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Noise-induced effects on period-doubling bifurcation for integrate-and-fire oscillators
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This study provides a method for calculating first-order approximations of the Lyapunov exponents of
systems with discontinuity in the presence of noise in order to characterize the stability of motions in those
systems. This paper in particular illustrates the results of the ways in which noise influences period-doubling
bifurcation in the parameter space of an integrate-and-fire model with a periodically modulated reset level. For
evaluating a stochastic version of period-doubling bifurcation, the first-passage-time problem of the Ornstein-
Uhlenbeck process is used to define a Markov operator governing the transition of a reset-level phase density.
The results on the stochastic bifurcation are thus compared with numerical computations of angles and moduli
of eigenvalues of the Markov operator that describes the firing properties of the model.
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[. INTRODUCTION tend that method to noisy systems and use the method to
characterize the stability of nonsmooth dynamical systems in
Nonlinear systems perturbed by noise have the potentidhe presence of additive noise. We are thus able to present a
to display a wide range of nontrivial and complex phenom-method for obtaining a first-order approximation of the
ena. This range includes the enhancement of order in thieyapunov exponents of such systems.
system as well as the destabilization of the system’s behavior This paper focuses on the simplest and most widely stud-
[1]. The theoretical and numerical study of random dynamiied model of biological oscillators, the integrate-and-fife)
cal systems has been receiving a lot of attention in recengscillator [10]. This model captures some of the spiking
years[2], and notable examples of noise-induced phenomengroperties of a neuron and was constructed according to a
that have been investigated include stochastic resori@iice phenomenological approach with the intention of matching
noise-induced ordg@], and noise-induced chags, 6. the basic behavior displayed by the biologically realistic
Noise-induced chaos was first observed in the behavior qf-lodgkin-HuxIey mode[11,17. Whenever the state of the IF
a driven nonlinear oscillatdis] and was later studied using oscillator crosses some threshold, the oscillator fires and
the noisy logistic majp4,6]. The main finding of these stud- there is then a discontinuity as it resets. Although the discon-
ies was that intrinsic noise truncates the period-doubling casinyous nature of the changes makes a complete description
cade to chaos. That s, the periodic motions with high periodg, terms of “smooth” differential equations impossible, it is
of the noise-free systems are replaced by chaoslike motionsyssible to apply dynamical approaches to classify the bifur-
when noise is added. Period-doubling bifurcation in the purgation of IF models with a periodic reset level as tangent
sense will not always appear in physical systems because t'@§addle—nod}aand period-doubling bifurcatior{4.3].
presence of noise will alter the original bifurcation. Since the | this paper we describe noise-induced effects on the
period-doubling route to chaos is characteristic of nonlineagjfyrcation of an IF model in which the reset level is peri-
dynamical systems, we have asked how is it that the comygically modulated and, in particular, we describe the effects
plete period-doubling cascade is suppressed or masked Byytained in the parameter regions in which period-doubling
noise? ~ bifurcation occurs. We start by presenting a method for cal-
Oseledec has proposed that the attractors of finitegyating the Lyapunov exponents of the model and use the
dimensional nonlinear dynamical systems can be charactefyethod to evaluate the effects of noise on the stability of the
ized by values called Lyapunov_characteristic numbers, Okystem. We then use the spectra of a Markov operator to
Lyapunov exponent$7]. Calculating the Lyapunov expo- analyze the stochastic bifurcation in the system. Finally, the
nents of “smooth” dynamical systems is a well-developedyesylts on stochastic bifurcations are compared with numeri-
subject on which a lot of literature is availabi], but in | computations of angles and moduli of the eigenvalues of

many fields we also need to consider “nonsmooth” dynami-the Markov operator that describes the firing properties of
cal systems with discontinuities. For example, an algorithmpe model.

for “smooth” dynamical systems is not directly applicable to
machine dynamics that are due to impulses or to integrate-
and-fire oscillations that are due to a threshold process.
Muller has presented a model-based algorithm for calcu-
lating the Lyapunov exponents of dynamical “nonsmooth”
systems with discontinuitig®]. In the present work we ex- Consider a noisy one-dimensional nonlinear dynamical
system with discontinuities in the neighborhood of the action
of a discontinuity, in particular, the system called an IF os-
*FAX: +81-66843-9354. cillator. The noisy IF model is described by a stochastic dif-
Email address: tateno@bpe.es.osaka-u.ac.jp ferential equation

II. THE LYAPUNOV EXPONENTS OF NOISY
INTEGRATE-AND-FIRE OSCILLATORS
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dX(t)=f(X(1),t)dt+odW,, (1) subsequent deviations asxX(t). We then have

