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We propose a general approach to the description of the long-ranged elastic interaction in the nematic
colloids, based on the symmetry breaking of the director field. The type of the far-field interaction between
particles immersed in a nematic host is determined by the way the symmetry is broken in the near-field region
around the colloidal particle. This is caused both by the particle’s shape and the anchoring at the surface. If the
director field near the particle has a set of three symmetry planes, the far-field interaction fallsl o¥f\aith
d being the distance between particles. If one symmetry plane is absent, a dipolar moment perpendicular to it
is allowed and yields dipole-dipole interactions, which decays &s If both the horizontal and vertical mirror
symmetries are brokeit is equivalent to the case when the nonzero torque moment is applied to the particle
by the nematic liquid crystal the particles are shown to attract each other following the Coulomb law. We
propose a simple method for the experimental observation of this Coulomb attraction. The behavior of colloid
particles in curved director fields is analyzed. Quadrupolar particles with planar anchoring are shown to be
attracted toward the regions with high splay deformations, while quadrupoles with homeotropic anchoring are
depleted from such regions. When there are many colloidal particles in the nematic solvent, the distortions of
the director from all of them are overlapped and lead to the exponential screening in the elastic pair interaction
potential. This is a many-body interaction effect. This screening is essential in the real dense colloid systems,
such as ferronematics—suspensions of magnetic cylindrical grains in the nematic liquid crystal. External
magnetic field induces an elastic Yukawa attraction between them. We apply this attraction to the explanation
of the cellular texture in magnetically doped liquid crystals.
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[. INTRODUCTION all these cases, colloidal particles have an effect of distorting
the director fieldn(r) around them and interact elastically
Any interaction is connected with some symmetry break-because of overlapping of these distortions. Anchoring con-
ing. Liquid crystals are materials that break their continuougitions on the surface of droplets and the global geometry of
symmetry under the action of weak external influences. Orithe LC matrix have a great impact on the elastic interparticle
entational distortions are easily created by external fields aniteractions and on the collective formation of structures.
boundary conditions. Another way to break continuous sym- Up to now, there are two theoretical approaches to the
metry in liquid crystals is to introduce a particle of distinct description of colloid interactions in the nematic liquid crys-
substance in the liquid crystal host. It distorts orientationakal. The first one deals with spherical droplets that have
order of the liquid crystal over distances much larger than thetrong anchoring strength on the surf§®el1,13. A droplet
size of the particle. When the regions of the broken continuwith strong planar anchoring creates a pair of topological
ous symmetry around each of the two particles are overdefects, known as boojums. A droplet with strong homeotro-
lapped, it leads to interaction between them. pic boundary conditions, on the other hand, creates an equa-
A suspension of many particles efficiently breaks the contorial disclination ring or a hyperbolic hedgehége., char-
tinuous symmetry of the initial liquid crystal and thus could acteristic shape in a photo current-time plas a companion
give rise to an entirely different class of composite materialsfor the radial hedgehog on the surface of the droplet. Using
Properties of such liquid crystdlLC) composites are defined the variational techniques and an electrostatic analogy,
by the collective behavior of the immersed particles mutuallyLubenskyet al. [9] obtained an approximate director distri-
interacting via the elastic deformations of the orientationalbution near the droplet with homeotropic boundary condi-
ordering of the liquid crystal. tions, as well as the long-range pair interaction potential be-
Colloid suspensions in nematic liquid crystals has attween the droplets. It has both the dipole-dipole and the
tracted considerable attention during the last few yearsjuadrupole-quadrupole components. The dipole-dipole inter-
[1-8]. The Frank elastic interactions between colloidal par-action explains the formation of the chains, which are
ticles lead to non-trivial behaviors with the formation of a aligned along the director in the nematic host.
variety of novel ordered or disordered structures. So far ob- The second approach was proposedllih where the au-
served are linear chains of small water droplets in an alignethors have examined the case of weak anchoring strength for
liquid crystal or in large nematic drop8,4], highly ordered  particles of general shape. They have found analytically the
arrays of silicon oil droplet chains in a nematic hpagl, and  pair interaction potential, taking into account the different
two-dimensional2D) hexagonal lattices of glycerene drop- Frank moduli and have expressed the potential in terms of
lets in a nematic cell with hybrid boundary conditidi®. In  tensors characterizing the shape of the particle. These ten-
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sors dictate the symmetry of the particle shape and hence tlistances, which are larger than the average distance between
nature of the resulting long-range interaction potential. Theicolloidal particles.
results are in agreement with the quadrupole-quadrupole po- The real colloid system, where this effect could be ob-
tential for sphere$9,12] and with the dipole-dipole interac- Servable, is a suspension of long magnetic particles in the
tion of Lopatnikov and Namiof13] for asymmetric cylin- nematic, which is called ferronematic. It was examined in the
ders. experiment of Chen and Amg2], where they have observed

In this paper we argue that the |Ong-range interaction pothe appeare}ncg of the cellular teXtUr.e upon the Crltlcal eXte.r-
tential between colloidal particles in nematics is determined'@ magnetic field. We show that this can be explained via
by symmetry breaking of the director field in the vicinity of the_ elastic screengd Coulomb attraction between parthles,
the particles. This symmetry breaking is caused by two realhich leads to their collapse. It is produced by the breaking
sons: the shape of the particle and the anchoring strength. #f Poth horizontal and vertical mirror symmetries with help
the case of weak anchoring it is determined primarily by theof the external magnetic field, perpendicular to partl_cles. AF
form of the particle. In the opposite case the most importanth® end of the paper we explore the case of nonuniform di-
is the anchoring strength. In order to universally describe all€ctor field, the movement of particles that is produced by
these phenomena, we introduce the concept of the co&oPal director distribution.
around the particle. The coat embraces all the accompanying 1he plan of the paper is as follows. In Sec. Il we show
topological defects, while it has the same symmetry as th8OW Symmetry breaking is connected with the director dis-
resultant director field near the particle. The director distri-tribution around the spherical particle. In Sec. Ill we per-
bution outside the coat undergoes only smooth variations ang€ive the dipole-dipole interaction as the result of the mirror
does not contain any topological defects. In the case of weaRYMMetry breaking in one plane. In Sec. IV we obtain the
anchoring the coat coincides with the particle itself. We notecoulomb attraction as the result of symmetry breaking in
that the same concept has been introducdddf, where the two planes—horlzontal and vert|c_al_. In Seq. V we show the
authors treated the director distribution around the sphericd€Sult of the screening of the pair interaction in dense col-
droplet using an electrostatic analogy. They have found ité0idS. In Sec. VI we conclude our results. In Appendix A we
size, or the “correlation length” from the surface, on which @nalyze in detail the appearance of the screening, as the re-
the director changes discontinuously passing through the t&ult of interference of far-field transverse componentand
pological defects. The estimates give the value of about 1y Of the director, which come from all particles. In Appen-
um for the correlation length. This is in qualitative agree-dix B we find the energy of an arbitrary particle in the curved
ment with the result of Lubensky=0.26R, for the distance ~director field.
between the surface of the droplet and the hyperbolic hedge-
hog[9], when the radiufk, of the droplet is about 1@m.
We argue that the long-range interaction between particles is

