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Correlated motions of two hydrodynamically coupled particles confined in separate
quadratic potential wells

L. A. Hough and H. D. Ou-Yang
Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015

~Received 12 June 2001; published 18 January 2002!

We report a study of the correlated motions of two hydrodynamically coupled colloidal particles, each of
which is trapped in a quadratic potential well defined by optical tweezers~optical traps!. By setting one of the
trapped particles into forced oscillation using oscillating optical tweezers, we measure the displacement and
phase shift of each of the particles over a wide frequency range. From the in-phase and out-of-phase motions
of both of the particles in the traps, we determine the correlated motions of the coupled mechanical system as
a function of frequency. A theoretical model is developed to calculate the response tensor of the coupled
mechanical system. The experimental results are in agreement with the prediction of the theoretical model.
This method may be extended to more general applications, such as the investigation of the micromechanical
properties of viscoelastic and/or heterogeneous media.
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I. INTRODUCTION

Colloids, polymer solutions, microemulsions, and biolo
cal cells and tissues are intrinsically complex. The compl
ity arises from two factors: interactions between the const
ents, and the structural heterogeneity of the material~which
occurs in a broad range of length scales!. As a result of the
interplay between the interactions and structural heterog
ity, these systems often reveal rich dynamical response
their mechanical properties over a wide range of frequenc
Because of the interest in the mechanical properties of th
systems, various techniques have been developed to p
their dynamical behavior at the microscopic level. The
maining challenges are the predictions of the microsco
structures based on the microscopic viscoelastic propertie
the system.

In a typical ‘‘single particle microrheology’’ study, ther
mal motions of Brownian particles@1–5#, or forced oscilla-
tions of micron-sized probe particles@6–9#, are used to de-
termine the viscoelastic properties of soft materials aro
the probe particles. Based on hydrodynamic methods,
range of the probed materials extends to approximately
radius beyond the surface of the probe particle. Thus,
measured viscoelasticity will depend on the size of a pr
particle if the scale of the material inhomogeneity is com
rable to the particle size. Therefore, it is not surprising t
results from single particle microheology studies sometim
differ from those obtained from conventional rheomete
Accordingly, one might expect the local viscoelastic prop
ties to be comparable to the bulk viscoelastic properties o
after averaging over an extended range of the material@5,6#.

To put the problem in theoretical perspective, Levine a
Lubensky showed that the longitudinal motions of two m
croscopic particles in local viscoelastic environments
coupled by the mean viscoelasticity of the material betw
the particles@10#. Along the same vein, Crockeret al. mea-
sured the ‘‘distinct’’ diffusion coefficient of colloidal pairs in
guar andF-actin solutions and reconciled the difference b
tween the microscopic and macroscopic viscoelasticities
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ing ‘‘two-point microrheology’’ @5#. To further develop mi-
crorheology, it appears that the next logical step is
understand fundamentally how the viscoelasticity change
the length scale between the probes is varied in a system
way. The work described below provides the basis for a d
ferent methodology to study the mechanical properties in
microscopic environment of complex fluids.

In this paper, we present a study of the correlated mot
of a pair of hydrodynamically coupled colloidal particle
each held in a harmonic potential well. The distance betw
the potential wells can be varied such that many len
scales can be explored. As a proof of principle, we choos
simple viscous medium in which the potential wells for t
two particles are created by optical tweezers~optical traps!.
The fixed potential well created by the optical tweezers
the same effect as a frequency independent elastic med
around the particle. The measurements of the correlated
tion of these two particles provide a test for a simplifi
viscoelastic model in which the motion of both of the pro
particles can be completely described by a response tens
the coupled mechanical system.

The experimental arrangement, shown in Fig. 1, is sim
to that of Meiners and Quake@11#. However, instead of ex-
amining the temporal correlation functions of the tw
particles’ Brownian motions, we measure the phase and
placement amplitude of both of the particles in response
an external sinusoidal perturbation on one of the partic

FIG. 1. Two colloidal particles move in two separa
quadratic potential wells a distanceR apart, in a simple liquid with
viscosityh.
©2002 The American Physical Society06-1
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The amplitude and the phase shift of the particles’ motio
provide a complete description of the correlated motion. T
approach provides advantages in both experimental ease
measurement sensitivity@12,13#.