X(0)=Xo, 2 X(0)=xXq— Axq, (11)

wheref(x,t) is a function inC? for x andt, the constantr is
a noise intensity, andlV; denotes the standard Wiener pro- X(t)=X(t)— AX(1). (12)
cess. Furthermore, the variabigt) must be subject to a

resetting mechanism, and this is described by The firing times of the perturbed system are defined as

X(ty)=lim X(t,—&)=h(t,),

60 Te=inf{t]X(1)=h(t);t=T,_ 1 >1ty:X(0)=Xo— AXo},
) (13
X(tH)=limX(t,+e)=9(t,), and the behavior of the perturbed system is governed by the
£—0 following set of equations:
whereh(t) andg(t) are smooth functions i€*. In neural X(0)=xo— AXo, (14)

models, the functions

dX(t)=f(X(t),t)dt+odW,, (t,_,<t<t,)

f(x,t)=F(x)+1(t) (4)
(k=1,2,...), (15
and
) X(t)=h(ty (k=1,2,...), (16)
F(X)=—;, (5 o -
X(t)=9g(ty (k=1,2,...). (17)

wherer is a time constant anlf(t) represents an input term, o ) ) ) ~ ~
are often used. The properties of the model are characterizdfi the firing times satisfy the relations,<t;<t, and t,
by sequences of firing times, where the firing times are de=(t1+12)/2, for instance, one obtains, for the perturbed mo-

fined as tion, a first discontinuity at the time
T=inf{t|X(t)=h(t);t=T,_1>1t5;X(0)=Xo}.  (6) =t + AL, (18
The system can thus be expressed by the following set ofimilarly, for two seriegt,} and{~tk} (k=1,2,...), we can
equations: define a time differencat,
X(0)=xo, (7)
Atk: t|(k)_tk, (19)

dX(t)=f(X(t),t)dt+odW,, (t_<t<t ~
O=TXO.Y oW, (ts J wheret, is the nearest-neighboring firing time gfin the

perturbed firing sequence.

If At is sufficiently small, we can apply a stochastic Tay-
B lor expansion to approximabé(t+ At) in the vicinity of any
X(ty)=h(ty) (k=1,2,...), ©) givent with an expression in the first order aft,

(k=1,2,...) (8

X(t9) =gt (k=1,2,...). (10)
X(t+At)~X(t)+ f(X(t),t)At+cAW,, (20
Mdiller, using an idea for the study of impact oscillators,

has proposed a method for calculating the Lyapunov expowhere AW, is the increment of the Wiener process
nents of a discontinuous dynamical systgh Muller intro-
duced a perturbed dynami®{t) and directly calculated the
deviation between perturbed and unperturbed trajectories. AW =W ar— Wy (21)
First, suppose that an initial deviatidxx, between the per-
turbed and unperturbed trajectories is positive and denote tHerom Egs.(12), (16), (19), and(20) we have
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0=X(i:.0—h(T =X(t- + Ato)— h(tu+ At is thus obtained. In the same way, from E{<), (17), (19),
(t100) — (i) = X(ty K~ h(te+Aty) and (20) we obtain
~X(t)+ X () L)AL+ T AW, —h(t) —h' (t) Aty
T+ oy + Y+t
~X(t) — AX(t) + FX(t ), t)A b+ e AW, —h(ty) AX(tigg) =Xt + At = X(tc + At
—h'(t) At =X(ty +At) —g(t +Aty)

. + +y ¢+
= — AX(t) + o AW, +[FX(5),5)— h' (8 1AL (22) =X+ X bOAL
_ _ +oAW, —g(t) — g’ (t) Aty
The time difference
. =[FX(t),t) g (L) JAt+ AW, . (24)
AX(ty ) — cAW,

Atk: — — (23)
fFOX(t )t ) —h'(ty) From Eqgs.(23) and (24) we obtain
|
- fX(t),t5)—g'(t fFOX(te )t ) — FOX(t)), 6 +g' (t) —h'(t
AX(tf[k))= ( (Ii) i) g’(k)AX(tk_)-Hf (X(t),ty) (7( kz k)"i'g(k) (k)AWtk- (25
fX(te )t )—h'(ty) fFOX(ty )t )—h'(ty)
I
For convenience, we can write this in the form - t ~
B AX(t)=AX(t,(k_1))+ﬁ+ [f(X(s),s)—f(X(s),s)]ds.
AX(tjgg) =2 AX(t ) + o(1—a ) AW, (26) tik-1) 29

where . o ) ]
For the function specified in Ed5), this equation may be

fOX(t),t)— 9’ (t) - simplified to
FOX(t) ) —h' ()

Suppose, for example, that théh firing of the unperturbed

system occurred at a timéetween the firing timeE(k) and  From Eqs.(26) and(30) we have

'f,(k,l) of the perturbed system. Thet(t) of Eq. (1) is ex-
pressed by AX(ty ) =exd — (ty—te— 1)/ 7){a_ 1 AX(t )

