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Nonequilibrium phase transitions in a model for the origin of life
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The requisites for the persistence of small colonies of self-replicating molecules living in a two-dimensional
lattice are investigated analytically in the infinite diffusion or mean-field limit and through Monte Carlo
simulations in the position-fixed or contact process limit. The molecules are modeled by hypercyclic replicators
A that are capable of replicating via binary fissidr- E— 2A with production rates, as well as via catalyti-
cally assisted replication®+ E— 3A with ratec. In addition, a molecule can degrade into its source materials
E with rate y. In the asymptotic regime, the system can be characterized by the préaetioe phaseand the
absencdempty phasgof replicators in the lattice. In both diffusion regimes, we find that for small values of
the ratioc/ y these phases are separated by a second-order phase transition that is in the universality class of the
directed percolation, while for small values @ify the phase transition is of first order. Furthermore, we show
the suitability of the dynamic Monte Carlo method, which is based on the analysis of the spreading behavior
of a few active cells in the center of an otherwise infinite empty lattice, to address the problem of the
emergence of replicators. Rather surprisingly, we show that this method allows an unambiguous identification
of the order of the nonequilibrium phase transition.
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[. INTRODUCTION ral selection is essentially the dynamics of replicators, it is
not surprising that most of the studies in this subject have
The most fundamental event in the history of life wasfocused almost exclusively on the competition between rep-
probably the spontaneous appearance of a molecule capafiieators, among which the so-called malthusian and hypercy-
of replicating itself(replicato). Given a possible mechanism clic replicators are the most importd,5]. The former cor-
of replication, which in this case is some form of templatefesponds to the simplest reproduction process, namely, the
activity, the evolution of such replicators has been extenbinary fission of a parent replicator and is modeled by the
sively investigated through the chemical kinetics formalismchemical reaction
put forward by Eigen and co-workers in the 1970s2].
Those ;tudies have raised a series of objections to the sim- A+E—S>2A, 1)
plistic view of the emergence of a complex organism from a
collection of competing species of replicators. For instanceWhereA is the replicator ancE is the source materials
the finding that the length of a molecujpolynucleotidg is (mononucleotide resourcedt is well known that the con-
limited due to the finite replication accuracy per nucleotideCentration ofA grows exponentially with the rate constamt
has prompted the proposal of models that incorporated SOM&ovided that the concentration Bfis kept constant her;ce
sort of cooperation between the replicators, such as the m he name malthusian replicator. To avoid this ;explosive
lecular catalytic feedback networks termed hypercy€®s '

These models, however, have attracted their own criticism rowth, one usually imposes a constraint on the total concen-
. > ’ . o ._Tration of replicators that can be implemented in practice by
since, as pointed out by Maynard Smith, giving catalytic

; o 2 ~a dilution flux[1]. Alternatively, one can allow the replica-
support in such molecular networks is in fact an altrwstlctOrs to be degraded by hydrolysis into its mononucleotide
behavior and so they are extremely vulnerable to the preséomponentsE according to the reaction
ence of parasites, i.e., molecules that do not reciprocate thé
catalytic support they recei\i@]. A possible solution to this y
problem is provided by the structured deme formulation of A—E, (2
group selectiof4], where it is assumed that the replicators
are spatially localized, say, in rock crevices or water dropletsyhich seems a more natural approach to limit the growth of
so that the benefits accrued from cooperation are directeg
mostly to the members of the catalytic netwds7]. Yet As best exemplified by sexual reproduction, there are situ-
another successful approach to the problem of resistancgions that cannot be described by E. since two replica-

against parasites is based on a reaction-diffusion systefars are necessary to produce a third one. In this case the
where replication and diffusion taking place on an adsorbingtorresponding chemical reaction is

surface generate self-organized spiral struct{i8g. Inter-

estingly, as these spatial structures, which greatly increase c

the stability of the hypercycles against parasites, can be 2A+E—3A, 3
viewed as superorganisms that approach is also related to the

group selection theor{8]. which leads to a hyperbolic growth of the concentration of

Since in the prebiotic or chemical evolution context, natu-replicator A [2]. A hypercyclic replicator is defined as one
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that can replicate itself using both Ed4) and (3) reaction Il. THE MODEL

sch.emes.. Actually, the term .hyperc.:yclg derives from the su- It has been suggested that chemical evolution started with
perimposition of the catalytic replication cycl®) on the 5 grface-bonded autocatalytic chemical network as there are
self-replication cycle(1). Of course, the limitc=0 corre-  enormous thermodynamics and kinetics advantages of sur-
sponds to the malthusian replicator while:0 can be asso- face binding reactions, especially in the case of reactions that
ciated to an obligatory sexual replicator. require unlikely collisions of many reactantss]. The bind-