II. THEORY

To describe the motions of the particles, we seek to fin
simple relation between the forces on the particles and
motions of the particles in terms of a response tensor. S
cifically, xn(v)5xnm(v)Fm(v), wherexn is the motion of
thenth particle,Fm is the external force on themth particle,
xnm is the complex response tensor of the system, withn,
m51 or 2. In the case of a sinusoidal perturbation to one
the particles (F15const,F250), the complex response tens
is simply related to the correlated in-phase and out-of-ph
motions of the particles. Conversely, the measured ph
and displacements of the two particles uniquely determ
the elements of the response tensor.

To calculate the elements of the response tensor, we
with the coupled differential equations for two hydrodynam
cally coupled, identical, particles in two spatially separa
quadratic potential wells@11,14#.

ẋ1~ t !5H11~2kot1x11 f 1!1H12~2kot2x21 f 2!,

ẋ2~ t !5H21~2kot1x11 f 1!1H22~2kot2x21 f 2!, ~1!

where

H115H225
1

6pha
, H125H215

1

4phR
~2!

are the lowest order components, in 1/R, of the Oseen Tenso
@14# for motions in the longitudinal directions along the lin
between the centers of the two particles;kot1 andkot2 are the
‘‘spring constants’’ of the quadratic potential wells,a is the
radius of each of the particles,f 1(t) and f 2(t) are the ran-
dom Brownian forces, andh is the viscosity of the liquid.
The center-to-center distance between the particles,R, is
taken to be a constant because the experiments are ca
out under the conditions ofR@x1 andR@x2 . Since we are
dealing with low Reynolds number fluid motion, the inerti
terms are neglected in Eq.~1!.

Because most of the details are shown in the Appen
we simply state that the elements of the response tenso
calculated in the following manner. The temporal autocor
lation and cross-correlation functions of the particles’ po
tions are calculated from Eq.~1!. The imaginary component
of the response tensor are then calculated from the cor
tion functions by the fluctuation-dissipation theorem. T
real parts of the response tensor are then determined from
imaginary parts by the Kramers-Kronig relation@15#. The
elements of the response tensor are
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x115
1

~s12s2!kot1t
F S ~a1ts1!s1

2

v21s1
2 2

~a1ts2!s2
2

v21s2
2 D

1 i S ~a1ts2!vs2

v21s2
2 2

~a1ts1!vs1

v21s1
2 D G , ~3!

x125x215
e

~s12s2!kot1t
F S s2

2

v21s2
2 2

s1
2

v21s1
2 D

1 i S vs1

v21s1
2 2

vs2

v21s2
2 D G , ~4!

x225
1

~s12s2!kot1at F S ~11ts1!s1
2

v21s1
2 2

~11ts2!s2
2

v21s2
2 D

1 i S ~11ts2!vs2

v21s2
2 2

~11ts1!vs1

v21s1
2 D G , ~5!

where s2 and s1 , the eigenvalues of the symmetric an
antisymmetric modes, are the poles of the response tens
the complex plane@15#, and given by,

s65
2~11a!6A~12a!214ae2

2t
, ~6!

wherea5kot2 /kot1, e5H12/H11, andt51/(kot1H11). The
response tensor is symmetric, however, since the pote
wells are not equal, in general, neither are the diagonal
sponse elements.