+o(l-a)AW, ). (31)

a
AX(t)=exf — (t=Tj 1))/ TIAX (T 1), (30)

t t
X(t)=X(T|JEk,l))+J~+ f(X(s),s)ds+oJ~+ dW,,
tk-1) Yk-1)

(28 \We so far assumed that the deviatihr, between the initial
values of the perturbed and unperturbed systems is positive,
~ but Eg.(31) also holds in the case of a negative deviation.
equation we know that, far<t,,, By applying Eq.(31) recursively, we obtain

where fi dW; represents the Ito integral. From this
Y1y °

AX(t ) =ayk-1- - -azaiexfd — (ty—ty)/TJAX(ty ) + oay—1- - - ax(1—ag)exp — (t—ty)/TJAW,

toag_g---ag(l-ag)exd — (ty—to)/ 7]AW,,

toag-g(I-a_p)exd — (t—ty-2)/T]JAW, +o(1—ay_j)exd — (ty—t—1)/T]AW,
k-1

J_1;[1 aj)exq—(tk—to)/ﬂ

k—1 j
AXo+ o, (H ai‘l)(1—aj)e<trto>’watj . (32
=1 \i=1

For a large integen, we can define
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1 [AX(ty)
n
(th—tp) AXp |

)\n((T,Xo,AXO):

n—-1 n—1 j
T (t, ito) (H al)exF[ (th—to)/7]| 1+ 2 (H _1)(1 aj) et/ TAW, /Axo}
:_%—i_( to) ( ]___[ aJ 1+O’AX012 (]___[ )(1 a e(t *to)/TAW j| (33)

Hence we can calculate a stochastic version of the Lyapunovariables in the equation fag(t), the period of the reset

exponent\ (o,X,) proposed by Mller if there exists level has been normalized to 1 and the mean amplitude has
been set to zero. Hence the parametds the ratio of the
No,Xg)= lim N\(o0,%Xg,AXgp) frequency of the periodically modulated reset level to the
Axo—0 firing frequency of the noiselessr&0) oscillator governed

by Eg.(1). From Eq.(27) we obtain

3 tlo— AV1+ (27 7)? sin 27 (t+ 6g) + a}

There are cases where the mapping representétkipyn K tlo—1 '
Eq. (19 is not one-to-one and, in such cases, the mapping is
not invertible. That is, for example, more spikes may appeawhere
along one trajectory than along the corresponding perturbed
trajectory. Generally, in cases where two or more spikes oc- a=arctaf2mr). (36)

cur along the unperturbed trajectory betwegnand t,. ;,

this calculation might underestimate the Lyapunov exponen'tn the absence of nois;e has Coombes hasdrep(ﬁllf]d thef
because the effects of noise on the unperturbed system ha%apunov exponents of the systems are independent of any
initial value or of any initial deviation, and the deterministic

not been fully included in the process of estimation. How d ived b
ever, since, in the numerical simulation, the two sefigs M IS described by

and {t,,} coincide, except for a few of the earliest firing 1
times, actually calculating the value remains meaningful. In o= —

the following section, the result of the numerical calculation " (t —to)
will be discussed in terms of this topic.

= lim {lim N,(0,Xy,AXg)}. (34

Axp—0 n—o

(35

2 In|ay]. (37

The output of the model consists of a sequence of firing
times. Figure (a) shows(deterministi¢ bifurcation diagrams
that depict the dependence of interspike intervals on the am-
plitude A of modulation of the reset level.

In the absence of noise, the periodic modulation of the There is no fixed phase relation in the quasiperiodic range
reset level in IF models can still lead to rich dynamics. IF(0<A<0.28), so the dots are scattered throughout the inter-
models with periodic modulation of the reset leyal thresh-  vals. The fixed phase relations in the 1:1 mode-locked range
old) are meant to mimic cells with external periodic forcing, (0.28<A<0.546) are presented as a single dot for eAch
or with internal periodic forcing such as arises in certainvalue. With increasing), the first period-doubling bifurca-
types of bursting(e.g., slow wave bursting[14]. Such tion from period 1 to 2 and the second bifurcation from
modulation of IF models is able to produce period-doublingperiod 2 to 4 occur neaA=0.546 andA=0.640, respec-
and saddle-node bifurcations. The period-doubling routes ttively. The corresponding dependence of the Lyapunov ex-
chaos in IF models have been numerically demonstrated armbnent is shown in Fig. (b). Since for a largen (e.g.,n
have been confirmed by directly evaluating the Lyapunov=5000), the ratio ofA, to A, 1 IS approximately equal to
exponents of the mode[€.3,15. In this section we take a 1 (i.e., [\y.1/\y—1|<10 ), we can regard\, as the
particular interest in those IF models that include periodicLyapunov exponent. The Lyapunov exponent rises above
modulation of the reset level and we show how it is possiblezero nearA=0.68 and tends to increase with higher values
to numerically approximate the Lyapunov exponents in theof A. This implies that the motion in the model is a chaoslike
presence of noise. oscillation.