In contrast to previous works that have concentrated orfng must be strong enough to keep the reactants on the sur-
the competition between replicators either of the same kindace but also flexible enough to allow their slow migration
but with different production rated,2] or of different kinds ~ ©n it. Interestingly, if this proposal proves correct it will
[5], in this paper we address a more fundamental problerRrobably lead to the replacement of the popular notion of a
that has received comparatively little attention, namely, the?fimitive soup by that of a primitive pizza instegdi7]. Ac-
stability of the different kinds of replicators, viewed here ascordlngly, we define our replicaior model in a two-

dimensional space consisting bix L cells in a square tor-

an active(ordered phase of the molecular system against theOidal lattice. Each cell is either empty or occupied by a

empty(disorderedphase composed of the resource material§gpjicator and it is assumed that an empty cell contains all
only. This lack of interest was probably due to the fact thalsoyrce material required to assemble a new replicator. The
the usual kinetics formalism used to study the dynamics ogyolution of the population of replicators is governed by the
replicators does not represent the mononucleotide resourggjiowing local rules.

dynamics explicitly(see, however,10,11)), thus precluding (1) A replicator has a probability of decaying; after de-
the study of the issues addressed in the present contributiopay the cell becomes empty. This rule is motivated by the
More pointedly, we consider the dynamics of a population ofnydrolysis reactior(2).

identical hypercyclic replicators on a lattice space both in the (2) A replicator in one of the four first neighbor cellgon
deterministic infinite diffusionlmean-field limit and in the  Neumann neighborhooaf an empty cell can replicate into
stochastic position-fixedcontact procegslimit where each that cell with probabilitys. This process is referred to as
replicator on a lattice cell never moves. The last limit isnoncatalized self-replication and is motivated by the reaction
particularly interesting because it allows the connection betl).

tween the replicator models and some standard models of (3) Regardless of the previous rule, a replicator in the von
nonequilibrium phase transition in a latti¢e.g., directed Neumann neighborhood of an empty cell can replicate into
percolation [12—14. As a result, the powerful analytical that cell |f_there are other replicators in the |nterse_c_t|on of the
tools of statistical mechanics can be readily used to advand¥0ore neighborhoods of both cells. The probability of this
our understanding of the evolution of replicators. Of particu-tyloe of replication, which is motivated by reactié), is c

lar relevance is the so-called dynamic Monte Carlo metho or each pair O.f replicators. We rec;all _that the Moore neigh-
whose idea is to set the system initially in the empty stat orhood of a given cell consists of its first and second nearest

with a seed of replicators in the center of the lattice and therr]1e|ghbors, _addmg up to elght ce_IIs. .
Hence, in the extreme situation where an empty cell is

;tudy the subsequent spreadmg of act|\ﬂ_132_—14]. More surrounded by eight replicators, it can become occupied with
importantly, the thorough analysis of both limits exposes theprobability 45+ 16¢. To carry out the simulations we choose