III. EXPERIMENT

The experimental arrangement, shown in Fig. 2, cons
of two optical tweezers formed by focusing two indepe
dently steered, perpendicularly polarized laser beams~l
5532 nm. Spectra Physics, Millenia Nd:YVO4) using a mi-
croscope objective~Olympus, UPlanApo 1003 NA 1.35! in
an inverted microscope~Olympus IX-70!. Splitting the laser
beam with a polarizing beam splitter~PBS1! creates two
beams. The first laser beam,P polarized and steered by
homemade piezocontrolled mirror,M2 ~Physik Instrumente,
P830-40!, forms the stationary optical tweezers. The seco
laser beam,S polarized, is steered by a high frequency p
ezodriven mirror,M1 ~Physik Instrumente, PI-S224!, and
forms the oscillating optical tweezers. A sinusoidal sign
created by a Stanford research systems frequency synthe
~SRS DS-345! is fed in a piezoelectric driver~Physik Instru-
mente,P863! to drive the steering mirror. The two beam
recombine at the polarizing beam splitter PBS2 before go
into the microscope. By adjusting the mirror,M2, the sepa-
ration of the two beams can be varied.

A CCD ~MT1 CCD 72! camera is used to generate
video image of the trapped particle for optical alignment a
determination of interparticle distance~Global lab Image
Software and DT3155 Frame Grabber, both from Data Tra
lations!. The forward scattering intensity from each beam
separately detected by the split photodiode, PD~Hamamatsu
S4204!. The output electrical current signal from the PD
6-2
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FIG. 2. A schematic of the
dual-tweezers setup. HW is a hal
wave plate, ND, neutral density
filter, PBS, polarizing beam split-
ter, M1 and M2 are piezocon-
trolled mirrors, PS, piezopowe
supply, DB dichroic mirror to al-
low the laser beam to reflect an
long wavelength illuminating light
to pass, and PA is the polarizatio
analyzer. The second piezocon
trolled mirror M2 is kept station-
ary for the two-particle experi-
ments, and can oscillate fo
calibrating the spring constant o
the P wave trap. In the diagram
the sample is located immediatel
to the right of the objective lens
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fed into a lock-in amplifier~Stanford Research, SR830!, and
the reference signal is taken from the frequency synthes
~SRS DS-345!, that is, also used to drive the oscillating m
ror M1. In this arrangement, the lock-in amplifier measu
the magnitude and the phase shift of the signal from
photodiode detector, where the measured phase shift is
tive to that of the driving signal. The forward scattering
the laser beam diffracted by a silica particle fixed at
cover glass is used to establish the reference for determi
the frequency dependence of the steering mirror’s displa
ment and phase shift. From the phase shift of the oscilla
mirror motion and that of the moving particle, both relati
to the signal of the function generator, we obtain the ph
shift of the moving particle relative to that of the oscillatin
tweezers@13#.

The telescope, composed of the lens pairf 1- f 2, is ar-
ranged such that the location ofM1 andM2 are conjugate to
the back focal plane of the objective. Thus, any rotatio
motion of the laser beams due toM1 or M2 is pivoted at the
back focal plane of the objective lens. The positions ofM1
and M2 are important to ensure that the laser intensity
mains approximately constant when the laser beam oscill
laterally at the focal plane of the microscope objective le
Furthermore, the split PD is located at the plane conjugat
the focal plane of the objective so that the rotational mot
of the tweezers produces a rotational motion of laser be
that is pivoted at the surface of the PD. The proper locat
of the PD can be found by moving the PD along the opti
axis near the calculated conjugate plan until no signal~less
than 1% compared to that of the signal with a trapped p
ticle in motion! can be detected at the oscillating frequen
of M1 in the absence of a particle in the trap.

The precise positioning of the PD is necessary to gua
tee that the signal detected by the PD is purely due to
lateral translation motion of particle relative to that of t
laser tweezers. Since the laser tweezers are oscillating s
soidally, the PD signal is measured relative to a moving r
erence frame, not to the rest laboratory frame@13#. A
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straightforward transformation is used to obtain the mot
in the stationary lab frame from the motion determined
the lock-in amplifier from the PD signal in the moving re
erence frame~details of which are given in the following
section!.

To ensure that no other particles are present in the vici
of the particle under investigation, a dilute aqueous susp
sion of 1.6-mm diameter silica spheres~Duke Scientific, Palo
Alto, California! is placed in a flow cell. An individual
sphere is isolated in each of the optical traps, and filte
deionized water flushes away the excess particles.

