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Symmetry breaking and interaction of colloidal particles in nematic liquid crystals
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We propose a general approach to the description of the long-ranged elastic interaction in the nematic
colloids, based on the symmetry breaking of the director field. The type of the far-field interaction between
particles immersed in a nematic host is determined by the way the symmetry is broken in the near-field region
around the colloidal particle. This is caused both by the particle’s shape and the anchoring at the surface. If the
director field near the particle has a set of three symmetry planes, the far-field interaction falls off asd25 with
d being the distance between particles. If one symmetry plane is absent, a dipolar moment perpendicular to it
is allowed and yields dipole-dipole interactions, which decays asd23. If both the horizontal and vertical mirror
symmetries are broken~it is equivalent to the case when the nonzero torque moment is applied to the particle
by the nematic liquid crystal!, the particles are shown to attract each other following the Coulomb law. We
propose a simple method for the experimental observation of this Coulomb attraction. The behavior of colloid
particles in curved director fields is analyzed. Quadrupolar particles with planar anchoring are shown to be
attracted toward the regions with high splay deformations, while quadrupoles with homeotropic anchoring are
depleted from such regions. When there are many colloidal particles in the nematic solvent, the distortions of
the director from all of them are overlapped and lead to the exponential screening in the elastic pair interaction
potential. This is a many-body interaction effect. This screening is essential in the real dense colloid systems,
such as ferronematics—suspensions of magnetic cylindrical grains in the nematic liquid crystal. External
magnetic field induces an elastic Yukawa attraction between them. We apply this attraction to the explanation
of the cellular texture in magnetically doped liquid crystals.

DOI: 10.1103/PhysRevE.65.021709 PACS number~s!: 61.30.Gd, 82.70.Dd
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I. INTRODUCTION

Any interaction is connected with some symmetry bre
ing. Liquid crystals are materials that break their continuo
symmetry under the action of weak external influences. O
entational distortions are easily created by external fields
boundary conditions. Another way to break continuous sy
metry in liquid crystals is to introduce a particle of distin
substance in the liquid crystal host. It distorts orientatio
order of the liquid crystal over distances much larger than
size of the particle. When the regions of the broken conti
ous symmetry around each of the two particles are ov
lapped, it leads to interaction between them.

A suspension of many particles efficiently breaks the c
tinuous symmetry of the initial liquid crystal and thus cou
give rise to an entirely different class of composite materia
Properties of such liquid crystal~LC! composites are define
by the collective behavior of the immersed particles mutua
interacting via the elastic deformations of the orientatio
ordering of the liquid crystal.

Colloid suspensions in nematic liquid crystals has
tracted considerable attention during the last few ye
@1–8#. The Frank elastic interactions between colloidal p
ticles lead to non-trivial behaviors with the formation of
variety of novel ordered or disordered structures. So far
served are linear chains of small water droplets in an alig
liquid crystal or in large nematic drops@3,4#, highly ordered
arrays of silicon oil droplet chains in a nematic host@7#, and
two-dimensional~2D! hexagonal lattices of glycerene dro
lets in a nematic cell with hybrid boundary conditions@8#. In
1063-651X/2002/65~2!/021709~14!/$20.00 65 0217
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all these cases, colloidal particles have an effect of distor
the director fieldn(r ) around them and interact elastical
because of overlapping of these distortions. Anchoring c
ditions on the surface of droplets and the global geometry
the LC matrix have a great impact on the elastic interpart
interactions and on the collective formation of structures.

Up to now, there are two theoretical approaches to
description of colloid interactions in the nematic liquid cry
tal. The first one deals with spherical droplets that ha
strong anchoring strength on the surface@9,11,12#. A droplet
with strong planar anchoring creates a pair of topologi
defects, known as boojums. A droplet with strong homeot
pic boundary conditions, on the other hand, creates an e
torial disclination ring or a hyperbolic hedgehog~i.e., char-
acteristic shape in a photo current-time plot! as a companion
for the radial hedgehog on the surface of the droplet. Us
the variational techniques and an electrostatic analo
Lubenskyet al. @9# obtained an approximate director distr
bution near the droplet with homeotropic boundary con
tions, as well as the long-range pair interaction potential
tween the droplets. It has both the dipole-dipole and
quadrupole-quadrupole components. The dipole-dipole in
action explains the formation of the chains, which a
aligned along the director in the nematic host.