Consider a constant external inpLit(t)=14], a time- A forward Euler algorithm with a fixed step size of 0.001
invariant thresholdh(t)=1], and a sinusoidally modulated time units was used in numerically calculating the noisy
reset levely(t). That is,g(t) = Asin{27(t+ 6,)}, where 276, model. However, in a numerical calculation, we are unable to
(Ape[0,1]) is an initial phase of the periodic modulation. obtain idealized white noise. In order to investigate the noise
Note that, to allow the use of dimensionless parameters ancbrrelation, the autocorrelation function of the noise we used

IIl. ANOISY INTEGRATE-AND-FIRE MODEL
WITH A PERIODIC RESET LEVEL

021901-4



NOISE-INDUCED EFFECTS ON PERIOD-DOUBLING . . . PHYSICAL REVIEW & 021901

was calculated. This showed that our simulated noise proa small amount of noise did not always result in a coinci-
vided a good approximation of white noise. dence between the two trajectories.
After simulating the tracks of the two trajectories when  Thus, to calculate the exponential terms in Bf) under
the initial deviationAx, was small, we used E(33) to  the limitations of the possible numerical ranges of comput-
calculate thex,(a,Xg,AXo) with n=10000. The numerical ers, we must, in practice, select intermediate noise intensities
calculation showed that, in a mode-locked region of paramthe trajectories coincide and the terms vanish after the coin-
eter space, even with a low noise levelg.,0=0.0001, the  cjdence. In the numerical calculations, we included counting
two trajectories eventually coincided within a finite numberhe number of spikes that do not form pairs with one member
of steps(e.g., within less tham=50). The two seriesti}  jn the unperturbed trajectory and one in the perturbed trajec-
and{t,/} thus coincide with the exception of a few of the tory. For example, for the range of quasiperiodic behavior
firing times early in the numerical simulation, so that the(e_g_,A: 027) the average numbers of nonmatching Spikes
number of spikes along the unperturbed trajectory which desulting from 1000 realizations of the Wiener process were
not form pairs with spikes along the perturbed trajectory isg 244+ 0.437 (mean =+ standard deviationand zero when
limited. Thus, in the mode-locked region of the nume_ricaIU:OIOS and ¢=0.001, respectively. The corresponding
Tumbers for the parameter rangeg., A=0.75) that pro-
Shuces chaotic behavior were 0:68.553 and 2.05 1.46
(a) when o=0.05 ando=0.001, respectively. One order rever-
sal of appearance of the respective elements of the pairs in

the quasiperiodic and chaotic parameter regions, in contra

B3 the two firing time-seriegt,} and{t,/} creates no problem
20l for this calculation because we are still able to find the spike
' of one series corresponding to that of the other. However,
15 when two or more reversals of order in the firing times of the
I two series occur, it may not be possible to find some spikes
‘ along one trajectory which correspond to spikes along the
1.0 other trajectory. In such cases, the Lyapunov exponents are
underestimated by this numerical calculation, as was stated
0.5] in the preceding section.
We selected various initial deviationaX,) from 0.0001
Oo 02 to 0.01 and various initial valuex{) from the interval0,1]

and calculated the resulting values Xof(o,Xg,AXg). With
these deviations and initial conditions, the numerical calcu-
lation brought no significant difference of the values\gf,
so that the results remained unchanged. The average of
Mn(0,Xg,A%g) (0=0.005, 0.01, 0.02, and 0.p%alculated
for 1000-times realization of the Wiener process is plotted
againstA in Fig. 2(a), where the error bars show the standard
7\,n I B deviation. Overall, for larger noise intensitiesg.,c=0.03
the Lyapunov exponents are larger in the presence of noise
than in the absence of noise. In general, the stability of a
system can be characterized by the largest Lyapunov expo-
T A 056 nent. One can thus see that noise deqreases the stability of
0.2 02 A 06 08 1.0 the IF m_odel in the sense that tleegative Lyapunpv ex-
ponent increases and crosses zero as the noise intensity

R ) ) ) increases.