IV. EXPERIMENTAL RESULTS

To determine the spring constant,kot , of an optical trap, a
particle is trapped in an oscillating optical trap that mov
perpendicular to the optical axis with a displacement
scribed byA cos(vt) whereA is the amplitude of the trap an
v is the angular frequency. Since the system has low R
nolds number, mathematically, a damped harmonic oscilla
without the inertia term describes the problem. It can
shown readily that the particle’s position follows the equ
tion

x~ t !5D~v!cos@vt2d~v!# ~7!

where

D~v!

A
5

1

~11t2v2!1/2 and d5tan21~tv! ~8!

andt56pha/kot .
In the scheme of detecting the particle motion mention

above, the position of the particle is measured relative to
moving reference frame of the oscillating trap. One can m
a straightforward transformation,x(v)5A2x8(v), to con-
vert the motion relative to the oscillating frame~denoted by
x8!, to the motion relative to the stationary laboratory fram
6-3
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L. A. HOUGH AND H. D. OU-YANG PHYSICAL REVIEW E65 021906
~denoted byx!. In terms of the measured phased8 and dis-
placementD8 of the particle in the moving frame, the dis
placementD and phase shiftd in laboratory frame are given
by

D25D8222AD cos~d8!1A2, ~9!

d5tan21S D8 sin~d8!

D8 cos~d8!2AD . ~10!

The spring constant can be obtained by fitting Eq.~3!,
with kot250, to the response obtained by the laborato
frame phase and displacement of the single particle in w
@13#. Specifically,

x~v!5
Deid

Akot
5

1

kot
F 1

11t2v2 1 i
vt

11t2v2G . ~11!

A typical data set taken for a trapped particle in water
room temperature is shown in Fig. 3. Herekot
50.0125 dyn/cm is obtained without adjustable paramet
Reports by others have found that the heating of the par
by optical tweezers, at the level of a few milliWatts of las
power, is negligible@16#. In the determination of trap sprin
constant we assume the viscosity of water around the par
to be the same as the viscosity at ambient temperature
use the same procedure to determine the spring constan
each trap, and the values so obtained are used in the fol
ing experiments.

Trap spring constants so determined are checked ag
the power spectrum method@17# with a R2000 Rapid Sys
tems Spectrum Analyzer for a stationary trap configurat
similar to that described above. According to the fluctuatio
dissipation theorem, Eq.~A9!, the power spectrum of the
position fluctuation of an isolated particle is

^x~v!x~0!&5
2kBT

v
x9~v!. ~12!

Following Eq. ~11! we see that the power spectrum dens
~PSD! can be written as

FIG. 3. Typical calibration data for the determination of t
spring constant of an optical trap. The solid and dash lines indi
the real and imaginary parts of the response of a single dam
harmonic oscillator given by Eq.~11!, with kot50.0125 dyn/cm.
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^x~v!x~0!&5
2kBT

kot

t

11t2v2 5
2kBT

kot

D~v!sin@d~v!#

Av
.

~13!

In Fig. 4, the solid circles are the experimentally det
mined @D sin(d)/Av#, the solid line is the normalized PSD
such that its asymptotic value at low frequency is 1. T
dashed line is the calculated values of 1/(11t2v2) with t
56pha/kot , and kot50.0125 dyn/cm. The fact that th
dashed line fits so well to both the normalized PSD and
data obtained by the same particle in an oscillating tr
gives a confidence check to the calibration of a trap spr
constant.

For the two-particle experiment, one particle is held
each of the tweezers and isolated in the manner descr
above. The oscillating trap~trap 1! is set into sinusoidal mo-
tion along the line connecting the particles’ centers ove
frequency range of 1, f ,6000 Hz while the second tra
remains stationary at a distanceR away. Since the secon
trap is stationary, the motion of the particle in the stationa
trap is measured relative to stationary laboratory frame. T
oscillation amplitude of trap 1 is kept at 20 nm, at least
times less than the minimum separation distance between
particles. The distance between the centers of the particle
determined by video image analysis with an accuracy of
nm. The particles are held at a distance of approximately
mm from the cover slip to avoid wall effects.