The second approach was proposed in@1#, where the au-
thors have examined the case of weak anchoring strength
particles of general shape. They have found analytically
pair interaction potential, taking into account the differe
Frank moduli and have expressed the potential in terms
tensors characterizing the shape of the particle. These
©2002 The American Physical Society09-1
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sors dictate the symmetry of the particle shape and hence
nature of the resulting long-range interaction potential. Th
results are in agreement with the quadrupole-quadrupole
tential for spheres@9,12# and with the dipole-dipole interac
tion of Lopatnikov and Namiot@13# for asymmetric cylin-
ders.

In this paper we argue that the long-range interaction
tential between colloidal particles in nematics is determin
by symmetry breaking of the director field in the vicinity o
the particles. This symmetry breaking is caused by two r
sons: the shape of the particle and the anchoring strengt
the case of weak anchoring it is determined primarily by
form of the particle. In the opposite case the most import
is the anchoring strength. In order to universally describe
these phenomena, we introduce the concept of the
around the particle. The coat embraces all the accompan
topological defects, while it has the same symmetry as
resultant director field near the particle. The director dis
bution outside the coat undergoes only smooth variations
does not contain any topological defects. In the case of w
anchoring the coat coincides with the particle itself. We n
that the same concept has been introduced in@14#, where the
authors treated the director distribution around the spher
droplet using an electrostatic analogy. They have found
size, or the ‘‘correlation length’’ from the surface, on whic
the director changes discontinuously passing through the
pological defects. The estimates give the value of abou
mm for the correlation length. This is in qualitative agre
ment with the result of Lubenskyl 50.26R0 for the distance
between the surface of the droplet and the hyperbolic hed
hog @9#, when the radiusR0 of the droplet is about 10mm.
We argue that the long-range interaction between particle
determined by the symmetry of the coat and is expres
through tensor characteristics of it.

When the director distribution in the vicinity of the pa
ticle has three symmetry planes, the pairwise interaction
tential falls off asd25, with d being the distance betwee
particles. When one symmetry plane is broken, a dipole m
ment perpendicular to it arises and it leads to the dipo
dipole interaction between the particles. When the coat
only one vertical symmetry plane~the directorn without
particles is aligned along the vertical axis! or when it does
not have symmetry planes at all, then the leading interac
at far distance is the Coulomb attraction law. We propos
simple method to observe this attraction. A similar effect w
described in the 2D case of smectic-C films where misalign-
ment of a dipolar structure with the far field induces a 2
Coulomb-like charge on the particle@10#. In our 3D case we
find deformational Coulomb charge in terms of geometri
parameters, anchoring energy, and orientation of the part

In all previous papers concerned with colloidal partic
in liquid crystals, the elastic interaction potential has be
obtained as the result of the overlapping of director dist
tions around the pair of particles. The influence of the dir
tor distortions from others particles has not been taken
account yet. So the influence of the particle’s concentra
on the elastic pair potential has not been considered. We
into consideration this effect and show that in dense collo
it leads to the exponential screening of the potential at
02170
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distances, which are larger than the average distance betw
colloidal particles.

The real colloid system, where this effect could be o
servable, is a suspension of long magnetic particles in
nematic, which is called ferronematic. It was examined in
experiment of Chen and Amer@2#, where they have observe
the appearance of the cellular texture upon the critical ex
nal magnetic field. We show that this can be explained
the elastic screened Coulomb attraction between partic
which leads to their collapse. It is produced by the break
of both horizontal and vertical mirror symmetries with he
of the external magnetic field, perpendicular to particles.
the end of the paper we explore the case of nonuniform
rector field, the movement of particles that is produced
global director distribution.

The plan of the paper is as follows. In Sec. II we sho
how symmetry breaking is connected with the director d
tribution around the spherical particle. In Sec. III we pe
ceive the dipole-dipole interaction as the result of the mir
symmetry breaking in one plane. In Sec. IV we obtain t
Coulomb attraction as the result of symmetry breaking
two planes—horizontal and vertical. In Sec. V we show t
result of the screening of the pair interaction in dense c
loids. In Sec. VI we conclude our results. In Appendix A w
analyze in detail the appearance of the screening, as th
sult of interference of far-field transverse componentsnx and
ny of the director, which come from all particles. In Appe
dix B we find the energy of an arbitrary particle in the curv
director field.