FIG. 1. (a) A deterministic bifurcation diagram of E¢l) with a However, at intermediate noise levels, the dependence of
periodic reset levef(t) = Asin2m(t+ 6;)} and a constant threshold ¢ |y a0y exponent on the noise intensities is markedly
h(t)=1 in the absence of noiser&0). This IF model shows the affected by the way the oscillator behaves. Figuis 8hows
dependence of quasiperiodic, phase-locked, and chaoslike OSCi”%'Iots of the average of the Lyapunov exponetsEs) as a
Fions on the amp_lituc_iéx of modulation of the reset level. The plot function of noise intensity and shows different noise-
ET? f th_eTfmﬁf%ggr.]t_e_rvflloso(;quveergﬁls"gf” oth G’Jrllgi;avn\fg:;; intensity dependences for the three typical behaviors of the

L ' ’ IF model: oscillations that are chaosliké+€0.75), mode

=1 andl(t)=1,=1.2.(b) A plot of the Lyapunov exponent versus R ;
the amplitudeA in the absence of noiser=0). Parameter values 0Cked (A=0.47), and quasiperiodioA=0.25). When noise

of the IF model are the same as those used to obtain(@aithe 1S added to the deterministic IF model while it is in the
inset is an expanded view of the plot over the intef@a54, 0.5.  region of the chaoslike oscillation, the ALE falls gradually as
Around A=0.546 andA=0.640 the Lyapunov exponents are ap- the noise intensity increases. As the noise intensity increases,

proximately equal to zero and this corresponds to the periodWhile the model is in the region of mode-locked oscillation,
doubling bifurcations from period 1 to period 2 and from period 2 however, the ALE first decreases and then increases. This
to period 4, respectively. Other parameters:1 andl,=1.2. means that increasing the noise intensity beyond a certain

'
OO)

021901-5



TAKASHI TATENO PHYSICAL REVIEW E 65 021901

(@) section, another approach is used. That is, since the firing
times are random variables, we can use a stochastic approach
to characterize the sequence of firing times.

When X(0)=g(0), thetime Ty, at which X(t) reaches

the thresholdh for the first time is called the first-passage
time

2.0

1.0+

Ano

-1.07

Ty, =inf{t|X(1)=h(1); X(0) =g(0)}. (39)

The time T, has a probability density functiotPDP
G(h(t),t|6o) which satisfies the following equatida6]:

t
PWMW@@=LGmWLM%mWﬂNWMNw

1.0 [x=h(t),h(t)>g(t)], (39
4075 where p(x,t|y,s) is the transition PDF of the unrestricted
processX(t) and satisfies the following Fokker-Planck equa-

tion [16]:
[ X
——+l

L . Since the initial phas#, completely determines the time
0 001 002 003 004 005 course of the reset level in a PDF of the fo@(h(t),t|6,),
° if we useG(t|6,) to denote the PDF and define

FIG. 2. (a) Lyapunov exponenk, versus amplitudeA for n "
=10000 in the presence of noise. The curves show averages for
1000-times realization of the standard Wiener process, and error f(0|00):n§0 G(n+ 6 6ol o), (41)
bars show the standard deviatien=0, 0.005, 0.01, 0.02, and 0.03.

These plots correspond to the deterministic plot given in Fig).1 then the convergence of the right-hand side of &) is

Other parametersT=1, 15=1.2, Axy=0.001, andx,=0. (b) . . 1
Lyapunov exponenk,, versus the noise intensity for n=10 000. einlsure(;[flﬂ. Thf Ofunctlonhf(ﬂgo) Sadtls_ﬂeif OL(SLQO)fdi
The curves show averages for 1000-times realization of the stan- and f(6|60)=0 (i.e., the f and is the of the

dard Wiener process, and the error bars show the standard devigeXxt firing phase given a previous firing phase éf Let
tion. A=0.25 (squarey 0.47 (circles, and 0.75(triangles. In the hn(a)(0$ 0<1) be the PDF of the reset-level phase at the
case ofA=0.47, the standard deviations Xf are so small that we time of thenth firing (n=1,2,...). Then, h,(#) can be
are unable to see the error bars clearly in the scale, but the size 6xpressed by the following equation:

the vertical lines are given in the labels of the circles in the plot.
Other parametersz=1, 1,=1.2, AXxq=0.001, andk,=0.

1 3%
g2
+2 o Pt (40)

mp_ 9

- ox P

1
hA@=LHﬂ%mmﬂ%m%

value leads to “destabilization” of the system. As the noise

intensity increases, while the model is in the region of qua- =Ph,_1(6)(n=1,2,..), (42)
siperiodic oscillation, the ALE first increases to a maximum _ L o
value and then falls. This means that increasing noise intevherehg is the PDF of the initial phasé,. That is, it satis-
sity leads to “stabilization” of the system. The plot also fies Jgho(6)dfo=1 andhy(6g)=0. The operatorP is a
shows that, in chaoslike and quasiperiodic oscillations, thélarkov operator with the kerné{ 6| 6,). We can inductively
fluctuations in\, are larger at small noise intensities ( Obtainh, by iteratively applying the operatd? to the PDF

<0.01) than at larger noise intensities. hy, and{Phg} is asymptotically stabl¢18,19. There thus
exists a unique invariant density’ such thatPh* =h* [20].