determined by the symmetry of the coat and is expressed A nematic liquid crystal is an anisotropic fluid in which
through tensor characteristics of it. long molecules have the same average orientation specified
When the director distribution in the vicinity of the par- py the unit vectom called the director. In the undistorted
ticle has three symmetry planes, the pairwise interaction postate the nematic has a spatially uniform orientatign and
tential falls off asd™°, with d being the distance between we consider here that it is parallel to the axis [n,
particles. When one symmetry plane is broken, a dipole mo=(0,0,1)]. The case of global nonuniform director distribu-
ment perpendicular to it arises and it leads to the dipoletion is investigated in the Appendix B, where the expression
dipole interaction between the particles. When the coat hagyr the energy of an arbitrary particle in the curved director
only one vertical symmetry plané&he directorn without field is found.
particles is aligned along the vertical axisr when it does Immersed particles distort the uniform orientation of the
not have symmetry planes at all, then the leading interactio@ijrector in the bulk. Theourceof bulk director deformations
at far distance is the Coulomb attraction law. We propose g the preferential orientation imposed at the surface of par-
simple method to observe this attraction. A similar effect wasicles in such a way that the nematic molecules lie either
described in the 2D case of smec@dilms where misalign-  normally or tangentially to it. The phenomenological anchor-

ment of a.dip0|ar structure Wlththe far field induces a 2D|ng energy at the surface of partic]es can be written in the
Coulomb-like charge on the partic¢0]. In our 3D case we  Rapini-Papoular form

find deformational Coulomb charge in terms of geometrical
parameters, anchoring energy, and orientation of the particle.

In all previous papers concerned with colloidal particles
in liquid crystals, the elastic interaction potential has been FS:% W f# ds{#(s)-n(s)]%, (@)
obtained as the result of the overlapping of director distor-
tions around the pair of particles. The influence of the direc-
tor distortions from others particles has not been taken intavhereW is the anchoring energy coefficient. For the homeo-
account yet. So the influence of the particle’s concentratiortropic anchoring®<<0 and for the planar on&/>0. Sum-
on the elastic pair potential has not been considered. We takeation should be taken over all particles in the liquid crystal.
into consideration this effect and show that in dense colloid8ulk energy of the spatial distortions of the director field,
it leads to the exponential screening of the potential at farwhich is called the Frank energy, is written in the form

II. SYMMETRY AND THE DIRECTOR DISTRIBUTION
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radial and hyperbolic hedgehogs break mirror symmetry in
the horizontal plane, while the equatorial disclination ring
(Saturn ring retains it. Saturn-ring configuration has quad-
rupole symmetry, which is reduced to dipolar symmetry
- when the disclination ring is shifted above or below the
equator. Authors of17] have shown by Monte Carlo simu-
lations that the configuration with a hyperbolic hedgehog has
lower energy than the Saturn ring. It has been confirmed in
[9] with help of the dipoleAnsatzthat though the equatorial
ring has some metastability, its energy is higher than that of
the dipole.
So on this example we see that strong anchoring on the

surface breaks mirror symmetry, though the shape of the par-
ticle remains spherical. For weak anchoring or smaller par-
ticle size(less than 1um) it is not, and the quadrupole sym-
T metry configuration remaingl8] just as the droplet itself
P has.
<)

The breaking of the symmetry in the near-field region,
which is achieved either by the anchoring strength or by the
particle’s shape, leads to the different solutions in the far-
field region. At far distances from the particle, the director
field n(r) tends to be unifornmy=(0,0,1) and can be written
in the formn=(n,,ny,1). In the one-constant approxima-
tion, the Frank free energy is given by

(

FIG. 1. Director configurations around the water droplet in the
nematic.(a) Saturn-ring configuration with quadrupolar symmetry.
(b) Nonequatorial disclination ring breaks mirror symmetry in the
horizontal plane and induces dipolar moment as a measure of skew-
ness.(c) Ground state of the system is the pair of the radial and Fb=%Kf d3r{(VnX)2+(Vny)2}. 3)
hyperbolic hedgehogs, which have bigger dipolar moment.

The equilibrium equations are the Laplace equations for

Fb:%f d3r{K 1(div n)2+ Ko n- rotn)2+ K 35 nX rotn) 2}. the transverse componentg (u=Xx,y),

2 An,=0. (4)
(We do not take into account here surfak@4 andK13 At large distances it can be expanded in multipoles,
terms, inasmuch as they can give a correction only for short- .
range director deformations, but in this paper we take into _A,u Pu-r c;irirj
account only long-range deformations and their contribution == 173 ;5T ®)

to the pair interaction energy

In order to find possible director configurations one It is clearly seen, that transverse components can be
should solve Euler-Lagrang&L) equations from the mini- treated as two components of the electric field potential and
mization of the Frank free energy with taking into accountparticles are multipolar sources, similar to anterjd®s. The
the boundary conditions, which are found from the minimi-first term is connected with the “charge,” the second with
zation of bulk and surface energies. But a situation can aristhe dipole moment, and the last term is connected with the
where there are several director distributions with differentguadrupole moment.
symmetry, which satisfy both EL equations in the bulk and The three items in Eq5) represent different broken sym-
boundary conditions at the surface. A typical example is posmetries of the director field around particles and are respon-
sible director configurations around the water droplet withsible for three different interaction laws between particles, as
strong homeotropic anchoring, shown in Fig. 1. In both casesve show below. The first term exists when the director dis-
the director lies perpendicular to the sphere and it is equivatribution does not have any plane of symmetry at all or it has
lent to the radial hedgehog in the center. It has topologicabnly one vertical plane of symmetry. It appears when the
charge, which is equal to unity. The uniform director distri- particle in its vicinity breaks mirror symmetry in a horizontal
bution far from the droplet has zero topological charge anclane and in one vertical plane. In other terms, it exists,
so there should be another topological defect near the droplethen there is a nonzero torque momdhtacting on the
to compensate for the hedgehog in the center. In K@).the  particle due the nemat[@Q]. In the absence dF it is absent.
droplet creates a3 disclination ring on the equator at a The second term represents broken symmetry in one plane
distancel = 1.08R, from the center and in Fig.(&) it has a  and the dipole momenmt is the measure of skewness, so that
point hyperbolic hedgeho®]. In Fig. 1(b) the intermediate more the removal of the disclination ring from the equator,
configuration is shown, which is a nonequatorial disclinationmore the magnitude of the dipole moment. The last term
ring. Obviously, the director configurations have differentexists in any case, because it has the same quadrupole sym-
symmetry. The nonequatorial disclination ring and the pair oimetry as the director has.
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The multipole expansion is valid only in the region where

nonlinearities can be neglected. For particles with strong an-

choring it is the far region, because of strong director defor-

mations in the near region. But for particles with weak an-

choring, distortions are small elsewhere and the multipole

expansion is applicable in the near region too. In general,

lesser the anchoring strength, smaller is the size of the regiol

where the multipole expansion is inapplicable
The amplitudes of this expansion in the strong anchoring

case can be found from the asymptotic either of exact solu-

tions or of different variationalAnsaze that correctly de-

scribe the director field in the near region. This has been ®)

done in[9] for spherical particles with homeotropic anchor-

ing with help of electrostatic and dipolnsaze In the weak FIG. 2. Coats that contain all topological defects inside. Anchor-

anchoring case, amplitudes in E§) are found directly from  ing couplingW, of the coat depends on the point of the surfdag.

the boundary conditions for the linearized EL equations, afuadrupolar coat around the Saturn-ring disclinatidm. Dipolar

has been done ifL8]. coat with broken mirror symmetry contains radial and hyperbolic
hedgehogs.