II. SYMMETRY AND THE DIRECTOR DISTRIBUTION

A nematic liquid crystal is an anisotropic fluid in whic
long molecules have the same average orientation spec
by the unit vectorn called the director. In the undistorte
state the nematic has a spatially uniform orientationn0 , and
we consider here that it is parallel to thez axis @n0
5(0,0,1)#. The case of global nonuniform director distribu
tion is investigated in the Appendix B, where the express
for the energy of an arbitrary particle in the curved direc
field is found.

Immersed particles distort the uniform orientation of t
director in the bulk. Thesourceof bulk director deformations
is the preferential orientation imposed at the surface of p
ticles in such a way that the nematic molecules lie eit
normally or tangentially to it. The phenomenological anch
ing energy at the surface of particles can be written in
Rapini-Papoular form

Fs5(
p

W R ds@n~s!•n~s!#2, ~1!

whereW is the anchoring energy coefficient. For the home
tropic anchoringW,0 and for the planar oneW.0. Sum-
mation should be taken over all particles in the liquid cryst
Bulk energy of the spatial distortions of the director fiel
which is called the Frank energy, is written in the form
9-2
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SYMMETRY BREAKING AND INTERACTION OF . . . PHYSICAL REVIEW E 65 021709
Fb5 1
2 E d3r $K11~div n!21K22~n•rotn!21K33~n3rotn!2%.

~2!

~We do not take into account here surfaceK24 and K13
terms, inasmuch as they can give a correction only for sh
range director deformations, but in this paper we take i
account only long-range deformations and their contribut
to the pair interaction energy!.

In order to find possible director configurations o
should solve Euler-Lagrange~EL! equations from the mini-
mization of the Frank free energy with taking into accou
the boundary conditions, which are found from the minim
zation of bulk and surface energies. But a situation can a
where there are several director distributions with differ
symmetry, which satisfy both EL equations in the bulk a
boundary conditions at the surface. A typical example is p
sible director configurations around the water droplet w
strong homeotropic anchoring, shown in Fig. 1. In both ca
the director lies perpendicular to the sphere and it is equ
lent to the radial hedgehog in the center. It has topolog
charge, which is equal to unity. The uniform director dist
bution far from the droplet has zero topological charge a
so there should be another topological defect near the dro
to compensate for the hedgehog in the center. In Fig. 1~a! the
droplet creates a21

2 disclination ring on the equator at
distancel 51.08R0 from the center and in Fig. 1~c! it has a
point hyperbolic hedgehog@9#. In Fig. 1~b! the intermediate
configuration is shown, which is a nonequatorial disclinat
ring. Obviously, the director configurations have differe
symmetry. The nonequatorial disclination ring and the pai

FIG. 1. Director configurations around the water droplet in
nematic.~a! Saturn-ring configuration with quadrupolar symmet
~b! Nonequatorial disclination ring breaks mirror symmetry in t
horizontal plane and induces dipolar moment as a measure of s
ness.~c! Ground state of the system is the pair of the radial a
hyperbolic hedgehogs, which have bigger dipolar moment.
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radial and hyperbolic hedgehogs break mirror symmetry
the horizontal plane, while the equatorial disclination ri
~Saturn ring! retains it. Saturn-ring configuration has qua
rupole symmetry, which is reduced to dipolar symme
when the disclination ring is shifted above or below t
equator. Authors of@17# have shown by Monte Carlo simu
lations that the configuration with a hyperbolic hedgehog
lower energy than the Saturn ring. It has been confirmed
@9# with help of the dipoleAnsatzthat though the equatoria
ring has some metastability, its energy is higher than tha
the dipole.

So on this example we see that strong anchoring on
surface breaks mirror symmetry, though the shape of the
ticle remains spherical. For weak anchoring or smaller p
ticle size~less than 1mm! it is not, and the quadrupole sym
metry configuration remains@18# just as the droplet itself
has.

The breaking of the symmetry in the near-field regio
which is achieved either by the anchoring strength or by
particle’s shape, leads to the different solutions in the f
field region. At far distances from the particle, the direc
field n(r ) tends to be uniformn05(0,0,1) and can be written
in the form n5(nx ,ny,1). In the one-constant approxima
tion, the Frank free energy is given by

Fb5 1
2 KE d3r $~“nx!

21~“ny!2%. ~3!

The equilibrium equations are the Laplace equations
the transverse componentsnm (m5x,y),

Dnm50. ~4!

At large distancesr it can be expanded in multipoles,

nm5
Am

r
1

pm•r

r 3 1
cm

i j r i r j

r 5 1¯ . ~5!