To test for possible optical interference between the tra
the particle from the stationary trap is removed, and
phase shift of the particle in the oscillating trap is measu
as a function of the distance between the two traps. For
separation distances greater than one-half of the particle
dius, the measurements indicate that the empty trap ha
significant effect on the motion of the first particle. Optic
interference between the two tweezers when both the
ticles are in the traps is considered insignificant due to
following reasons. First, the particle’s diameter is about th
times the optical wavelength, therefore, the optical fie
scattered off the particles are mostly in the forward directi

te
ed

FIG. 4. The normalized power spectral density~PSD! versus
frequency as a confidence check of the calibration of a spring c
stant. The solid circles are calculated according toD sind/Av from
the experimentally determined displacement and phase shift u
the oscillating tweezers technique. The solid line is the experim
tally determined normalized PSD. The dash line is calculated va
of 1/(11t2v2) with t56pha/kot, with kot50.0125 dyn/cm.
6-4
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CORRELATED MOTIONS OF TWO HYDRODYNAMICALLY . . . PHYSICAL REVIEW E65 021906
Indeed, the ratio of scattered light intensity in the forwa
direction to that of the perpendicular direction is more th
1000: 1@18#. Second, since the two tweezers are formed
laser beams that are perpendicularly polarized to each o
only the first particle trapped by the laser beam polariz
perpendicular to the line connecting the two particles c
scatter light in the perpendicular direction, where the sec
particle is located. Thus, the optical interference at the s
ond particle is negligible because the field scattered from
first particle is weak and polarized perpendicularly to t
field that traps the particle. At the first particle, the mag
tude of the optical interference between the trapping fi
and the second order scattered light is insignificant. N
field effects are negligible in this study, since the separa
distances between the particles is always greater than
wavelength.

From the ratio of the motion in the stationary laborato
frame,xn(v), and the external driving force of the oscilla
ing tweezers~sinusoidal perturbation! F15Akot1, ~A is the
amplitude of the oscillating trap!, we obtain the elements o
the response tensorx11(v) andx21(v) @15#. The phase shift,
absent from the typical noise power spectrum measureme
provides a direct determination of both the real and ima
nary parts of the response tensor.

The real and imaginary components of the elements of
response tensor,x11(v) andx21(v)5x12(v), are shown in
Figs. 5 and 6, respectively, for a separation distance
2a/R50.602 withkot150.02 dyn/cm anda50.425. The ex-
perimental data are averaged over three sets of mea
ments. The solid lines are the theoretical predictions of
response tensor from Eqs.~3! and ~4!, without adjustable
parameters. The results compare very well for all the e
ments. The diagonal elementx22, a linear combination of
x11 andx12, is not measured.

It is important to note, in Fig. 6, thatx912(v) is negative
in a well-defined frequency region. The negative values
x912(v) indicate a net energy gain of the particle in t
stationary trap. The apparent energy gain of the second
ticle in this frequency range occurs at the cost of the ex

FIG. 5. The real part of the diagonal,x811(v), and off-diagonal,
x812(v), components of the response tensor for two 1.6-mm silica
particles in quadratic potential wells held at a distanceR53.32a
apart. The experimental data are shown with error bars. The s
lines are the real components of Eqs.~3! and ~4!.
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dissipation of the particle in the oscillating trap. The fact th
energy is shared between the two particles appeared a
pronounced dip in the cross-correlation functions of the p
ticles as measured by Meiners and Quake@11#.

Physically, the fact thatx912(v) is negative results from a
negative phase lag between the oscillating trap and the
ticle in the stationary trap. This is most readily understood
considering a case at low frequencies, when the phase
between the particle in the oscillating trap, and oscillati
trap is near zero. At the time whenx150, the particle has a
maximum velocity, resulting the transmission of maximu
force to the second particle at the speed of sound. As a re
the second particle is moved towardx25x2 max. Similarly,
whenx15x1 max, the particle has a zero velocity, resulting
no force on the second particle such that the second par
relaxes back tox250. Thus the second particle is290° out
of phase with the driving force at very low frequencies.
larger frequencies, as the viscous damping effects bec
more important, the phase shift increases and becomes
tive above a characteristic crossover frequency.