(@)

Ill. MIRROR SYMMETRY BREAKING AND DIPOLE-

DIPOLE INTERACTION nary shape with weak anchoring at the surface. It is valid for
the different Frank constants and so exceeds the bounds of
&he electrostatic analogy. In the weak anchoring case there
are no topological defects and the director deformatiéms
"are small everywhere so that the multipole expansion is valid
at the particle surface too. That is why unknown amplitudes
in Eq. (5) can be expressed through tensor characteristics of
the particle’s surface and orientation.

In this section we intend to clarify the appearance of th
dipole momentp with the breaking of the mirror symmetry
of the director field in one plane in the vicinity of the surface
and to represemnt as the measure of the skewness.

In the papeif9] dipolar and quadrupole moments are ex-
pressed ap,=(p-ng)e, and cL{=c(n0ief‘+ no;e{), where

e, are the vectors pointing in the=x,y direction. The au- In the case of strong anchoring, topological defects arise
thors have found the interaction potential in the far regiony, ihe near region, but outside, the director deformations
between the water droplets with hyperbolic hedgehogs, whege smai. Therefore we can confine the particle and topo-
the dipolar moments lies parallel to the director. Their resulfygicq| defects within the region called coat. This region con-
is found in the one-constant approximatiaf,(=K3,=Kss  (ains all strong deformations of the director field. Outside the
=K) and it is written as coat director deformations are smath<1. The size of the
B , . coat has been estimated[it4] with the help of the electro-
U(R)=47K[p,p,Vpp(R) +5CC"Ve(R) static analogy and it was shown to be a few micrometers
+2(cp’—¢'p)V,pR)1, from the particle’s surface. It is in a qualitative agreement
with the result off 9] | =0.26R,, for the distance between the
1 droplet’s surface and the hyperbolic hedgehog when the ra-
Voa(R)= Eg[l—?) cog(6)], dius R, of the droplet is about 1@&m. The symmetry of the
coat is equivalent to the broken symmetry of the director in
1 the vicinity. For example, a droplet with an equatorial discli-
Veo(R) = =5[9—90 cod( ) + 105 coé(6)], nation ring (Saturn-ring configurationcould be put into a
R coat that has a horizontal symmetry pldsee Fig. 2a)], and
a water droplet with a companion hyperbolic hedgehog could
be confined into the coat without a horizontal symmetry
plane[see Fig. 2)]. The anchoring energy on the surface of
the coat is determined as the interaction energy between the
whereg is the angle between the separation ve&a@ndny; nematic molecules over the surface and the molecules under
p,,py,c,c’ are dipolar and quadrupole moments, respecithe surface of the coat. Phenomenologically it can be written
tively, at the positions andr’. In order to find them, it is in the Rapini-Papoular form, but it is natural that the anchor-
necessary to compare the multipole expang®nwith the  ing strengthW, becomes dependent on the pofbn the
asymptote of theAnsdze that describe the director field in surface of the coat. The shape and the surface distribution
the near region. From the variation&nsatzit has been W,(s) determine the symmetry of the coat, which is identical
found thatp,=2.04%, c=—1.083%, a being the droplet's to the symmetry of the real director distribution in the near
radius. The last term in Ed6) is absent for equal droplets, region. Obviously, it is necessary to know the real director
and only the dipole-dipolev,,(R) and the quadrupole- field in every point and shape of the coat exactly to find
quadrupoleV..(R) potentials remain. W,(s), which is hardly achieved. Instead of finding exact
In the paper{1] the authors suggested an approach thasolutions of the EL equations, we show that the problem can
enables to find the interaction potential for particles of ordi-be effectively solved in terms of some unknown tensors that

ViR = 115 c08(6)- 9], ©)
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characterize the surface of the coat. For this purpose we in- The integration is over the surface of the coat. The sym-
troduce the surface energy in the form metry of these tensors contains all data about broken sym-
metry of the director field in the vicinity of particles and
defines distinctive features of the interaction potential in the
FCS:% fﬁ ds W(9)[#(s)-n(s)]* @) far region. Its magnitude can be treated like variational pa-
rameters for the concordance with experimental data or it can
instead of Eq(1). Such substitution allows us to consider thebe evaluated from the comparison with long-range
director deformationsin small everywhere in the space. All @symptotic ofAnsazesolutions. For instance, let us consider
defects are hidden now inside the coat. the comparison of Eq(8) with the Lubensky potential6).
This makes it possible to find the interaction potentialFor this purpose we consider the one-constant approxima-
between the coats. We can apply the results of the gdger tion, and Eq.(8) results in

becausesn<1 far and wide. It was the only physical as- N
sumption under which the results are valid. UR)= 1 S APAY Qm,m 12
According to the[1] the interaction potential between the Y mmic1o3 ™R )T

two coats separated by the vecRrin the general case is

written as It can be easily shown th&, ., =0 for m, m'=3, and

Q;’m, =6mm » form,m’=1,2. Using this allows us to write

1 - . :
UR)=—— > APAP the expressioril2) in the form
8T mi—123 m”:lZVKw
- - U(R)= — mem (ke V) (kg V) e
% Qm,m’ +( l)MQm‘m’ - A7R IBSmsﬁ3ms’ s s/ 4R
VKR +K R 2 R?

1
~ ¥3mstYams't (Ks* V) (Ksr - V) (ki V) (Ky - V) ——,
(\/K33Ri+KM“Rf_\/KMﬂRf)2 mstY3ms't’\Rs s t t 4R
X

VK3RZ+K,, R ' ® (13

: . . where the summation on the repeating indices is made.

In this expressiofR, anoI_Rl are parallel and perpendicu- Now we consider the case af,,=0 and below we show

lar to the undeformed directan, components ofR=r, circumstances under which this is not true. Now we want to

o examine thoroughly the second term, which represents the
dipole-dipole interaction. It takes the form

R, Xng R, R <R, (9)
ry= , Tr=—, TI3=ng, =n .
R, 27RO Lo 3(ks- R)(Kgr - R) — e
Uda= BamsBams R3 - (14)
QEn_,r)n':(rl'km)(rl'km’)i(rz'km)(rz’kmf). where
(kq,ko,k3) is the local basis rigidly bound with each par-  Symmetry of the tenso8 reflects symmetry of the direc-
ticle. OperatorsA,, are defined as tor and defines a dipole type of the interaction. Let us con-
sider componentg;;s=2¢do W,(s) v, v3ps. If the director
A= (K N0)[ &1+ Bims(Ks* V) + Yimst( ks V) (Ke- V). distribution has a horizontal symmetry plane, then for every

(10) point » the mirror image exists, for whicl; changes sign
whereasr,, p1, p, remain the same. Therefo®s;,= Ba1
=0. Besides, if there is symmetry plaiv&, then 83;5=0,
else B313# 0. Similar, if there is symmetry plan¥z, then
Hereaq,, , are tensor characteristics of the coat, & 323=0, €lsefzye# 0. For example, banana-shaped particles
@m +Bims Vimst with the symmetry plan&Z have 3;,5# 0, and thus induce

which contain all information about its symmetry. Lete S ; . . .
the vector pointing from the center of mass of the particle tElastic dipole-dipole interaction as the result of the director

the points at the surface of the coat amcbe the unit normal  distortions.