It is clearly seen, that transverse components can
treated as two components of the electric field potential
particles are multipolar sources, similar to antennas@19#. The
first term is connected with the ‘‘charge,’’ the second wi
the dipole moment, and the last term is connected with
quadrupole moment.

The three items in Eq.~5! represent different broken sym
metries of the director field around particles and are resp
sible for three different interaction laws between particles,
we show below. The first term exists when the director d
tribution does not have any plane of symmetry at all or it h
only one vertical plane of symmetry. It appears when
particle in its vicinity breaks mirror symmetry in a horizont
plane and in one vertical plane. In other terms, it exis
when there is a nonzero torque momentG acting on the
particle due the nematic@20#. In the absence ofG it is absent.
The second term represents broken symmetry in one p
and the dipole momentp is the measure of skewness, so th
more the removal of the disclination ring from the equat
more the magnitude of the dipole moment. The last te
exists in any case, because it has the same quadrupole
metry as the director has.

w-
d

9-3
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LEV, CHERNYSHUK, TOMCHUK, AND YOKOYAMA PHYSICAL REVIEW E 65 021709
The multipole expansion is valid only in the region whe
nonlinearities can be neglected. For particles with strong
choring it is the far region, because of strong director de
mations in the near region. But for particles with weak a
choring, distortions are small elsewhere and the multip
expansion is applicable in the near region too. In gene
lesser the anchoring strength, smaller is the size of the re
where the multipole expansion is inapplicable

The amplitudes of this expansion in the strong anchor
case can be found from the asymptotic either of exact s
tions or of different variationalAnsätze that correctly de-
scribe the director field in the near region. This has be
done in@9# for spherical particles with homeotropic ancho
ing with help of electrostatic and dipoleAnsätze. In the weak
anchoring case, amplitudes in Eq.~5! are found directly from
the boundary conditions for the linearized EL equations,
has been done in@18#.

III. MIRROR SYMMETRY BREAKING AND DIPOLE-
DIPOLE INTERACTION

In this section we intend to clarify the appearance of
dipole momentp with the breaking of the mirror symmetr
of the director field in one plane in the vicinity of the surfac
and to representp as the measure of the skewness.

In the paper@9# dipolar and quadrupole moments are e
pressed aspm5(p•n0)em and cm

i j 5c(n0iej
m1n0 jei

m), where
em are the vectors pointing in them5x,y direction. The au-
thors have found the interaction potential in the far reg
between the water droplets with hyperbolic hedgehogs, w
the dipolar moments lies parallel to the director. Their res
is found in the one-constant approximation (K115K225K33
5K) and it is written as

U~R!54pK@pzpz8Vpp~R!1 4
9 cc8Vcc~R!

1 2
3 ~cp82c8p!Vpc~R!#,

Vpp~R!5
1

R3 @123 cos2~u!#,

Vcc~R!5
1

R5 @9290 cos2~u!1105 cos4~u!#,

Vpc~R!5
cos~u!

R4 @15 cos2~u!29#, ~6!

whereu is the angle between the separation vectorR andn0 ;
pz ,pz8 ,c,c8 are dipolar and quadrupole moments, resp
tively, at the positionsr and r 8. In order to find them, it is
necessary to compare the multipole expansion~5! with the
asymptote of theAnsätze that describe the director field i
the near region. From the variationalAnsatz it has been
found thatpz52.04a2, c521.08a3, a being the droplet’s
radius. The last term in Eq.~6! is absent for equal droplets
and only the dipole-dipoleVpp(R) and the quadrupole
quadrupoleVcc(R) potentials remain.

In the paper@1# the authors suggested an approach t
enables to find the interaction potential for particles of or
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nary shape with weak anchoring at the surface. It is valid
the different Frank constants and so exceeds the bound
the electrostatic analogy. In the weak anchoring case th
are no topological defects and the director deformationsdn
are small everywhere so that the multipole expansion is v
at the particle surface too. That is why unknown amplitud
in Eq. ~5! can be expressed through tensor characteristic
the particle’s surface and orientation.