It is worth noting that the zero crossover point inx912(v)
corresponds to a maximum inx812(v). The frequency at
which the crossover occurs isvc5As1s2, and the maxi-
mum in the real part of the off-diagonal component of t
response tensor is,

x812~vc!5
2e

kot1t~s11s2!
5

3a

2Rkot1~11a!
. ~14!

Measurements are taken at several particle separation
test the dependence ofx812(vc) on the separation distanceR.
Figure 7 shows the experimental values ofx812(vc) and the
theoretical prediction given in Eq.~14!. The data point at
2a/R50.692 is not in statistical agreement with the pred
tion. Including higher order terms in 2a/R in the Oseen Ten-
sor does not account for the discrepancy. However, the
crepancy could arise from the repulsive electrostatic fo
between the two charged colloidal particles at close prox
ity, as explained below. The digital images of the two p
ticles are found to be slightly farther apart than the spac
between the centers of the two traps when the two parti

lid

FIG. 6. The imaginary part of the diagonal,x911(v), and off-
diagonal,x912(v), components of the response tensor for the sa
conditions as Fig. 5. The experimental data are shown with e
bars. The solid lines are the imaginary components of Eqs.~3!
and ~4!.
6-5
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L. A. HOUGH AND H. D. OU-YANG PHYSICAL REVIEW E65 021906
are brought to within a couple of micrometers of each oth
When a particle is away from the center of the trap it ex
riences a progressively weaker effective spring constant
cause the potential well formed by the trap is Gaussian ra
than truly parabolic. In a Gaussian potential, the restor
force of the optical trap is given by

F52kotxe2x2/a2
, ~15!

wherex is the distance between the center of the particle
the center of the optical trap, and the width of the trap
taken to be approximately of the particle size (a50.8mm)
@13#. The dynamics of a small oscillation around any point
the Gaussian potential well can be calculated by conside
the oscillation under a local, effective spring constant

kot eff5kote
2xeq

2 /a2F122
xeq

2

a2 G , ~16!

wherexeq is the equilibrium position of the particle relativ
to the center of the optical trap.

The position of each particle relative to the center o
trap can be determined to within an accuracy of about 20
by comparing the video images of the particle with and wi
out the presence of a second particle nearby. From the p
tion of the particle relative to the center of the oscillati
trap, the static force at each separation distance can be
tained by Eq.~15!. As shown in Fig. 8, the static force on th
particle in the oscillating trap compares well to the pred
tions of the Derjaguin, Landau, Verwey, and Overbe
~DLVO! theory for electrostatic repulsion between two c
loidal particles@19#. The ionic strength calculated from th
electrostatic repulsion is approximately 1027 M, within the
limits of which can be present in distilled water, and t
effective surface charge is found to be 1000e. Using the
fitting force function and Eq. 15, we calculate the equil
rium positions for each of the particle pair. The effecti
spring constants for each particle at these positions are
determined from Eq.~16!. The effective spring constants a
used to calculate the expected response functions by
~14!. The dashed line in Fig. 7, is given by Eq.~14! with the
effective spring constants replacingkot1 andkot2. The good
agreement between the data and the theoretical predic

FIG. 7. The maximum values ofx812 versus the normalized
interparticle spacing, 2a/R. The solid line is the prediction given
by, Eq.~14!. The dashed line is given by Eq.~14! with the effective
spring constants replacingkot1 andkot2.
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indicates that electrostatic forces between the two parti
are likely the cause for the discrepancy between the data
Eq. ~14! in its original form.