to the surface at this point. Then tensors are expressed as SO_ we come to themportant _conclusmnhat if the d|re(_:-
tor distribution near the particle has three perpendicular

planes(one of which is horizonta then all 35, are zero
a=2 35 do W¢(s) v () y(9), and only quadrupole interaction remains, which dies off as
R™5, as is clearly seen from E(L3). If one symmetry plane
in the director distribution is broken, then a dipole moment
Brim=2 fﬁ do W(9) () () pi(S), in the perpendicular direction arises.
If the horizontal symmetry plane is broken, as in the case
of the water droplets in nemati¢g], the nonzero compo-

nents of the tensop are = , and the dipolar part
Yan= § QWSS M(Ion(Spn(9. (11 (e OF (e 1ONSO8 21 Farefozz Potar

Superscriptp means that in operat(f%(pm we need to substi-
tute V=al/or,.
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B311 cose=(K;-€), y313:= 7 LW,/4. They repel in th& direc-
Uaa=7«gal1~3 cos(6)] (19  tion and attract in they direction.

If the coat has the axis of symmetfy, then y3;3; and
with cos#=ngR/R. This coincides with the first term in Eq. 7Ys23.are equal and the quadrupole interaction takes the form
(6), and we clearly see thaBs;; is proportional to thez
component of the dipolar momenpt,, 373131

99~ 2 KR
B3z11= —47Kp,.

(We choose the minus sign in order to agree on the results on !t coincides with the second term of E(). From the

the behavior of particles in the curved director field wigh, ~ comparison with it, we find along with the sign the connec-
see Appendix B To demonstrate the appearance of the di-lion with the quadrupole mometof the coat,
polar moment as the result of the breaking of the mirror
symmetry, we consider a model system—a sphere with non-
equatorial thread, on which anchoring strength is infinite.

Surface anchoring on the sphere can be written as

3-30cog6+35c0$ 0).

47K

Y1313=C T‘/Q

Then for particles with planar anchorind/>0, 7y4313
We(60) =Wp+W;(cosh) 5(cosé—cosby,). >0, ¢>0 and for particles with homeotropic anchoring

. . v1313<0, ¢<0, this is in an agreement with thnsatzresult
Wo IS the constant anchoring on the surfage and t_he SECOnfy the qguadrupole moment of the water droplet in the nem-
term is the anchoring on the thread. Then integration on th%tic [9]

sphere surface gives

; ) IV. THE COULOMB ATTRACTION AS THE RESULT OF
B311=2 ¢ do W(S)v1v3p1=2TR Wy (Xin)Xin(1—Xg), THE BREAKING OF HORIZONTAL AND VERTICAL
MIRROR SYMMETRY

where x,=cos@;,). Inasmuch as3N,(0)+#0, we conclude ) .
that th G 1(0) Expression(13) shows that the Coulomb attraction is

present in the general case. Let us consider the nature of this
B311~ €O Oy term. It is determined by the componenis; and a,3, a1
=2¢da W.(9) v1(S)v3(9). It is obvious that, if there is a
when 6~ 7/2. It becomes zero, when the thread lies on thehorizontal symmetry plane, then both components are zero.
equator and changes its sign, when the thread is shiftefihe presence of the symmetry plaX& makesa,;=0 and
above or below the equator, so that it really behaves similayz makesa;;=0. So we come to theignificant conclusion
to the dipolar moment. the breaking of both horizontal and vertical mirror symmetry

When the mirror symmetry is not broken, all componentsieads toa;3# 0 or a,3# 0 and thus to the Coulomb attraction
of the tensorB are zero and the last term remains, which

represents a quadrupole-quadrupole interaction. In this case U=-Q%R, (17)
nonzero components of the tenspthat are included in the

interaction areys;3;, and yspz,. In general, they are differ- \where the role of the charge is played by the geometrical
ent if the particle does not have an axis of symm@&lgy(for factor Q= W_

instance, for the parallelepipeds with different sidés this We can calculate the charge, for instance, for the long
case the general quadrupole-quadrupole interaction pmemié{/linder (L>d), which makes the tilt anglé with the z axis

IS and lies in theYZ plane (Fig. 3. For such a cylinder;,
32 =0, ay3#0. LetO’ be the coordinate basiX{’Z"), which
Ugg=— 731315[1_5 co20—5(ky-€)2 is turned by the angler/2— 6 with respect to the axiX. In
2mKR this basis v’ =(cose¢,0,sing). In the (X,Y,42 basis y;
39255, =Ajjvj , where the rotation matrix
. 2 — —
+35c0g0(k;-€)?] 27-rKR5[1 5 co¥ 6 Lo .
—5(k,-€)2+35cog 0(k,-e)?], (16) A;=|0 sing —cosd
wheree,=R/R. We see that potential depends not only on 0 cosf sing

the angled but also on the azimuthal angle ) o
For the cylinders that lie parallel to the an’s ys,3,=0. SO thatv;=cose, v,=—cos#sing, vz=—sindsine. Then
Then the interaction potential, for instance, for the cylinderst2s=2¢do Wr,vs= —dLmW cos@siné (we integrate only

that lie in the horizontal planed= 7/2) becomes on the side argaand the charge is
3y3131 dLiWsin26| [«
qu,horizont:m('i_> cog ¢—1), Q= — 4 Kk (18)
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ZA the director distortions around the pair of particles. In prin-
ciple, however, the rest of particles should also have an in-
fluence on the interaction potential. The presence of particle
3 affects the interaction between particles 1 and 2. This effect
should not be significant on small distances, but if the dis-
tance between particles 1 and 2 is large, so that there are
many particles with numbers 3,4,5... located between them,
then their collective action, i.e., deformations from them can
greatly influence on the interaction potential between par-
ticles 1 and 2. In a previous pape22], we have examined
this case and shown that the deformations from all particles
lead to the exponential screening of the pair interaction po-
tential. Physically it can be explained following the argument
by Brochard and de Genng21].

Let us consider cylindrical particles, labeled by a unit
vectoru, and@ is the angle between, andu. It produces a
director in the far regionn(r)=ng+ én(r), where én(r)
=(ony,dny,0). It is convenient to puin(r)=c(r)xne,
where Aw,=Aw,=0. Since w, is arbitrary, we may put
Aw,=0. Then

1 1
w(r)=xr+x:VF+---. (19)

FIG. 3. Orientation of the cylindrical particle.