In the case of strong anchoring, topological defects a
in the near region, but outside, the director deformationsdn
are small. Therefore we can confine the particle and to
logical defects within the region called coat. This region co
tains all strong deformations of the director field. Outside
coat director deformations are small,dn!1. The size of the
coat has been estimated in@14# with the help of the electro-
static analogy and it was shown to be a few micromet
from the particle’s surface. It is in a qualitative agreeme
with the result of@9# l 50.26R0 for the distance between th
droplet’s surface and the hyperbolic hedgehog when the
dius R0 of the droplet is about 10mm. The symmetry of the
coat is equivalent to the broken symmetry of the director
the vicinity. For example, a droplet with an equatorial disc
nation ring ~Saturn-ring configuration! could be put into a
coat that has a horizontal symmetry plane@see Fig. 2~a!#, and
a water droplet with a companion hyperbolic hedgehog co
be confined into the coat without a horizontal symme
plane@see Fig. 2~b!#. The anchoring energy on the surface
the coat is determined as the interaction energy between
nematic molecules over the surface and the molecules u
the surface of the coat. Phenomenologically it can be writ
in the Rapini-Papoular form, but it is natural that the anch
ing strengthWc becomes dependent on the points on the
surface of the coat. The shape and the surface distribu
Wc(s) determine the symmetry of the coat, which is identic
to the symmetry of the real director distribution in the ne
region. Obviously, it is necessary to know the real direc
field in every point and shape of the coat exactly to fi
Wc(s), which is hardly achieved. Instead of finding exa
solutions of the EL equations, we show that the problem
be effectively solved in terms of some unknown tensors t

FIG. 2. Coats that contain all topological defects inside. Anch
ing couplingWc of the coat depends on the point of the surface.~a!
Quadrupolar coat around the Saturn-ring disclination.~b! Dipolar
coat with broken mirror symmetry contains radial and hyperbo
hedgehogs.
9-4
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characterize the surface of the coat. For this purpose we
troduce the surface energy in the form

Fcs5(
p

R ds Wc~s!@n~s!•n~s!#2 ~7!

instead of Eq.~1!. Such substitution allows us to consider t
director deformationsdn small everywhere in the space. A
defects are hidden now inside the coat.

This makes it possible to find the interaction potent
between the coats. We can apply the results of the pape@1#
becausedn!1 far and wide. It was the only physical as
sumption under which the results are valid.

According to the@1# the interaction potential between th
two coats separated by the vectorR in the general case i
written as

U~R!52
1

8p (
m,m851,2,3

Âm
p Âm8

p8 (
m51,2

1

AKmm

3H Qm,m8
1

AK33R'
2 1KmmRi2

1~21!m
Qm,m8

2

R'
2

3
~AK33R'

2 1KmmRi
22AKmmRi

2!2

AK33R'
2 1KmmRi

2 J . ~8!

In this expressionRi andR' are parallel and perpendicu
lar to the undeformed directorn0 components ofR5r p
2r p8 ,

r15
R'3n0

R'

, r25
R'

R'

, r35n0 , R'5n03R. ~9!

Qm,m8
(6)

5(r1•km)(r1•km8)6(r2•km)(r2•km8), where
(k1 ,k2 ,k3) is the local basis rigidly bound with each pa
ticle. OperatorsÂm are defined as

Âm5~k l•n0!@a lm1b lms~ks•“ !1g lmst~ks•“ !~kt•“ !#.
~10!

Superscriptp means that in operatorÂm
p we need to substi-

tute“5]/]r p .
Herea lm ,b lms ,g lmst are tensor characteristics of the co

which contain all information about its symmetry. Letr be
the vector pointing from the center of mass of the particle
the points at the surface of the coat andn be the unit normal
to the surface at this point. Then tensors are expressed

akl52 R ds Wc~s!nk~s!n l~s!,

bklm52 R ds Wc~s!nk~s!n l~s!rm~s!,

gklmn5 R ds Wc~s!nk~s!n l~s!rm~s!rn~s!. ~11!
02170
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The integration is over the surface of the coat. The sy
metry of these tensors contains all data about broken s
metry of the director field in the vicinity of particles an
defines distinctive features of the interaction potential in
far region. Its magnitude can be treated like variational
rameters for the concordance with experimental data or it
be evaluated from the comparison with long-ran
asymptotic ofAnsätzesolutions. For instance, let us consid
the comparison of Eq.~8! with the Lubensky potential~6!.
For this purpose we consider the one-constant approxi
tion, and Eq.~8! results in

U~R!52
1

8p (
m,m851,2,3

Âm
p Âm8

p8 S Qm,m8
1

R
D . ~12!

It can be easily shown thatQm,m8
1

50 for m, m853, and
Qm,m8

1
5dm,m8 , for m,m851,2. Using this allows us to write

the expression~12! in the form

U~R!52
a3ma3m

4pR
1b3msb3ms8~ks•“ !~ks8•“ !