Iimitations_ of the Widgly used deterministic chemical kineticsthe parameters ands such that 4+ 16c=<1. These rules are
or mean-field formalism to study the problem of the emer-pjjieq simultaneously to all cells in the lattice so our model
gence of life. _ _ can be viewed as a two-dimensional stochastic cellular au-
The remainder of the paper is organized as follows. Ifomaton. Actually the model is essentially an adaptation to
Sec. Il we present the set of rules that govern the evolutiogne-membered hypercycles of the spatial cellular automaton
of a population of hypercyclic replicators in a two- model of multimembered hypercycles proposed by Boerlijst
dimensional square lattice. The mean-field or infinite diffu-and Hogewed8]. The dynamics defined by the rules given
sion limit, which models an ideally mixed medium, is stud- above is manifestly irreversible and, in particular, the state
ied analytically in Sec. Ill. The results are summarized in acharacterized by empty cells only is an absorbing state, i.e., a
phase diagram showing the regions of stability of the emptyconfiguration from which the system cannot escape. In this
and active regimes in the space of the control parameters sense, the principle of detailed balance is broken and the
the model. Those regions are delimitated by continuous agctive stationary state is in fact in nonequilibrium. Although
well as discontinuous transition lines that join at a tricritical the more realistic situation is a diffusion-controlled reaction
point. In Sec. IV we study the position-fixed or contact pro-where each reactant can move randomly on the lattice, in this
cess limit using mainly the dynamic Monte Carlo methodPaper we choose to study in detail the simpler extreme cases
that allows the computation of the critical dynamic expo-Of infinite diffusion (mean field and no diffusion(contact
nents that describe quantitatively the spreading of a vanistrocess Of course, we hope that features common to both
ingly small population of replicators. Finally, some conclud- limits will be present in the finite diffusion situation as well.
ing remarks are presented in Sec. V. In particular, we
compare the hypercyclic replicator model with Sdit® M. THE MEAN-FIELD LIMIT
models of nonequilibrium phase transition in reaction- The mean-field limit describes exactly an infinite popula-
diffusion systemg15]. tion of reactants in an ideally mixed medium and so it is
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FIG. 1. Mean-field steady-state concentration
of active sites as a function of the scaled noncat-
alized self-replication ratio fotbottom to top ©
=0, 1, 2, 3, and 4. The initial concentrations are
(& pp=1 and(b) py=0.001.
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equivalent to the usual chemical kinetics formulation. Ne-and the phase labeld&A) where both solutiong=0 and
glecting spatial correlations among cells, i.e., assuming thgs>0 are stable. In this phase, the outcome of the dynamics
at any time the molecules are distributed randomly over thés not determined by the control parameters only but also by
lattice cells, it is straightforward to write the evolution equa-the initial abundance of replicators. From this figure it is
tion for the density of replicators or occupied cells at titne clear that the system undergoes a continuous nonequilibrium

namely, phase transition from phagE) to phasgA) at3=%,=1 and
T<1. Explicitly, near this transition the density of replicators
pr+1= p(1=7y) +4p(1—py)(S+4cpy). (4 can be written as
We will consider only the stationary solutiops, ;=p;=p 3—1

®

of this equation. The absorbingmpty) statep=0 is always

a solution, while the nonzero solutions are given by the roots
of the quadratic equation The continuous transition ends at the tricritical p&pt<,

=1 so that fof€>T, the transition between phasés) and
(EA), that takes place &=2.€—¢, as well as the transi-
tion between phasg&A) and (A), that occurs aB=1, are
discontinuous. In particular, the jumps of the densities of

Tp?—p(T—3)+1-3=0, (5)

where we have introduced the dimensionless parameters

16c 4s replicators are
Tt=— and 3=—. (6)
y Ap=1-1RY2 E>1, (9)
This equation has real roots provided that the condition ( at the transitior(E)-(EA), and
+3)2=4¢ is satisfied. In addition we can easily show that:
(i) for 3<1 and%>% both roots are positive(ii) for 3<1 Ap=1-1F€, ©T>1, (10

andT< both roots are negative; arfiii ) for >1 only one
of the roots is negative. Furthermore, though the solugion
=0 exists in the entire plan&(s), it is stable only if the
condition

at the transition(EA)-(A). These results are conveniently
summarized in the phase diagram shown in Fig. 2. It is in-
teresting to note that settir§=T we find, close to the tri-
critical point,

Ipt+1

p~(3-1)"2
Ipt

=1-y+4s<], (7) (17

e so that the tricritical point is not in the same universality
which reduces t&<1, is satisfied. In the region where the class as the transition observed in the absence of catalytically
nonzero roots are physicéle., real and positive the stable  assisted replication.

root is always the largest one. In Fig. 1 we show the steady- The interpretation of our results within the prebiotic evo-
state density of replicators for two different choices of initial lution context leads to the conclusion that for finite values of

density. We identify three distinct phases: the absorbing o€ an obligatory sexual replicator cannot emerge spontane-

empty phas€E) associated to the solutign=0; the repli-
cating or active phas@d) associated to the solutign>0;

ously (i.e., appear at vanishingly small concentratjorisor
instance, fofS=0, the minimal initial density of replicators
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FIG. 2. Mean-field phase diagram in the plafgs] showing . ) )
the regions of stability of the different steady-state solutions. The G- 3. Average density of replicatofsas a function of for
continuous transition ending at the tricritical poifiCP) is repre- (left to right) ©=5.70, 5.13, 3.94, 2.58, 0.99, and 0. The lattice sizes
sented as a solid line and the broken lines indicate discontinuou@reL:lOO(X) and 20Q0).