We are interested mainly in the first item. In a nematic
statesn and —n are identical, therefore must be an even
function of ny. It must be also an even function af The

When the cylinder lies in th&Y plane @#=m/2) or YZ
plane @=0) thenQ=0, as follows from general symmetry
con3|dera_t|on_s. The maximum charg_e oceurs whertr/4. most general vector constructed framandngy and even in
Such an inclined position of the cylinder is not of course :

) ! . each of them is
profitable energetically. In the ground state the cylinders
make angle®=0 or §= 7/2 as functions of the ratigVd/K
[24]. But if they have magnetic moment, the external mag-
netic field can fix the tilt angle9+0, #w/2 and cause the . , .
elastic Coulomb attraction between them. Such a situation i\évherel(x) Is an odd function ok. This leads us to
realized, for example, in the suspension of ferromagnetic
particles in the nematic, which is called ferronema8t], in sn(r)
the presence of the external magnetic field. r

This Coulomb attraction can be found experimentally also
between the liquid drops in the nematics in the presence of Note that the coefficient of LAvanishes when is parallel
the inclined electric field. In Ref[23] it was shown that t0 Ng and also whem is normal ton, [sincel (0)=0]. This
isotropic drops suspended in the nematic ph@@B and coincides with our symmetry considerations made above. Let
MBBA) are deformed into an elliptical shape along the field.us definel;=1(cos#). In [21] it is shown that the distortion
If the direction of the electric field is neither parallel nor €nergy is
perpendicular to the director, then the drops should deform
parallel to it, so that both horizontal and vertical mirror sym- oF =47Kl;sin656 (20)
metry is broken. This must lead to the elastic Coulomb at-
traction between the drops. As well, we consider that Coufrom which it is seen that if the parallel orientation of the
lomb attraction must play an important role in the 2D particle satisfies the minimum energy, tHgrshould be posi-
hexagonal lattice of the glycerol droplets on the nematic surtive.
face[8]. Hybrid boundary conditions break rotational sym-  If we have a suspension of identical particles with posi-
metry of the director field around droplets and thus shouldionsr, then the distortiorsn(r) from all of them is given
induce Coulomb attraction between them. We are currentlpy the following equation:
planning an experiment for checking of this idea.

x=1(cosf)nyXu,

B I(cos6)

u .

Iy
on(r)= 2 m[um— on(rp)].
V. SPILLOVER OF THE TWO-PARTICLE INTERACTION P p

In all previous papers concerning colloidal particles in  The presence oén(r,) means that the particle creates
liquid crystals, the elastic interaction potential between parno long deformations if it is aligned parallel to the director
ticles has been obtained as the result of the overlapping afy+ n(rp).
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Let us now go to the continuum approach, substitutingthe particle itself. In this case tensay,, is identical to zero.
S—cfdV, c being the concentration of particles=N/V. Really an,=ad, and k,ﬂk|v= 6,, so a,,=0 for small

After acting with the operatoV? on both sides spherical particles. This means that no screening takes place.
It arises only for the anisotropic coats. The physical meaning
5n(r)=C|1J dr’ 1 e <enl " ly, ("), of this elastic screening can be easily understood from the
[r—r’| following example: two people badly hear one another in the
crowded room. The more people between them the worse
o= 4mCl;>0. they hear one another.

) ) _ Similarly with particles, the formulé22) is true when the
Thus the effect Qfl each particle is screened out at disgcreening length is bigger than the average distance between
tances larger thay, It is obvious that this screening particles ¢~ 1>(1)=1A/c. From here we can write the con-
should be manifested also in the interaction potential. dition on the anchoring strength of the coat under which the
More precise analysis showsee Appendix Athat in  given approach is applicable,
dense colloids the interaction potential instead of E).

takes the form

K
W< 7—. (24)
1 ~ A ¢ 3 C
Uppr=— gApmA%'“iﬁp't(rp_rp’H'gﬁp't(rp_rp’)]v Ves
@D VI. EXPLANATION OF THE CELLULAR TEXTURE IN
FERRONEMATICS
n _
li):gtm’(R):W[Qm,m’+(_l)ﬂ+lQm,m’] In 1970, Brochard and de Gennes proposed doping the
P33 liquid crystal matrix with ferromagnetic particles to make
exq—gﬂ\/(leKgg) R?+R?] possible the coupling of the liquid crystal molecular orienta-
— tion to weak external fieldg21]. The authors treated such a
V(K /K RE+RE system theoretically and predicted Edericksz effect in the
2(—1)" Q. we”ak magnetic fieldsl ~| 13 G. So the doEed matliix exhibits
m,m’ s Tk Tk collective orientational distortion in the weak magnetic
i VK ,.Ka3 §MRf {exH = £, V(K [Ks9R ] fields. Also they predicted segregation effects, i.e., the
smooth change of particle concentratiofR) from point to
—exfl — £,V(K,, /K Rf+RI1}, point by applying the magnetic field, so that the concentra-
tion increases in the center of the cell. In a pa@rauthors
§u= Je(ag+ ax)l2K,,, (22 observed experimentally the collective behavior in the

_ _ _ MBBA doped with magnetic particles, manifested as a long-
whereg,, are inverse screening lengthg<1,2) andcis the  ranged uniform distortion of the molecular orientation of the
concentration of particlesy;; anda,, are the corresponding entire sample upon application of weak magnetic figttls

components of the tensor <1G. In that experiment, particles were coated with

DMOAP, which provides homeotropic anchoring on its sur-
Apuy= alm[klﬂkmv_klakmsaﬂ”]' faces, so that the magnetic particles lie perpendicular to the

o ] nematic director in the absence of the magnetic field.
In the one-constant approximati¢t),, =K33=K it becomes On reaching the fieltH ~30 G, the experiment shoWg]

dependent only on the scalar of the vedtr that the uniform orientational distortion is replaced by a new

4 field-induced cellular texture with the cells having dimen-

U o Qmm' 5 pap [ EXP—&lrp=rp/]) (23  Sions of the order of tens of micrometers. So at the critical

pp’ m _ - ion i i i i
87K Irp—rpl concentration in the center, magnetic particles clump into

aggregates. This clumping had no explanation because the
where é= c(atay)/2K. It is clearly seen that the pres- magnetic dipole-dipole interaction is much smaller than the
ence of the macroscopic concentratioof particles leads to interaction with the external magnetic field. Indeed, the mag-
the screening of the pair interaction potential with the screennetic momentu=Mw induces interactionE 4= u?/R®,
ing length £ 1~ K/WcS (W is absolute value here, not where R is average distance between particlBs>3~c
depending on the signSarea of the particle. This screening ~10° cm®. So Egq~4x10 ® erg. Energy of interaction
takes place both for the homeotropic and for the planar arwith external magnetic fieldH~10G is Ey=uH~3
choring. Concentration here is included in the inverse screenx 1012 erg andE;>E 4.
ing length ¢ only, so that the limitc—0 makesé=0 and We explain this field induced cellular texture by the
gives back the unscreened result of Ekp). The presence of clumping of particles, which is caused by the elastic defor-
the tensom,,, in the screening lengths indicates that screenmations of the director, i.e., by the elastic interaction be-
ing has an anisotropic nature, i.e., it exists only for the antween particles. The magnetic field rotates particles and in-
isotropic coats. For the small spherical partigllesss than 1 duces Coulomb attraction between them according to Eq.
um) without any topological defects, the coat coincides with(17), which is screened by the collective action of neighbors,
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so that the leading interaction potential becomes a Yukaw#or in the near regionand this breaking defines the interac-

attraction,
2

U=-— %exq—fR). (25)

tion law between particles in tHar region We take note of

the coat, that is, the region that confines all topological de-
fects and strong director deformations and has the same sym-
metry as the director near the particle. Outside the coat there
are no topological defects and the director deformations are