The PDF of the interspike interval between thil and f
IV. SPECTRAL ANALYSIS OF A MARKOV OPERATOR +1)th spikes, denoted by, is given by

In the preceding section, the indélxyapunov exponent N
as numerically calculated from the series of firing times has i (t):J G(t|@)h,_1(0)do (n=12,...) (43
been dealt with in order to determine the property of stability A 0 A w
of the IF model. However, from the direct numerical calcu-
lation, we can only have realizations of such series. In thisand the invariant interspike-interval PDF(t) then satisfies
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i*(t)=JOlG(t|0)h*(0)d0. (44) (a)

Since the evolutionary properties of the sequeficg
defined by Eq.(42) are governed by the operat@®, the
kernelf (6| 6,) has all the information needed to describe the
evolution of the system’s dynamical behavior. The operator df
P is linear and its eigenvalues and the corresponding eigenp
functions play a prominent role in determining the behaviors
of the sequencéh,}. Here, as usual, the eigenvalues are 5
defined as the set of complex numbersfor which there
exists a nontriviah such thatPh=\h. Moreover, in general, °
a spectrum of the operat@tis defined as the set of complex ?
numbers\ such thatP—A\I is not invertible, wherd is the
identity operator. HowevefP is an infinite-dimensional op- (b)
erator, so that it is possible for its spectrum to be an infinite
set that, strictly, contains infinitely many eigenvalues. Nev-
ertheless, the eigenvalues Bfsatisfy|\|<1, whileA=1 is
itself an eigenvalue. Furthermore, when,ir{f9| 6,) >0\ |
<1 for all eigenvalues that are not one. To analyze the spec
tral properties of the kernel, we used a numerical calculation
of the first-passage time of the Ornstein-Uhlenbeck proces:pdf
X(t) rather than numerically solving the stochastic differen- .
tial equation of Eq.1) [21]. This approach enabled us to
evaluate the precise structure of the kernel within the limits
on the accuracy of the numerical calculation.

Even though the operatd? is of infinite dimension, ap-
proximate values for some of the eigenvalues of an operato
similar to P were estimated by replacing with a finite-
dimensional square matrix that we obtained by discretizing
the phased), and 6. In numerical calculation, the kernel 0
corresponds to the stochas(imansitiop probabillity mgtrix FIG. 3. (3 Invariant interspike-interval densify* (t)] diagram
denoted by a rgaVI XM square matnxAM_. To investigate for a noise intensityo=0.005. The invariant(phas¢ density
the characteristics of the kernel, we applied spectral analysig,» (5)] was first calculated by finding the characteristic vector that
to the stochastic matrikl8]. Another numerical method for qrresponds to the eigenvalg=1 from the stochastic matriy,
calculating the spectrum of an operator similafttas been  of size M=100. Then, the interspike-interval density was calcu-

proposedfor those readers who are interested in this subjectiated from Eq.(44). This diagram corresponds to the deterministic
see Ref[22]), but the stochastic matrix is used here. Sincepifurcation diagram shown in Fig.(d) in that =1 andl,=1.2.

Ay is a stochastic matrix and is irreducible, the first eigen-interspike-interval densities are plotted vergugor each of 90A
value of the matrix also satisfies; =1 [23] and there is an values that are equally spaced on the intef@ad5, 0.95. (b) Ex-
eigenfunction(a characteristic vectpthat has positive coor- panded view of the diagram in the region whéreanges from 0.5
dinates and corresponds Xq [19]. to 0.8.

Suppose that the eigenvaldes} (i=1,2,...,) ofPare
sorted in descending order according to their moduli\;If
(i=2) is complex, we can use the imaginary unénd de-
note the eigenvalues as=r; exp(27w;). Let g;(6) be the
corresponding eigenfunction of;. Then, applying the op-
eratorP to the eigenfunctiorg; k times, we have

0.4 A

08

%

7
7
5 o

S
S

0.5

responds to the eigenvaliig=1 from the stochastic matrix
Ay of size M=100. From Eq.(45), we can see that the
speed at which the sequenfie,} converges to its invariant
density is determined by the eigenvalues other than the first
(N1=1). In practice, 2000 iteration.e., applying the op-
erator to any initial phase density(#) 2000 time$ seemed
Phe=\e=rfexpj2mkn)e, (k=1,2,...). to be enough to numerically obtain a function that was ap-
(45) proximately equal to the invariant density or e;. Since

several of the subsequent eigenvalues, i.e., those other than
Note that the first eigenfunctiogy is in accordance with an the first (\,, ... \s), play an important role, we need to pay
invariant densityh* and\,=1. particular attention to the lower-order eigenvalues.

