticle in this frequency range occurs at the cost of the extrdbetween the centers of the two traps when the two particles
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FIG. 7. The maximum values of’,, versus the normalized FIG. 8. Static repulsive force versus separation distance. The

interparticle spacing, &R. The solid line is the prediction given points indicate forces calculated by E@5 from the measured
by, Eq.(14). The dashed line is given by El.4) with the effective  equilibrium distance of the particle from the center of the oscillating
spring constants replacingy;, andKq. trap. The line indicates a fit to the DLVO theory, with an ion con-

o ) centration of 107 M, and a surface charge @=100Ce.
are brought to within a couple of micrometers of each other.

When a particle is away from the center of the trap it expeindicates that electrostatic forces between the two particles
riences a progressively weaker effective spring constant bedre likely the cause for the discrepancy between the data and
cause the potential well formed by the trap is Gaussian rathegd- (14) in its original form.

than truly parabolic. In a Gaussian potential, the restoring

force of the optical trap is given by V. SUMMARY

22 As a first step to understand the interactions between par-
F=—koxe %, (15  ticles in complex fluids, we have examined the correlated
. . . otions of two hydrodynamically coupled colloidal particles
wherex is the distance between the center of the particle an y y y D b

h f th cal d the width of th . confined in separate quadratic potential wells in water. Solv-
the center of the optical trap, and the width of the trap ISing the coupled equations of motion for the particles, and

taken to be approximately of the particle sizZz+0.8um)  cajcylating the autocorrelation and cross-correlation func-
[13]. The dynamics of a small oscillation around any point inyjons of the particles’ motion, lead to the description of the

the Gaqssi_an potential well can be. calculgted by considering,achanical response tensor of the coupled system. The ex-
the oscillation under a local, effective spring constant periments to determine the elements of the response tensor

52 are carried out by using two optical tweezers, each of which
1_2_954}, (16) holds a micron-sized colloidal particle in the potential well

a created by the tweezers. By oscillating one of tweezers, and
wherexgq is the equilibrium position of the particle relative thus the particle init, we have measurgd the in-phase "’?”d
to the center of the optical trap. out-of—_phase motion of each of'the particles py the lock-in

The position of each particle relative to the center of adetectlc_m method. From th_e motions of the partl_cles, we have

trap can be determined to within an accuracy of about 20 nnqetermmed the mechanlc_al response functions for _the
by comparing the video images of the particle with and with-coupled system as a function of frequency. The theoretical
out the presence of a second particle nearby. From the pos?jc’del and the experimental results agree very well over a
tion of the particle relative to the center of the oscillating requency range between 1 and 6000 Hz. Since the trap po-
trap, the static force at each separation distance can be otf-nt'al well IS Gaussian, ra_the_r_than truly parabolic, the re-
tained by Eq(15). As shown in Fig. 8, the static force on the sponse funCt'o'?“Z can be significantly affgcted by the elec-
particle in the oscillating trap compares well to the predic-trOStf"“IC repulglon between_th_e two parUpIes when the two
tions of the Derjaguin, Landau, Verwey, and Overbeekpart_'de,s are in close proximity. Measuring Fhe correla}ted
(DLVO) theory for electrostatic repulsion between two col- _mot|on n t_he frequenpy domain allows for a simple physwal
loidal particles[19]. The ionic strength calculated from the interpretation of the in-phase and out-of-phase motions of
electrostatic repulsion is approximately 70OM, within the the p.ar.t|cles. The study. presented in this paper demo".‘s”a‘es
limits of which can be present in distilled water, and thethat It is po§S|bIe to directly measure the transmission of
effective surface charge is found to be 180QJsing the hydrqdynar_mc forces across a viscous medium in & micro-
fitting force function and Eg. 15, we calculate the equilib- scopic environment and in a (_:o_r!f!ned geometry. Th? new
rium positions for each of the particle pair. The eI"fectiveCh""IIenge arises with _the p035|b|l|t|_es of ex_tendmg this ap-
spring constants for each particle at these positions are thé?{oaCh for complex fluids that are viscoelastic and/or hetero-
determined from Eq(16). The effective spring constants are geneous.
used to calculate the expected response functions by Eg.
(14). The dashed line in Fig. 7, is given by Ed4) with the
effective spring constants replacikg,,; andk,,. The good The work was supported in part by a grant from the Na-
agreement between the data and the theoretical predictidional Science Foundation, CTS-9805887, and a grant from
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APPENDIX: CALCULATION OF THE RESPONSE
TENSOR

To solve the coupled differential equations of motion we

first rewrite Eq.(1) as

f
X1 (1) =—X (1) + 1) —eaXy(t)+ em,
Kot1 Kot1
f1(t) fa(t)

sz(t):—exl(t)+6k—— aXy(t)+ ,  (AD
otl

kotl
Wher6a: kOtZ/kOIll e=H 12/H 11 al’ld T= 1/(k0tlH 11) .

We then take the Laplace transform of E@\1l) with
x(s)=[ox(t)e st

To construct the autocorrelation and cross-correlation

functions by taking the ensemble average xgf(s) and
Xy(t=0), the results show below

kgT a+7s
<Xl(S)X1(O)>: kotlT (S_S,)(S—SJr) ’ (AZ)
_ keT 1+7s
<X2(S)X2(O)>_ akotlT (S_S_)(S_S+) 1 (A3)
—ekBT 1
(XalS)x4(0)) = (xa( el 0)) = 2| o o5 .
(A4)

wherekg is Boltzmann’s constant, antdis the absolute tem-
peraturek,, is the spring constant of theth harmonic well,
andé, ., is the Kronecke® function, ands.. are as defined in
Eq. (6). Note that the relation

KT
<Xn(0)xm(0)>: Wénma (A5)

The autocorrelation and cross-correlation functions in
time domain are obtained by the inverse Laplace transforma-
tion x(t)=[1/(2mi) ] 7 =x(s)e®" of Egs.(A2)—(A4).

y+ioo
kgT
(X1(t)x41(0))= m[(a-l— 7S, )esTt
—(a+7s_)es Y, (AB)
— keT s+t
(X2(1)x5(0)) = akon (5, —5.) [(1+7s))e
—(1+7s)es ], (A7)
_ - GkBT
(X2(1)x1(0)) = (X1(t)Xo(0)) = — Koar(5,—5)
X [eS+t—es-1]. (A8)

Note the resulting Eq3A6)—(A8) are consistent with Mein-
ers and Quake’s calculatioh$1].

The imaginary part of the response function is related to
the correlations by the fluctuation-dissipation theoifdss)|

Xl @)= 53 (a0 0)), (A9)

where (X,(®)xn(0)) is the Fourier transform of
(Xn(t)Xm(0)). The real part of the response function is de-
termined from the imaginary part of the response function by
the Kramers-Kronig relatiopl5]

do’ Xim(@")
0 —w

Konl)=P [ . (A1

o T

whereP signifies the principle part. The components of the
response tensoy,, are shown as Eq$3)—(5) in the main
text.
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