Now we can find the conditions of the spinodal decompo-small.

sition in the system of elastically interacting particles. In the \ve show that if the coat has three symmetry planes, then
mean-field approximation, the free energy of such a systerthe far-field interaction is of quadrupole-quadrupole type

is written in the form

kT 1
F—FJ' f(R)lnf(R)dV+2_l)2f f(R)f(R+r)

xU(r)dRdr, (26)

where f(R) is the volume fraction of particled,=cv, v

and, in general, depends not only on the arfjleetweenR
andng, but also on the azimuthal angle, for example, for the
cylinders that lie horizontally in the vertical director field. If
one symmetry plane is broken, the dipolar moment is in-
duced perpendicular to it and leads to the dipole-dipole in-
teraction between the coats. The typical realization of this
situation is the pair of radial and hyperbolic hedgehogs or

being the volume of the particle. We need to find the condinonequatorial disclination rings near the water droplet with
tions under which the homogeneous distribution becomefomeotropic boundary conditions.

unstable. The concentration beconfé®) =f,+ 5f(R), fg

One more distinctive feature of colloidal particles in nem-

is the ground volume fraction. We make a series expansiorlics is the Coulomb attraction between them, when the non-

f(R+r)=f(R)+(rV)f(R)+ 2(rV)%f(R).

Then we have

F—Fo:%f NSf2(R)+M(V 5f )2,

1 (= 1 (=
N=2kT/v+—2J U(r)dr, M=——2j U(r)radr.
ve JR, 2v° IR,
(27

Here R, is the size of the particle. Inasmuch ds<0, a
phase transition occurs fo¢<0. In our cas&R,<<1 and we
may write

2kT 4me 12me
- fou &2 N

Below the critical pointN~4 e/ £2v2. The length of the
most growing instability is

1 [ K
Iinst:\IZM/NNE’V W_CS

There are the following parameters in the experinjeht
with cylindrical particles:c~10'° cm 3, S~2=rL, the ra-
dius of the particle ~0.05um, the lengthL~0.5 um, elas-
tic constant K~107dyn, anchoring energy W
~10"2 dyn/cm, and we findi,s~30 wm. This is in a quali-
tative agreement with the experimental size of the cells.

(28)

VII. CONCLUSIONS

In this paper we have examined theoretically elastic inter-

zero torque moment is applied to them by the nematic. This
can be reached by the external field, for example, by the
magnetic field in the suspension of magnetic particles, or by
the inclined electric field in the nematic emulsions. From
symmetry considerations, it is equivalent to the breaking of
both the horizontal and vertical mirror symmetries.

Collective action of all anisotropic particles leads to the
exponential screening of the interaction. In the ferronemat-
ics, external magnetic field gives rise to the Yukawa elastic
attraction between particles, which is the reason of the
threshold clumping and formation of the cellular texture. We
are planning now to observe experimentally the Coulomb
attraction in the nematic emulsions.

In Appendix B, the general expression for the energy of
colloid particles in the curved director field is given. The
quadrupole particles move toward the high splay deforma-
tions if they have planar anchoring and repel from them if
they have homeotropic anchoring on their surfaces.
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APPENDIX A:  SCREENING EFFECTS IN THE
INTERACTION

The total free energy of the system—particles plus the
nematic liquid crystal—is sum of the bull2) and surface
energieq7),

F=Fp+Fs. (A1)

actions in nematic colloids with the help of the general con-

siderations concerning breaking of different symmetries of We do not consider here the distribution entropy part of

the director field in the vicinity of colloid particles. This is the free energy, because it does not influence the director
caused both by the shape of particles and the anchorindistribution and does not influence the finding of the elastic

strength. Their joint efforts break the symmetry of the direc-interaction potential between particles. We consider that all
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topological defects are hidden inside coats, so that the direc-y(s)]2 and alsoinclude the second powers of the perpen-

IO}: distortion from the homogenous statg is small any-  dicular director deformationsn, and sn,. We thus write
where,
[#1(9)-n()]°=(¥-Ng)*+2(w-Ng) (w- 5n) +2(¥-Ng) (p- V)
n(r)=ng+dn(r), |én|<l. (A2)
X(v-6n)+2(v-ny)(p- V)(v- 6n)
We can use the Fourier representation for the director in )
the entire space, thereby considerably simplifying the prob- +(v-6n)%, (A8)

lem. In the Fourier representation we have: .
P where v=(s) and on=n(R;). We note that this expres-

1 sion involves two smallness parameters. The first is the per-
on(r)= (27)3f d®gexp(—ig-r)én(q).  (A3)  pendicular component of the directpin,|, |on,|~¢, &ns
~&2 and the second is the ratio of the particle size to the
We substitute Eq(A3) in the bulk Frank energy?2) to  average deformation length of the directoro=p/l,. In
obtain [1], the respective terms that are proportionakt@e, and
02s were taken into account. The expansiorpilis equiva-
11 3 ) 5 lent to the multipole expansion i®]. In this paper we also
Fb_z (ZT)EJ d*a{Kaladn(@)|*+Kzl[nx a]on(q)| take the last term proportional & into account. This term
is not essential at the distances comparable to the average
+Kggl(n-q)én(q)|?}. (A4)  distance between particles, as we see below, and it can there-
fore be omitted for the systems considered4tb,9], where
the concentration of the dispersed particles is small. It be-
(q, XNg) q comes essential for dense colloids, where there are too many
g =——, &=—, =Ny, (,=NXdq. particles and where the interference of the distortions from
ar Ar all particles is considerable. (8], |on,,| (with x=x,y) was
(AS) shown to fall off asR~? andR ™3, depending of the dipole or
For this basis we haveq=(q,,0q,) and on  guadrupole symmetry. We thus conclude thatp? for the
=(48ny,6n,,0), and Eq(A6) reduces to third term in Eq.(A8), which has dipole symmetrfand &2
<pe for this casgande ~ 03 (e?< ?¢) for the fourth term
1 1 3 ) 5 ) with quadrupole symmetry. In any case, taking the last term
Fo=3 Wz f d°a{K;;ial + K} oni(q)]*. into account gives only small corrections at the average dis-
(AB) tances and for a small number of particles. As we see below,
it is essential in the collective effect of the screening at large
Because we assume that the director varies smoothly frodistances, where the concentration of particles is high. We
point to point and relatiofA2) is true, we can consider the specifically clarify this problem in what follows.
director to have a given value inside the volume of the par- For this, we write the scalar produdts(s)-n(s)] in the
ticle. This assumption is valid if the total volume of the local basis k4 ,k»,k3) associated with each particle. For ex-
suspended particles is much less than the entire volume @imple, v(9)-n() =2 _123(w-Kk)(dn-k)=y anﬂk,ﬂ
the system, i.e., the volume fraction of particles is small,; 5, sn,k,_, where »,=(»-k), k_.=k;-ny, and én,
cv<1, wherec=N/V is the concentration and is the vol- 3 3
ume of the particl€the “gas” approximation. For the real
system[2], c= 10_10 cm‘*", v~10 ¥ cm?, and cv~105, F=FO+FO 4D, (A9)
and our assumption is therefore true.
The director on the surface can therefore be expressed
through the director in the center of maRs of the particle FO=N 3E do W(s)[#(s) - ng]?, (A10)
and its derivatives,