phase transitions. o )
s/y andc/y so throughout the remaining of this paper the

necessary to engender a prosperous populatign=i&/2 at value of the de_cay constant is_held fixedyat 0.05. These_ _
the transition point=4, vanishing as ¥/for larget. Actu- results .clearly mdpate the existence of a phase transition
ally, an initial colony of replicators is certain to grow from Separating the activep(-0) and empty p=0) phases of the
vanishingly small concentrations provided tfat 1. These quel. Assumlng that in thfe neighborhood of the transition
conclusions, however, must be taken with caution since iP0ints the density of replicators goes to zero @s (S
the deterministic limit a vanishingly small concentration —Sc)” and using the least-square method we can estimate
means an infinite population of replicators, while one wouldPoth the critical replication rafg; and the critical exponent
expect the first replicators to show up as a single or a few3>0. These estimates are presented in Table | and the qual-
copies at most. Of course, a proper understanding of thiy of the fitting can be appreciated from Fig. 4. The statisti-
emergence phenomenon calls for a stochastic approacf@l errors are of order of IG but the systematic errors,
which is the subject of the following section. which are due mainly to the difficulty to carry out long runs
very close to the transition point, are probably much larger.
We note that our estimates gffor small values ot indicate
that in this regime the replicator model belongs to the so-
The primary aim of this section is to determine what fea-called (2+1) directed-percolation universality class for
tures of the rich phase diagram obtained in the mean-fielavhich 3=0.59+0.02[19]. It should be pointed out that in
limit show up also in the opposite limit, where the replicators
are fixed on the lattice cells. This is a rather challenging L PN
enterprise as at least in the case of equilibrium phase transi ™’

tions, there is no totally unambiguous way by which one can I QM

detect the order of the transition through the analysis of finite [~ .
systems alongl8]. Nevertheless, we tackle this problem us- - ]
ing both a steady-state approach for finite lattices and the -is|- -
dynamical Monte Carlo method for lattices of effectively in- 32 | -
finite size. L i

IV. THE POSITION-FIXED LIMIT

First, we measure the densjiyof replicators in the steady
state. Our results for two system siZés= 100 andL = 200 sl
are shown in Figs. 3 and 4. For each set of the control pa-
rameters we made runs of 2L @enerations, neglecting the
first 2x 10* generations and recordingat steps of 200 gen- “T s
erations. A generation corresponds to the simultaneous up ~ “M—ML—r-~_ o 1 L L
date of all lattice cells. Each data point is the arithmetic
mean of these recorded data. Provided that the population is
not extinct, the results are independent of the choice of the F|G. 4. Logarithm plot of the average densityas a function of
initial configuration. In particular, we have made runs start-z—3,) for (top to bottom ©=5.70, 5.13, 3.94, 2.58, 0.99, and 0.
ing from all cells occupied or from a seed of only four clus- The values o&.=3.(c) for the different choices G are given in
tered occupied cells. Furthermore, as in the mean-field limifrable | and the straight lines are the numerical fitting obtained with
we have verified that our results depend only on the ratioshose data. Only the data for=200 are presented.

n(8-%)
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TABLE |. Estimates of the critical poir§. and the critical ex- 4
ponentB assuming the power-law singularipy~ (3—73)”.

< Se B 3
0 1.625 0.61
0.992 1.400 0.60 L
2.576 1.004 0.47 g
3.936 0.608 0.30
5.128 0.210 0.18 1
5.7008 0.004 0.12

finite systems the active regime is a meta stable one as ther
is always a finite probability that the colony becomes extinct :
due to fluctuations in the stochastic dynamics. Since this ex:
tinction probability increases towards 1 as the critical point is
approached, it is very difficult to obtain reliable estimates of FIG. 5. The log-log plot oh(t) as a function ot for =0 and

. and B by means of numerical simulations in the steady-(top to bottom $=1.80, 1.632, 1.630, 1.629, 1.628, 1.627, 1.626,
state regime. Of course we are aware that if the transitioand 1.52.

happens to become discontinuous at some valige-@f then

In(t)

the assumption of a power-law singularity at the transition n(t)~t7, (12
point breaks dowr{actually 8=0 in this casg In fact, the