Figure 3 shows the invariant interspike-interval density Figure 4 shows moduli G, ... ,rs) and angles
[i*(t)] diagram obtained from E@44) for a noise intensity (27 w,, ...,2rws) of the second to fifth eigenvalues
(0=0.005) corresponding to the deterministic bifurcation(\,, ... \s) plotted against the amplituda of the reset
diagram plotted in Fig. ®). The invariant densit¢h*(6))  level for a fixed noise intensityo=0.002). Neark=0.52
was calculated by finding the characteristic vector that corfmarkedB; in Fig. 4(b)] angles of the second eigenvalue

021901-7



TAKASHI TATENO PHYSICAL REVIEW E 65 021901

holds. This implies that the second period-doubling bifurca-
tion (period 2 to period #occurs in a stochastic sense. In-
stead of using the second eigenvalue as the definition of the
stochastic period-doubling bifurcati¢f©8,19, it is natural to

use the fifth eigenvalue to define the stochastic bifurcation.
Here, we refer to the point at which angles of the fifth eigen-
value change from 2 to = rad as the stochastic period-
doubling bifurcation point that marks the change from period
FIG. 4. (a Moduli of the second to fifth eigenvalues 1 tq period 2.

Ny, .I. . )\|5k)) c: thle ke;nﬁlf(e\ o) dversdu?ftrk:e _amplittIJdé\ of the N The deterministic first period-doubling bifurcation point
reset level(b) Angles of the second and fifth eigenvalues versus the; o e first point of bifurcation in the absence of npiaed
amplitude A. Matrix size M=100. Other parameterst=0.002, - . . .
7=1, andlp=1.2. dependence_ of .the cqrre.spondmg.sto.chastlc peno_d—doublmg
points on noise intensity is shown in Fig. 5. In the figure, the
points at which angles of the second eigenvalue change from
27 to 7 rad are also plotted and referred to as poBy}sn
the remainder of this description. The stochastic bifurcation
point and poinB; monotonically increase as the noise inten-
(46) oo )
sity increases and both suddenly disappear at arawnd

holds. Near that point, angles of the third, fourth, and fith =0-012. Over that value«=0.012) there are no changes
eigenvalues also change fromto 27 rad, but the change in from 27 to @ rad of angles of the second and the fifth
the angle of the fifth eigenvalue seems similar to that of thetigenvalues. Instead, the angle remains ad [cf., Fig.
second. This implies that the first period-doubling bifurcation4(b)]. In the definition here, therefore, the stochastic bifurca-
(period 1 to period Roccurs in a stochastic sense. For thetion point within a small range above zero of noise intensity
range beyond that point, each invariant interspike-intervali.e., lim, .o A(o,Xo,AX0)] seems to be in accord with the
density function has the similar two-peak topological struc-deterministic bifurcation point. Figure 5 shows, however,
ture which is shown in Fig. ®). In the absence of noise, that if we use the second eigenvalue to define the stochastic
moreover, we are able to observe the second period-doublingeriod doubling, the alternative bifurcation poiie., point
bifurcation nearA=0.640(cf. Fig. 1). Whereas we are un- B;) with a small range above zero of the noise intensity is
able to see a change in the angles of the second to fourifiot in accord with the deterministic bifurcation point.
eigenvalues with increasing in the range 0.5¢A<0.67,

the angle of the fifth eigenvalue only shows changes for val-

ues beyoncA=_ 0.615. Thus, wheri\ inc_:reases, the property V. DISCUSSION

related to period four first emerges in the parameter range

0.645<A<0.665[the narrow hatched range marke&d in This paper has concentrated on the interplay between de-
Fig. 4b)]. In that range, angles of the fifth eigenvalue areterministic and stochastic properties of the IF oscillator in
3m/2 rad. That isgs=r5exp(37/2). So the relation those parameter regions where mode-locking, quasiperiodic,

0.62(] period 2| PErod2
0.60 bifurcation
0.58 points
A 0.56
)
0.544 | period 1
0.52 4]
period-1
0.50
0 0.005 0.010 0.015
0 (¢
0.5 06 A 07 08 FIG. 5. Point at which the first period-doubling bifurcation from
b period 1 to period 2 takes place €0, circle) and the correspond-
( ) ing stochastic bifurcation poinfsquareys versus noise intensities,
271 L in the o-A plane. The points at which angles of the second eigen-
xl 531 ! Y value change from 2 to 7 rad (referred to as point8;,Xx) are
ol 2 also plotted. Other parameters=1 andl,=1.2.
— 27
o
= 4, _ N4,y _ 4 ; _ 4
% b Pes=Nges=rzexpj6m)es=rzeg (47)
©
= 22 =
Qo
&)
c
@