To simplify this expression we choose the special basis

=—3(8ni+onf). The surface energy is then written as

an(s)=dn(Ry) +(p-V)on(Ry) +3(p-V)?on(Ry), FLS f]gdUWC(S),,l,,mklg{zgnﬂkl +2(p-V)on,k
) " "

wherep is the vector drawn from the center of mass to the
point s on the surface. The complete expression for the di- +(p-V)25an| H (A11)
rector on the surface through the director in the center of a

mass of the particle is therefore given by
F@=> § do We(S) v v 80,80,k Ky

n(s)=ng+ 5n(Rp)+(p-V)5n(Rp)+%(p-V)25n(Rp). P B

(A7) —(8nZ+ 82K K] (A12)
We now fix a coordinate systefR,y,2 where thez axis is

parallel to the nondeformed directag andx,y are perpen- Here N is the total number of particles in the whole vol-

dicular to it. This system is firmly fixed in space. We nextumeV of the liquid crystal matrixE{" andE(?) are surface

substitute director fieldA7) in the scalar producfn(s) terms linear and quadratic idn,, respectively. It can be
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rewritten in terms of the tensok41) so that the elastic en- am=(k-No)[@im+iBims(d-Ks) = Vimst(a- k) (q- ki) ],
ergy F¢, i.e.,the energy of the deformations of the director
field has the form

C
F(2)=—j d3q a; 6ni(q)n*(q), A19
FeI:Fb+ F(sl)+F(52)r (A13) s 2(277)3 q d] |(CI) i (Q) ( )

T ~
Qjj=@;,a,,T,; - (AZO)
F(sl)zz {aimt Bims(Ks* V) + Yimsd(Ks- V) i

P We now add the bulk enerdy, and the surface enerdy;,
X (K- V)}5nﬂk|ﬂkm3, (Al4) and find the total energy of the systéf,= Fg°)+ F o with

the elastic energy

FP=12 aim[ 0N, o0,k Ky —(8nZ+ N5k K, 1. 1
P e Ffmfd3qVaj(q)é‘ni(q)ﬁn?(qHbi*(q)éni(q)

(A15)
The main difference between this approach fbfis in +bi(g)onf (q), (A21)
taking the term in Eq(A15) into account. It is quadratic in
the director deformations and can be regarded as the contri- Vii (@)= (K;ia? +Kza?) &+ cay (A22)

bution of all particles to the interference of the distortions.

Precisely this term leads to the screening effects. Some of its .

features can be considered without finding the director. For bi(q) =2 €' PanKy,. (A23)
example, it is clearly seen that it vanishes for the spherical P

particles. Indee;jmm—aé,m andk|#k|y— d,., for the sphere, Here,m=1,2,3,i,j=1,2, andani(q), andk., are the pro-
and the.reforeF(S )EO..ForI any other shape, EA15) does o iions of these vectors on the ba@,(ez,egl).
not vanish. To describe its effect analytically, we go to the
continuum limit in this expression and replace the summa-
tion with the integration over the entire spacg,=c/dV,
wherec=N/V is the concentration of particles, Having found the complete expression for the elastic en-
ergy of the liquid crystal with particles, we can find the di-
rector at any point of the system from the extremum condi-
tion

1. Director distribution in the doped nematic liquid crystal

FO=2 [ dva,,on,(x)s
s _E a;LV n,u,(x) nv(x);

v = imlKi K, =K1Ky 5,0 ] (A16) Q) Fe=Vij(q)éni(q) +b;(q)=0,
We thus consider the interference of only long wavelength :
distortions of the director field. In the Fourier representation, oni(q)= _Vfl(q)b_(q)_ (A24)
we have ' ! J

In matrix form, the last equation becomes

Voo _Vlz} ( bi(q)
_V12 Vll bZ(q)

Fo— d3qa,,on,(q)on? A17
s 2(277)3 qa,uv I"IM(Q) ”V(Q)- ( )

- D

( 5”1(Q)) 1
on,(q)

A25
The tensoi@,,, is here taken in théx,y,2 coordinate sys- ) (A25)

tem, which is not convenient. It is much more suitable to

write the surface energy and the bulk energy in &6) in  with D=V;Vo— V2,
the same basise(,e,,e;). This basis is rotated by the angle
#(q) with respect to(x,y,2 around thez axis. In the new
basis the director has the componeéits= (dn,,dn,,0) and

on,=w ,;on; (with u=x,y andi=1,2). The rotation matrix i ) i )
is given by Having found the director field, we substitute E&25)

in Eq. (A21) and obtain the elastic energy of the director

2. Elastic energy and the pair interaction potential between
particles

cogy) —sin(y) deformations in the DNLC,
T sint)  costy) | T
, Fe|:—WJ d*q Vj; “(a)bi (a)b; () <0.
In the basis ¢,,e,,e;) the surface energy becomes (2m) (A26)
1 :

FP=2 mf dqfe™"9"ran[ 5n(Q) - K] The negative sign implies that the total free enefgyF{")

P +F evaluated for solutiofA25) is less than the enerdy
+e'%ea, [ Sn*(q) - K]}, (A18)  =FO for the undeformed director field,. The total energy
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Fe can be represented as the sum of the pair potentials bahere a(6) 2_%1(7’511#_"5122)- This approximation makes the
tween two particles. Indeed, we introduce the operdigy ~ PropagatorV;; *(q) diagonal and allows us to take all the

such that integrals analytically. The diagonal approximation is exact
only for 6=0, when the whole system has the rotational

Ameiq-rzameiq-r, (A27) symmetry in thex,y) plane. The coefficierd(6) depends on
the shape of particles. For example, for the cylinders with

A= (K- no)[ i+ Bime Ks: V) + Yimsi Ks: V) (K V) 1. r<L, we havea()=rLW(2—3 sir? ¢), and for flat(pan-

(A28) cake particles with r>h, a(6)=2mr?W(1-3 cos )
(where 6 is the angle between the normal to the pancake
The elastic energ¥, then takes the form plane and the directprin the diagonal approximation, the
propagator therefore becomes

—1 _ _
Fa=t 2 Upy. (A29) Vi (@) =[Kia? +KsaPFcal0)] oy (A32)

and the pair potential is given by
U A&A&,f d3q eiq-(rpfrpf)vi}l(q)kmikmj,.