(anomalous continuous decrease @ asT increases(see P(t)~t~?, (13
Table ) is an indication that this might be the case. Our

careless use of the power-law assumption is intentional and R%(t)~t?, (14)

aims to illustrate the difficulty of detecting the order of a _ _

phase transition using results of steady-state simulations: thghered, », andzare dynamic exponents that are related with

abrupt variation ofp at criticality observed in Fig. 3 for the fractal dimension of the clusters of replicators through

certain values G€, which might indicate the occurrence of a the equation

first-order irreversible transition, can be explained as a con-

tinuous transition with a smal_l exponeftas W(_all. . di=2—. (15)
We now turn to the analysis of the spreading behavior of z

a small colony of replicators settled initially in the center of — . . .
In principle, these scaling laws are valid for continuous as

an otherwise empty lattice of infinite size. More pointedly, . . - ;
by P Y well as discontinuous phase transitions, though the scaling

the initial colony is composed of four replicators located in . “ S
the von Neumann neighborhood of the central empty Ce“_relatlons between the exponents, such as the “hyperscaling

Finite-size effects are absent because the lattice size is také‘ﬁla“on[m]

large enough so that during the time we follow the evolution ldz— n=28 16
. . 20Z—n= f ( )

of the colony the replicators can never reach the lattice

boundaries. This of course sets an upper limit to the numbefhere d is the lattice dimension, hold only in the case of
of generations we can follow the colony and so, in particularcontinuous transitions.

we let the population evolve up to typically-10". As usual, In Figs. 5 and 6, we present log-log plots oft) and
we concentrate on the time dependence of the following key(t), respectively, as functions dfin the vicinity of the
quantities[12]: (i) the average number of replicatangt);  critical point foré=0. The dependence &?2(t) on't is not

(if) the survival probability of the colon(t); and(iii) the  shown since, near criticality, the curves for different values
average mean-square distance over which the replicatogsts are clustered together and do not reveal any qualitatively
have spreadR?(t). For each timet we carry outM=2  relevant information on the colony evolution. The asymptotic
X 10° independent runs, all starting with the same initial siraight lines observed in these figures are the signature of
colony. HenceP(t) is simply the fraction of runs for which critical behavior while upward and downward deviations in-
there is at least one replicator in the lattice at tim&ince  dicate supercritical and subcritical behaviors, respectively. A
n(t) is an average taken over all runs including those thaprecise estimate for the critical exponents is obtained by con-
have already been extinct at generatioiie average number sidering the local slopes of the curves shown in the previous
of replicators per surviving run is given by the ratd(t)  figures. For instance, the local slop¥t) is defined by
=n(t)/P(t). Furthermore, noting thaR?(t) is averaged [14,20

only over the surviving runs, we can define the fractal di-

mensiond; of the surviving colonies of replicators at a given In[P(t)/P(t/5)]

time t asN~RY, —o)= N5 ' (17)
At the transition points we expect that the measured quan-

tities obey the following scaling law/d 2] which for larget behaves as
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FIG. 6. Same as Fig. 5 but fé¥(t). FIG. 8. Same as Fig. 7 but fé(t).
dence of InP(t) ont is similar to that observed in the previ-
ous case, the behavior pattern oh(t) (see Fig. 7 is rather
different: in the supercritical regimé.e., T>T.) n(t) first
increases reaching a maximum, then decreases reaching a
wherea is a constant. Analogous expressions hold#§t)  minimum, and finally starts to increase monotonically again.
andz(t). Hence, plots of the local slopes as functions of 1/ This pattern is illustrated better in Fig. 9, which shows the
allow the calculation of the critical exponents. Using this spreading results f&=0.2. Analysis of these figures, which
procedure we fin&;=1.628+0.001, which yields the expo- exceptionally show the colony evolution up txa0* gen-
nents »=0.23£0.01, 6=0.45+0.01, andz=1.13+0.01.  erations, suggests that a flat line separates the supercritical
The error in$, is estimated by determining two values®f and the subcritical regimes implying thus the vanishing of
as close as possible to the critical point for which upwardthe exponent; at the transition point. Furthermore, the quali-
and downward deviations can be observed, while the errorgitively distinct behavior patterns of igt) illustrated in Figs.
in the critical exponents are, as usual, the statistical errors, 7, and 9 can be used to identify unambiguously the order
obtained by fitting the local slopes by straight lines in theof the nonequilibrium phase transition and hence to estimate
large t regime. Our exponents are in good agreement withthe location of the tricritical point. To appreciate how the
those of the (2- 1) directed percolatiofil4] and satisfy very  time dependence of Int) in the supercritical regime
well the hyperscaling relatiofl6) thus indicating that the changes continuously from the simple monotonic increase
transition in the limif€=0 is continuous, as expected. for =0 to the complicated behavior described abovesfor
The results of the spreading analysis for the other extreme-0 we present in Figs. 10 and 11 log-log plotsngt) as a
case;$=0, which models a population of obligatory sexual function of t for 3=0.6 and$=1.0, respectively. In fact,
replicators are shown in Figs. 7 and 8. Although the depenanalysis of Figs. 7-11 suggests that the turning point be-