1

4pR

2g3mstg3ms8t8~ks•“ !~ks8•“ !~kt•“ !~kt8•“ !
1

4pR
,

~13!

where the summation on the repeating indices is made.
Now we consider the case ofa3m50 and below we show

circumstances under which this is not true. Now we wan
examine thoroughly the second term, which represents
dipole-dipole interaction. It takes the form

Udd5b3msb3ms8

3~ks•R!~ks8•R!2dss8
R3 . ~14!

Symmetry of the tensorb reflects symmetry of the direc
tor and defines a dipole type of the interaction. Let us c
sider componentsb31s52rds Wc(s)n1n3rs . If the director
distribution has a horizontal symmetry plane, then for ev
point n the mirror image exists, for whichn3 changes sign
whereasn1 , r1 , r2 remain the same. Thereforeb3115b312
50. Besides, if there is symmetry planeYZ, then b31350,
else b313Þ0. Similar, if there is symmetry planeXZ, then
b32350, elseb323Þ0. For example, banana-shaped partic
with the symmetry planeXZ haveb313Þ0, and thus induce
elastic dipole-dipole interaction as the result of the direc
distortions.

So we come to theimportant conclusionthat if the direc-
tor distribution near the particle has three perpendicu
planes~one of which is horizontal!, then all b3ms are zero
and only quadrupole interaction remains, which dies off
R25, as is clearly seen from Eq.~13!. If one symmetry plane
in the director distribution is broken, then a dipole mome
in the perpendicular direction arises.

If the horizontal symmetry plane is broken, as in the ca
of the water droplets in nematics@4#, the nonzero compo-
nents of the tensorb are b3115b322, and the dipolar part
takes the form
9-5
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Udd5
b311

2

4pKR3 @123 cos2~u!# ~15!

with cosu5n0R/R. This coincides with the first term in Eq
~6!, and we clearly see thatb311 is proportional to thez
component of the dipolar momentpz ,

b311524pKpz .

~We choose the minus sign in order to agree on the result
the behavior of particles in the curved director field with@9#,
see Appendix B!. To demonstrate the appearance of the
polar moment as the result of the breaking of the mir
symmetry, we consider a model system—a sphere with n
equatorial thread, on which anchoring strength is infin
Surface anchoring on the sphere can be written as

Wc~u!5W01W1~cosu!d~cosu2cosu th!.

W0 is the constant anchoring on the surface and the sec
term is the anchoring on the thread. Then integration on
sphere surface gives

b31152 R ds Wc~s!n1n3r152pR3W1~xth!xth~12xth
2 !,

where xth5cos(uth). Inasmuch asW1(0)Þ0, we conclude
that

b311;cos~u th!

whenu th'p/2. It becomes zero, when the thread lies on
equator and changes its sign, when the thread is sh
above or below the equator, so that it really behaves sim
to the dipolar moment.

When the mirror symmetry is not broken, all compone
of the tensorb are zero and the last term remains, whi
represents a quadrupole-quadrupole interaction. In this
nonzero components of the tensorg that are included in the
interaction areg3131, andg3232. In general, they are differ
ent if the particle does not have an axis of symmetryC4 ~for
instance, for the parallelepipeds with different sides!. In this
case the general quadrupole-quadrupole interaction pote
is

Uqq52
3g3131

2

2pKR5 @125 cos2u25~k1•er !
2

135 cos2u~k1•er !
2#2

3g3232
2

2pKR5 @125 cos2 u

25~k2•er !
2135 cos2 u~k2•er !

2#, ~16!

whereer5R/R. We see that potential depends not only
the angleu but also on the azimuthal anglew.

For the cylinders that lie parallel to the axisY, g323250.
Then the interaction potential, for instance, for the cylind
that lie in the horizontal plane (u5p/2) becomes

Uqq,horizont5
3g3131

2

2pKR5 ~5 cos2 w21!,
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cosw5(k1•er), g31315pr 3LWc/4. They repel in theX direc-
tion and attract in theY direction.

If the coat has the axis of symmetryC4 then g3131 and
g3232 are equal and the quadrupole interaction takes the f

Uqq5
3g3131

2

2pKR5 ~3230 cos2u135 cos4 u!.

It coincides with the second term of Eq.~6!. From the
comparison with it, we find along with the sign the conne
tion with the quadrupole momentc of the coat,

g13135c
4pK

3
&.