a
T

a

change from 2r to = rad. That is\,=r, exp(m) and the
relation

P2e,=\e,=r5expj2m)e,=rae,
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and chaoslike oscillations are observed. We started by showiifth eigenvalues of the stochastic matrix in this definition.
ing that, at intermediate levels of noise, the dependence dflowever, if we use the second eigenvalues to define the
the Lyapunov exponents on noise intensities is markedly afstochastic bifurcation points, we have a discrepancy between
fected by the way the oscillator behaves. Thus, the effects ghe stochastic bifurcation point and the corresponding deter-
noise on the stability of the model depend on both the nois&inistic bifurcation point. For example, the results of the
intensity and the type of oscillation. noisy IF model sh_ow ;hat, with an mter_medlate noise inten-
We then paid special attention to the effects of noise or$ity (€.9.,0=0.01 in Fig. 5, the first period-doubling bifur-
the period-doubling route to chaos. When a period-doubling@tion points(i.e., theB; points, as defined by using the
cascade occurs in a chemical react[@d] or a biological second eigenvalues, coincides with the corresponding bifur-
system[25], only the first few period-doubling bifurcations cation point of the noiseless IF model. As we have already

are observable because the fine structure of the later bifurcé‘-aport(ad in the previous pap6], this discrepancy does not

tions can be masked by noise. Since period-doubling bifur@/iS€ in the tangenisaddie-nodebifurcations of the noisy IF
odels. That is, even though the stochastic bifurcation is

cations are characteristic of nonlinear dynamical systems a fined b i th d ei | the t ¢ bif
the noise effects reported on here are therefore observed in t_lne y tUSIP?h € s_eco?F elggn;/a ues, ﬁ ar:ﬁen ur-
wide range of other nonlinear systems, our results provide gaton point of thé noisy 1 model approaches the corre-

guantitative measure of the effect of noise on nonlinear Sysgponding tangent bifurcation point of the noiseless IF model

tems. when the noise intensity is sufficiently low.

The study of “qualitative changes” in parametrized fami- Inoue et al h@"e already pointed out a S|m|I_ar problem
lies of random dynamical systems is in general called +sto-2Nd shown the difference between the stochastic tangent and
chastic bifurcation theory[2], and recent studies of random period-doubling bifurcation points that appears yvhen a
dynamical systems have shed light on a dynamical aspect 5gethod. that_useg the spectra of a Markov operator Is applied
stochastic bifurcation. In this context, the largest LyapunO\}0 a noisy §|ne-C|rcI§ maEQ?]. T_hey report that, if .the sto-
exponent in the presence of noise is used as an index thgpastl_c penod-doubl!ng blfurqatlon point from period 1 to 2.
characterizes the stochastic bifurcation on the basis of th& defined as the point at which the angle of the second ei-

existence of multiple invariant measures. However, in the IF'gemk""“uTI Cf_‘tﬁﬂges frorIP 0t rag, the deﬂn]luon do_ets no_'i
model reported on here, there is only one invariant measurd/CrK Well within a sSmall range above z€ro of noise intensity.

so that there is no bifurcation in the sense in which the ter hs_tead, they def!ne the value of t_he bifl_Jrcation parametgr at
is used in Ref[2] which the third eigenvalue takes it maximum as the period-

Another definition of stochastic bifurcation is based ond0uPling bifurcation point from period 1 to period 2. While

the topological structure of invariant densities, and such pithe definition of the stochastic period-doubling bifurcation

furcation is referred to as phenomenological bifurcation. agPoint presented in this paper difiers frqm their definition,
shown in Fig. &), when the noise intensity is low, the to- their results show that the higher-order eigenvalues also have

pological structure of the plot of the invariant interspike- information that explains the stoc.hast'ic period-doubling bi-
interval density function on the interval-plane gradually furcation. The m_ethod presented_m this paper has thus been
changes with increasing: the plot changes from that of a to analyze the eigenvalues and_ elge_nfunctlon_s of thg Markov
function with one peak to that of the one with two peaks. |poperator of the IF model. The first eigenfunction, which cor-

this phenomenological bifurcation, however, we are unabléeSpondS to the first eigenvalig=1, has static information

to find an abrupt change as that seen in a deterministic tarsUch as an invariant density. In contrast, the results of this

gent and period-doubling bifurcatiofef. Fig. 1(a]. In con- work show that the higher-order eigenvalues and eigenfunc-

trast, the definition in the present study allows us to find dlons .hav.e dyngmm |r_1format|on that characterizes the sto-
clear change of characteristics in this model by using thé:has'tIC bifurcation defined here.
Markov operator that governs the transition of a reset-level
phase density to evaluate a stochastic version of the bifurca-
tions. This work was in part supported by a Grant-in-Aid for
There might be no discrepancy between the stochastiScientific ResearckB)(2)12480086 from the Japan Society
period-doubling bifurcation point within a small range abovefor the Promotion of Science. | thank Professor C. E. Smith
zero of noise intensity and the corresponding bifurcation(North Carolina State Universityand Professor S. Sato
point in the absence of noigef. Fig. 5 when we use the (Osaka Universityfor valuable discussions.
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