a
S(t)~ 5+, (19)

f——T——T T T T T T 7T 77T T T T

In(n)
In(n)
T

and 5.664.

| TR NI NI I I T — 1

3 4 5 6 7 8 9 10 0

In(t)

FIG. 7. The log-log plot of(t) as a function ot for $=0 and FIG
(top to bottom ©=5.760, 5.712, 5.709, 5.704, 5.702, 5.701, 5.680,(top to

5.120.
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FIG. 10. The log-log plot of(t) as a function of for $=0.6 FIG. 11. The log-log plot of(t) as a function ot for 3=1.0
and (top to bottom ©=4.080, 4.000, 3.968, 3.960, 3.952, 3.944, and (top to bottom ©=2.720, 2.600, 2.592, 2.584, 2.576, 2.568,
3.936, 3.928, 3.920, 3.912, and 3.840. 2.552, and 2.544.

tween those distinct behavior patterns occurs when the maxbetter statistics as well as much longer runs. We leave this
mum and the minimum ofi(t) coincide, i.e., the critical interesting research line that includes, for instance, the iden-

curve Inn(t) vs Int has an inflection pointsee Fig. 1@ The tification of the universality class of the tricritical point to a
values of3 and the corresponding. at which this behavior future, more technical contribution.
occurs are then identified as the coordinates of the tricritical The evidences in support of our claim that, similarly to
point. Applying this procedure we fing,=0.60+0.04 and the mean-field limit, in the position-fixed limit the nonequi-
T;=4.00+0.20. librium phase transition between the empty and active phases
The transition points and the dynamic exponents obtaine@ discontinuous for smal and so there is a tricritical point
via the scaling lawg12)—(14) and via the analysis of the in the phase diagram of the model are threefold: First, the
local slopes are summarized in Table Il. The errors in thevanishing of the exponenj in this range signalizes a distinct
estimates of the transition points are calculated as describexbymptotic behavior of the average number of replicators
before for the cas&=0. Except for that case, we refrain n(t). Second, the hyperscaling relatioh6) is clearly vio-
from presenting théstatistical errors in the exponents since lated for smal§ while it is satisfied in the regime where we
the systematic errors are unusually large, due probably to thexpect the transition to be a second-order transition. Third,
crossover behavior amorigt least three different universal- using Eq.(15) and the data of Table Il we find;~d=2 in
ity classes. For instance, in the vicinity of the transition pointthe region of smaf indicating that the clusters of replicators
for 5=0.6, analysis of the local slopé(t) up to t=500 are not fractal objects, in contrast to the clusters observed in
indicates a clear tendency to the asymptotic vaizel  the vicinity of a second-order transitiofwe find, for in-
while for t>500 the tendency suddenly changes towards thgtanced;~1.21 for€=0). This point is illustrated in Figs.
asymptotic values~0.6. A similar phenomenon occurs for 12 and 13 that show snapshots of typical colonies=at0*
'S=1.0 also: the initial tendency is towards=0.6 and then for the two extreme cases. In both figures the relative dis-
changes toward$~0.45 for larger times. As a result the tances to the critical points are the same. The reason for the
estimate of the exponents becomes strongly dependent on thelonies of obligatory sexual replicators to be much denser
precise location of the transition points, which requires everthan those of malthusian replicators is that the number of

TABLE II. Critical dynamic exponents calculated from the slopes of the straight lines at the transition
pointsc¢(s).