Then for particles with planar anchoringW.0, g1313
.0, c.0 and for particles with homeotropic anchorin
g1313,0, c,0, this is in an agreement with theAnsatzresult
for the quadrupole moment of the water droplet in the ne
atic @9#.

IV. THE COULOMB ATTRACTION AS THE RESULT OF
THE BREAKING OF HORIZONTAL AND VERTICAL

MIRROR SYMMETRY

Expression~13! shows that the Coulomb attraction
present in the general case. Let us consider the nature of
term. It is determined by the componentsa13 anda23, a13
52rds Wc(s)n1(s)n3(s). It is obvious that, if there is a
horizontal symmetry plane, then both components are z
The presence of the symmetry planeXZ makesa2350 and
YZmakesa1350. So we come to thesignificant conclusion:
the breaking of both horizontal and vertical mirror symme
leads toa13Þ0 or a23Þ0 and thus to the Coulomb attractio

U52Q2/R, ~17!

where the role of the charge is played by the geometr
factor Q5A(a13

2 1a23
2 )/4pK.

We can calculate the charge, for instance, for the lo
cylinder (L@d), which makes the tilt angleu with thez axis
and lies in theYZ plane ~Fig. 3!. For such a cylindera13
50, a23Þ0. LetO8 be the coordinate basis (XY8Z8), which
is turned by the anglep/22u with respect to the axisX. In
this basis n85(cosw,0,sinw). In the ~X,Y,Z! basis n i

5Ai j n j8 , where the rotation matrix

Ai j 5F 1 0 0

0 sinu 2cosu

0 cosu sinu
G

so thatn15cosw, n252cosu sinw, n352sinu sinw. Then
a2352rds Wn2n352dLpW cosu sinu ~we integrate only
on the side area! and the charge is

Q5
dLuW sin 2uu

4
Ap

K
. ~18!
9-6
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When the cylinder lies in theXY plane (u5p/2) or YZ
plane (u50) thenQ50, as follows from general symmetr
considerations. The maximum charge occurs whenu5p/4.
Such an inclined position of the cylinder is not of cour
profitable energetically. In the ground state the cylind
make anglesu50 or u5p/2 as functions of the ratioWd/K
@24#. But if they have magnetic moment, the external ma
netic field can fix the tilt angleuÞ0, p/2 and cause the
elastic Coulomb attraction between them. Such a situatio
realized, for example, in the suspension of ferromagn
particles in the nematic, which is called ferronematic@21#, in
the presence of the external magnetic field.

This Coulomb attraction can be found experimentally a
between the liquid drops in the nematics in the presenc
the inclined electric field. In Ref.@23# it was shown that
isotropic drops suspended in the nematic phase~5CB and
MBBA ! are deformed into an elliptical shape along the fie
If the direction of the electric field is neither parallel n
perpendicular to the director, then the drops should defo
parallel to it, so that both horizontal and vertical mirror sym
metry is broken. This must lead to the elastic Coulomb
traction between the drops. As well, we consider that C
lomb attraction must play an important role in the 2
hexagonal lattice of the glycerol droplets on the nematic s
face @8#. Hybrid boundary conditions break rotational sym
metry of the director field around droplets and thus sho
induce Coulomb attraction between them. We are curre
planning an experiment for checking of this idea.

V. SPILLOVER OF THE TWO-PARTICLE INTERACTION

In all previous papers concerning colloidal particles
liquid crystals, the elastic interaction potential between p
ticles has been obtained as the result of the overlappin

FIG. 3. Orientation of the cylindrical particle.
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the director distortions around the pair of particles. In pr
ciple, however, the rest of particles should also have an
fluence on the interaction potential. The presence of part
3 affects the interaction between particles 1 and 2. This ef
should not be significant on small distances, but if the d
tance between particles 1 and 2 is large, so that there
many particles with numbers 3,4,5... located between th
then their collective action, i.e., deformations from them c
greatly influence on the interaction potential between p
ticles 1 and 2. In a previous paper@22#, we have examined
this case and shown that the deformations from all partic
lead to the exponential screening of the pair interaction
tential. Physically it can be explained following the argume
by Brochard and de Gennes@21#.

Let us consider cylindrical particles, labeled by a u
vectoru, andu is the angle betweenn0 andu. It produces a
director in the far region,n(r )5n01dn(r ), where dn(r )
5(dnx ,dny,0). It is convenient to putdn(r )5v(r )3n0 ,
where Dvx5Dvy50. Since vz is arbitrary, we may put
Dvz50. Then

v~r !5¸
1

r
1x:¹

1

r
1¯ . ~19!