V. SUMMARY

As a first step to understand the interactions between
ticles in complex fluids, we have examined the correla
motions of two hydrodynamically coupled colloidal particle
confined in separate quadratic potential wells in water. So
ing the coupled equations of motion for the particles, a
calculating the autocorrelation and cross-correlation fu
tions of the particles’ motion, lead to the description of t
mechanical response tensor of the coupled system. The
periments to determine the elements of the response te
are carried out by using two optical tweezers, each of wh
holds a micron-sized colloidal particle in the potential w
created by the tweezers. By oscillating one of tweezers,
thus the particle in it, we have measured the in-phase
out-of-phase motion of each of the particles by the lock
detection method. From the motions of the particles, we h
determined the mechanical response functions for
coupled system as a function of frequency. The theoret
model and the experimental results agree very well ove
frequency range between 1 and 6000 Hz. Since the trap
tential well is Gaussian, rather than truly parabolic, the
sponse functionx12 can be significantly affected by the ele
trostatic repulsion between the two particles when the t
particles are in close proximity. Measuring the correlat
motion in the frequency domain allows for a simple physic
interpretation of the in-phase and out-of-phase motions
the particles. The study presented in this paper demonstr
that it is possible to directly measure the transmission
hydrodynamic forces across a viscous medium in a mic
scopic environment and in a confined geometry. The n
challenge arises with the possibilities of extending this
proach for complex fluids that are viscoelastic and/or hete
geneous.
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APPENDIX: CALCULATION OF THE RESPONSE
TENSOR

To solve the coupled differential equations of motion w
first rewrite Eq.~1! as

t ẋ1~ t !52x1~ t !1
f 1~ t !

kot1
2eax2~ t !1e

f 2~ t !

kot1
,

t ẋ2~ t !52ex1~ t !1e
f 1~ t !

kot1
2ax2~ t !1

f 2~ t !

kot1
, ~A1!

wherea5kot2 /kot1, e5H12/H11, andt51/(kot1H11).
We then take the Laplace transform of Eq.~A1! with

x(s)5*0
`x(t)e2st.

To construct the autocorrelation and cross-correlat
functions by taking the ensemble average ofxm(s) and
xn(t50), the results show below

^x1~s!x1~0!&5
kBT

kot1t
F a1ts

~s2s2!~s2s1!G , ~A2!

^x2~s!x2~0!&5
kBT

akot1t
F 11ts

~s2s2!~s2s1!G , ~A3!

^x2~s!x1~0!&5^x1~s!x2~0!&5
2ekBT

kot1t
F 1

~s2s2!~s2s1!G ,
~A4!

wherekB is Boltzmann’s constant, andT is the absolute tem
perature,kotn is the spring constant of thenth harmonic well,
anddnm is the Kroneckerd function, ands6 are as defined in
Eq. ~6!. Note that the relation

^xn~0!xm~0!&5
kBT

kotn
dnm , ~A5!
.:

02190
-

n

is used in arriving to the results given in Eqs.~A2!–~A4!.
The autocorrelation and cross-correlation functions

time domain are obtained by the inverse Laplace transfor
tion x(t)5@1/(2p i )#*g1 i`

g2 i`x(s)est of Eqs.~A2!–~A4!.

^x1~ t !x1~0!&5
kBT

kot1t~s12s2!
@~a1ts1!es1t

2~a1ts2!es2t#, ~A6!

^x2~ t !x2~0!&5
kBT

akot1t~s12s2!
@~11ts1!es1t

2~11ts2!es2t#, ~A7!

^x2~ t !x1~0!&5^x1~ t !x2~0!&52
ekBT

kot1t~s12s2!

3@es1t2es2t#. ~A8!

Note the resulting Eqs.~A6!–~A8! are consistent with Mein-
ers and Quake’s calculations@11#.

The imaginary part of the response function is related
the correlations by the fluctuation-dissipation theorem@15#

x9nm~v!5
v

2kBT
^xn~v!xm~0!&, ~A9!

where ^xn(v)xm(0)& is the Fourier transform of
^xn(t)xm(0)&. The real part of the response function is d
termined from the imaginary part of the response function
the Kramers-Kronig relation@15#

x8nm~v!5PE
2`

` dv8

p

xnm9 ~v8!

v82v
, ~A10!

whereP signifies the principle part. The components of t
response tensorxnm are shown as Eqs.~3!–~5! in the main
text.
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