3 C. 7 ) z

0 5.704+0.005 —0.03 0.96 0.98
0.2 5.152+0.008 —0.004 0.80 1.03
0.6 3.952-0.008 0.14 0.63 1.08
0.8 3.296-0.008 0.22 0.54 111
1.0 2.584-0.008 0.20 0.51 111
1.2 1.832£0.008 0.25 0.49 1.13
14 1.008-0.008 0.23 0.47 1.11

1.628+0.001 0 0.2%0.01 0.45-0.01 1.13-0.01
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FIG. 14. Phase diagram in the plari&¥) for the position-fixed

limit. The continuous and discontinuous transition points are repre-
FIG. 12. Snapshot of the lattice configuratiortatl0* showing ~ sented by the symbol® and A, respectively. The error bars repre-
the colony of replicatorgdoty. The parameters afé=0 and3 sent the uncertainty in the location of the tricritical poiCP),
=1.69. The initial colony of four replicators was placed in the while for the other data points the error bars are smaller than the
middle of the 20 200 lattice. symbol sizes. For the sake of comparison the mean-field phase dia-
gram (solid and broken linesis also presented.
replicators per surviving colonyN(t)~t”"?] increases
roughly ast for the former and as” for the latter. In addi- Pends on the number and location of the replicators in the
tion, the average square distance over which the initiainitial colony, but the conditions we have chosen are the
colony has spread from the center of the lattice at tiiee ~ Most relevant for the emergence of life problgffhis result
rough|y of the same order in both extremes as indicated byontrasts to our findings in the mean-field limit that the fixed
the values of the exponemt point associated to the empty phase becomes unstabi for
Finally, in Fig. 14 we present the phase diagram for the>1 so that even starting with a vanishingly small concentra-
position-fixed limit. In this case there are only two phasestion of replicators the population never dies out. As men-
namely, the empty phas@) characterized by a vanishing tioned before, the reason for this discrepancy is not the dif-
probability of survivalP..=lim, .. P(t)=0 and the phase ference in mobility of the replicators but the fact that the
(EA) where the active and empty states can occur with probmean-field analysis actually considers an infinite population
abilities P., and 1- P.. (see Figs. 6 and)8respectively. We and hence it fails to take into account the stochastic fluctua-
note that the population size is effectively unlimited so thattions that could drive a small population to extinction.
extinction is not certain to occur as in the steady-state analy- For the sake of completeness, we should mention that we
sis of finite systems. It is worth emphasizing that for finite have also carried out a similar analysis for one-dimensional
production rates one haB,<1 and so there is a|Ways a |atticeS(Chain$. While the results for the mean-field limit are
nonvanishing probability of extinction(Actually, P.. de-  ©Of course the saméprovided we properly redefine the di-
mensionless parametegsand), the fixed-point limit has
some distinct features that are worth mentioning. In particu-
lar, we find no evidence for a first-order transition; instead,
we find that in both extremé&=0 ands$=0 the empty and
active phases are separated by a second-order phase transi-
tion that belongs to the (1) directed-percolation univer-
sality class[12]. Interestingly, in one dimension the steady-
state analysis of finite chains is rendered practically useless
by the very pronounced finite-size effects, which are prob-
ably due to the proximity to the lower critical dimension of
the model.