1 ~ ~ ’
(A30) Upp == g APAN i/ (R)], (A33)

PP (2m)3

The expressiotJ ,,, has the meaning of the pair interaction
potential between particleg and p’, which is caused by
long-range deformations of the director field. The subsgript
indicates that we must substitui&=gd/Jr, in the operator ll”’(R):f d3q g9 R [E' '2(qi><n20)][k|r-qu>< No) ] ,
AP . This expression is valid for particles of ordinary shape 7m0 [Kydi +Kaqi+ca(o)]
and orientation. It accounts for screening effects that arise (A35)
from the interference of the director field distortions by all

particles. Loy (R)= f d3q e R

I (R)=1y/(R)+1(R), (A34)

(ki-a ) (kyr-ay)
7207 [Koo? + KssQf"‘ ca(g)]’
(A36)

3. Pair potential in the diagonal approximation:

Analytical results It is easy to integrate oveq in Egs. (A35) and (A36)

Although expressiorfA30) is exact, it is too difficult to  using the coordinate system with the basis
find the results analytically. In the most general case, the pair

potential U(R,€Q) depends on all the three components of r :RLX”O :& Fa=n R. =n.XR
the radius vectoR=r,—r,, and on three Euler angle, YR, TR, PO AT
which determine the orientation of particles in spaee (A37)

assume that all particles are oriented in the same way, andh, . , )

therefore all of them have the same Euler angles take the | Nis basis is rotated with respect to that in E&5) by some
screening effects into account analytically, we consider parddle ¢ about the axisn,. The quantitiesg, and g, are
ticles with rotational symmetry around one axis. For suchSimilar in both bases. We therefore have exj(-R)
particles, the pair potentidl (R, 6) depends on the angle = &XA —1(.R. cose+qR)] and the denominators of the
between this symmetry axis and the director.gi0, all  fractions involved in EqQA35) and(A36) do not depend on
particles are parallel to the director. In this case, the entird1® a@nglée. Integrating over thep gives

DNLC has the rotational symmetry around the direatgr w

and the pair potential (R, ,R,) depends on the perpendicu- |M“,(R)=f dqqu{Q.f.rJo(qL R))

lar and parallel projections dR with respect tony. But in 0
the case wher@+0 there arises the second preferential di- \EA-
rection in the system—the direction in which all particles lie. F(=DFQyJ2(.RL)}

We project this direction on the plane perpendicular to the y Joc exp(—iqR))

director and les denote the projectiors; ng=0. In this case, dq > > ;

we have potentiaU=U(R, ,R;,¢,0), whereg is the azi- e KA Kaggitcalo)]

muthal angle betweeR ands. (A38)

To obtain analytical results, we average over the aggle .

For this purpose, we average the teragiin Eq. (A20) over ~ where u=1,2 andeI,)z (ro-k)(ri-kp)=(ro-k)(ro-kyr)

the angleys and diagonalize it. We call this dropping of the andJ, andJ, are the Bessel functions.

off-diagonal terms the diagonal approximation, In order to take these integrals we must scrutinize thor-

oughly the functiona(d). As mentioned abovea(6)

—a(0)s, =7rLW(2—-3sirf §) for cylindrical particles. The case
e where W>0 corresponds to the planar anchoring, aid
(A31) <0 corresponds to the normal anchoring. For planar anchor-

| @ntax 0

aij (4, 0)=(aij) =3 0 Ayt By
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ing the equilibrium state of particles =0 andapana(0)
=27rLW>0, and for normal anchoring the equilibrium
state is@= 7/2 anda,gma 7/2) = — 7rLW>0.

We write | /(R) for the expression ,;/(R) and intro-
ducep,=+VK,,/KsR, s=R,, al?dzﬂz vea(d)/K,,,. Af-
ter the integration over thg,, 1°}"/(R) becomes

y23
|9PYR) = 1 qulq exp(—p#vqurzi)
AR = T L
” VK, Kz Jo Vai+2z,
X{Q1 Jo(sa) +(—1)#Q  Jx(sap)}-
(A39)
For the Bessel functions, we have the relation

203,(X)=xJ,4 1(X) +xJ,_1(X), FIG. 4. Movement of the small particle in the curved director
field. Quadrupolar particles with planar anchoring move toward the
which for v=1 gives high splay deformations while those with homeotropic anchoring
are repelled from such regions.
Jo(x)= le(X)_JO(X)_ APPENDIX B: BEHAVIOR OF PARTICLES IN CURVED
X DIRECTOR FIELDS
The corresponding integrals with the functiahgx) and In this appendix we consider the behavior o'f particl_es in
Jo(x) are given by the curved director field. We suppose that the director field is
not homogeneous because of the global boundary conditions,
7. 2 and that the director deformation length is much more than
% —p, Vg + : ) S . .
j dg,q, eXp(~PuNaL Z,) Jo(sqy) the size of particles. So in this section we do not consider the
0 \/aer_zf: deformations of the director that are caused by particles
themselves. The anchoring strength on the surface of the coat
exp( —2z,\Vp,+5%) is written as
= 5 , (A40)
Jp i +s
Fse= é dUWc(S)[V(S)'n(S)]Z- (B1)
" iq PEPNAIZ) )
0 a qf+22 1(sq Inasmuch as the global deformations scale is large, we
o

can express the director on the surfags) through the di-
1 rector in the center of mass of the coat,
= —[e Pli—exp(—z,\Vpi+s)]. (A4l
o n(9)=No-+ (p- V) + 2(p- V)25,
Using these relations we find . .
p is the vector from the center of mass to the pairtiiereng
BN e is the local director field, which would have been in the
| expt € ¥ u center if there was no coat in that pla(®ee Fig. 4. Then

R + 1wl 1—
wi(R) ‘/KWK%[[Q""H DEQ] ‘/pi+52 the anchoring energy takes the form

2 v Fse=FotFi1+Fy,
+(_1)MQ|T|1§[97PMZ”_€72/‘ pi+32] .
i

(A42) Fo= 43 do We(9)(»-ng)?,

The pair interaction potential is then given by
Fi=2 fﬁ do We(s)(w-no)(p- V) (»-no),

1. ..
Uppr == g APAY 15 rp—rp) + 150 (=101,
(A43) Fo= jg da W(S)[(#-no)(p- V)*(¥-No)
which is equivalent to Eq21). +{(p-V)(v-ny)}?2].
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The first itemF is responsible for the orientation of the high splay deformations. This is confirmed experimentally:
particle with respect to the director, whereas the second angimall water drops gather in the center of the big nematic
the third items describes the behavior of the whole particle irdroplet with homeotropic anchoring on the surfdnear ra-
the curved director. All the scalars can be represented in thdial hedgehogand assemble near the surface boojums, when
basis ki,k,,k3) as v-ng=(w-k)(ng-k)=wvn;, (p-V) the global conditions are plang3].

=ps(ks- V) =psds. Then the result is ) . )
The F, term for the quadrupole particles with azimuthal

F1=Biusnidsh,, (B2)  symmetry takes the form
Fo=Y1ustds(Nidin,,). (B3) F2=y1314n-V)divn. (B4)

These are the general expressions that describe movementWe see that particles that do not have a dipole moment
of particles in the curved director field. The particle will (for example, small spherical particles for whithR/K <1)
move in the way to minimize the sum Bf, andF,. The first  move differently as a function of the sign of the anchoring.
term describes the behavior of the coat with dipolar symmefFor planar anchoringV>0 and y;3,5>0, for homeotropic
try in the curved director and the second one describes thanchoringy;315<0, so that particles with planar anchoring
behavior of the coat with quadrupole symmetry in the curvednove toward the places with high splay and particles with
director. If the coat has azimuthal symmetry, then nonzerdomeotropic anchoring are repelled from the regions with
components of the3 are B31:= B3> and in the Cartesian high splay. We see that although the sign of the anchoring
frame [n=(0,0,1)], F, takes the formF,;=B3;1n3(d:n;  does not influence the interparticle quadrupole-quadrupole
+d,n,) = —47Kp,n,divn, which coincides with the result interaction[see Eq(16)], it plays a crucial role in the behav-
[9] and indicates that dipoles assemble in the places witlior of particles in the curved director fields.
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