V. CONCLUSION

In this paper we have focused on the prior step in the
evolution of life: What are the necessary conditions for small
colonies of molecules capable of making copies of them-
selves via some template mechanism to persist? This step
must be passed before one can consider issues such as the
FIG. 13. Same as Fig. 12 but f&=0 andt=5.92. outcome of the competition between the replicators and their
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defective copie$l,23] or between different kinds of replica- tinuous for higher dimensiongd&2). We should mention,
tors[2,5]. As a model of replicator we have considered thehowever, that the Monte Carlo implementation of Sgfit
well-established hypercyclic replicatgone-membered hy- second model actually allows the diffusion of reactants to
percycle that incorporates two independent mechanisms ofieighboring cells and, in addition, allows a cell to shelter
replication, namely, the direct template replication reactionmore than one reactap2?2] so that a comparison with the
(1) and the catalytically assisted template replication reactiofosition-fixed limit may not be appropriate. In any event, it
(3), whose rates are proportional to the parameseasd c, is our opinion that the hype_rcycllc (_epllcator model sh(_)uld
respectively. Furthermore, motivated by the modern theorie80t be viewed as a mere variant of Sajlle models; rather it
for the evolution of life that suggest a scenario of diffusion-iS @ well-established model of chemical evolutifh2.9
controlled chemical reactions taking place on adsorbing surthat, as far as we know, has not been studied beyond the
faces (probably pyrit¢ where each reactant can move ran-mean-field limit. _ _ o
domly on the surfacé16,17, we have considered a two- Although the simple repl!cator r_n_odel considered in t_h_ls
dimensional lattice model where each reactant can occupj@Per turned out to be a quite exciting model of nonequilib-
one of the lattice cells. fium phase transitions, we should not lose sight of the origi-
Since the diffusion process of reactants complicates corf?@l purpose of this work and so, at this stage, it is important
siderably the analysis, we have focused on the two extremi highlight the relevance of our results to the origin of life
situations: the infinite diffusion or mean-field limit and the iSSue. In fact, the mere existence of a phase fransition be-
position-fixed or contact process limit. The expectation istWeen the empty and the active regimes poses a difficulty to
that features common to both limits should also be present iRUr scenario of the emergence of life since the scaled pro-
the more realistic, intermediate situations. In both cases wéuction rates of the spontaneously created self-replicating
found rich phase diagrams showing the regions in the p|ang10IecuIe must be Iar_ger tha_n some thres_hold value already at
(c,s) where the replicators persi&ictive phaseand die out the outset. Though increasing the mobility of thg reactants
(empty phase these regions are separated by second-ordefecreases Fh|s _threshold som_ewhat,_thgt scenario would be
nonequilibrium phase transitions that turn into first-ordermore plausible if replicators with vanishingly small produc-
transitions at tricritical points. The dynamic Monte Carlo fion rates could also thrive. The situation becomes even
method has proven very well suited to our investigation ofVOrse in the case of first-order transitions: in the determin-
the position-fixed limit not only because the method is basedftic mean-field limit the initial abundance of the spontane-
on the analysis of the spreading behavior of a small colonyUSly created replicators should be large as well, while in the
of active cells, which is exactly the problem we are inter_stoch_a_st!c p03|t|0n—f|xeq. limit the _probab|l|ty of survival in
ested in, but because, rather surprisingly, it allows an unan{l€ Vvicinity of the transition point is some orders of magni-
biguous identification of the order of the nonequilibrium tude smaller than in the case of a second-order trandtie
phase transition. In addition, we show that the continuougigs- 6 and & Furthermore, our results indicate that some

transition is in the universality class of the {2) directed important conclusions, such as the certainty of survival for
percolation. $>1 or the role played by the initial concentration of repli-

Some remarks on the apparent similarity betweerfalors near a discontinuous transition, are actually artifacts of

Schigl's first and second models and the replicator modeldhe deterministic formalism commonly used to study chemi-
studied in this paper are in ordt5]. In fact, irreversible ~ Ccal evolution. . _
versions of Schigl’s first and second models are recovered N summary, our results show the necessity of adding
when the reactar is eliminated from reaction&l) and(3), some elements to the standard scenario for the emergence of
respectively, so that the existence of an empty cell containingfé Whose effect would be to avoid the phase transitions,
source materials is not required for replication. Interestingly@/lowing thus inefficient replicators to thrive at this first stage
this difference is not important in the case of malthusiar®f life. Only then one can invoke natural selection and im-
replicators €¢=0) since this model has the same critical pe-perfect repllc§t|on to bpost the replication rates. Ir_1 a}dd|t|on,
havior as Schigl's first model, namely, a second-order phaseCUr results point to the inadequacy of the deterministic mean-
transition that is in the same universality class of tie ( f_|elq or chemical kinetics formulatlon_to address 'Fhe origin qf
+1) directed percolatiorithe mean-field limit is obtained life issue apd suggest as an alternative stochastic formul_atlon
for d=4) [21]. The comparison between Séhls second the dynam|c Mor)te C_:arlo method that has beg_n (_axtenswely
model and obligatory sexual replicators=0) is more in- used.|_n the physics literature to study nonequilibrium phase
volved. On the one hand, the mean-field analysis of ggslo transitions.
second model predicts a first-order phase transtici but

Monte Carlo calculations indicate that the transition €br

<4 is a second-order transition that is actually in the same The work of J.F.F. is supported in part by Conselho
universality class as the transition in Safile first model  Nacional de Desenvolvimento Cientifico e TecCrgitm
[22]. On the other hand, our results for the case0 show (CNPg and Fundaao de Amparo a Pesquisa do Estado de
that a directed-percolation-like, second-order phase transSa Paulo (FAPESP, Project No. 99/09644-9. C.P.F. is
tion takes place fod=1 only, the transition being discon- supported by FAPESP.
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