We are interested mainly in the first item. In a nema
statesn and 2n are identical, thereforȩ must be an even
function of n0 . It must be also an even function ofu. The
most general vector constructed fromu andn0 and even in
each of them is

¸5 l ~cosu!n03u,

wherel (x) is an odd function ofx. This leads us to

dn~r !5
l ~cosu!

r
u' .

Note that the coefficient of 1/r vanishes whenu is parallel
to n0 and also whenu is normal ton0 @sincel (0)50#. This
coincides with our symmetry considerations made above.
us definel 15 l (cosu). In @21# it is shown that the distortion
energy is

dF54pKl 1 sinudu ~20!

from which it is seen that if the parallel orientation of th
particle satisfies the minimum energy, thenl 1 should be posi-
tive.

If we have a suspension of identical particles with po
tions r p , then the distortiondn(r ) from all of them is given
by the following equation:

dn~r !5(
p

l 1

ur2r pu @up'2dn~r p!#.

The presence ofdn(r p) means that the particlep creates
no long deformations if it is aligned parallel to the direct
n01dn(r p).
9-7
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Let us now go to the continuum approach, substitut
(→c*dV, c being the concentration of particlesc5N/V.
After acting with the operator¹2 on both sides

dn~r !5cl1E dr 8
1

ur2r 8u
e2eexptur2r8uu'~r 8!,

jexpt
2 54pcl1.0 .

Thus the effect of each particle is screened out at
tances larger thanjexpt

21 . It is obvious that this screenin
should be manifested also in the interaction potential.

More precise analysis shows~see Appendix A! that in
dense colloids the interaction potential instead of Eq.~8!
takes the form

Upp852
1

8p
Âm

p Âm8
p8 @ I 1l l 8

expt
~r p2r p8!1I 2l l 8

expt
~r p2r p8!#,

~21!

I mmm8
expt

~R!5
1

AKmmK33

@Qm,m8
1

1~21!m11Qm,m8
2

#

3
exp@2jmA~Kmm /K33!Ri

21R'
2 #

A~Kmm /K33!Ri
21R'

2

1
2~21!m

AKmmK33

Qm,m8
2

jmR'
2 $exp@2jmA~Kmm /K33!Ri#

2exp@2jmA~Kmm /K33!Ri
21R'

2 #%,

jm5Ac~a111a22!/2Kmm, ~22!

wherejm are inverse screening lengths (m51,2) andc is the
concentration of particles,a11 anda22 are the corresponding
components of the tensor

amn5a lm@kl m
kmn

2kl 3
km3

dmn#.

In the one-constant approximationKmm5K335K it becomes
dependent only on the scalar of the vectorR,

Upp852
Qm,m8

1

8pK
Âm

p Âm8
p8 Fexp~2jur p2r p8u!

ur p2r p8u
G , ~23!

wherej5Ac(a111a22)/2K. It is clearly seen that the pres
ence of the macroscopic concentrationc of particles leads to
the screening of the pair interaction potential with the scre
ing length j21'AK/WcS ~W is absolute value here, no
depending on the sign!, Sarea of the particle. This screenin
takes place both for the homeotropic and for the planar
choring. Concentration here is included in the inverse scre
ing length j only, so that the limitc→0 makesj50 and
gives back the unscreened result of Eq.~12!. The presence o
the tensoramn in the screening lengths indicates that scre
ing has an anisotropic nature, i.e., it exists only for the
isotropic coats. For the small spherical particles~less than 1
mm! without any topological defects, the coat coincides w
02170
g
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-

n-
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the particle itself. In this case tensoramn is identical to zero.
Really a lm5ad lm and kl m

kl n
5dmn so amn[0 for small

spherical particles. This means that no screening takes p
It arises only for the anisotropic coats. The physical mean
of this elastic screening can be easily understood from
following example: two people badly hear one another in
crowded room. The more people between them the wo
they hear one another.

Similarly with particles, the formula~22! is true when the
screening length is bigger than the average distance betw
particles,j21@^ l &51/A3 c. From here we can write the con
dition on the anchoring strength of the coat under which
given approach is applicable,

Wc!
K

A3 cSc

. ~24!

VI. EXPLANATION OF THE CELLULAR TEXTURE IN
FERRONEMATICS

In 1970, Brochard and de Gennes proposed doping
liquid crystal matrix with ferromagnetic particles to mak
possible the coupling of the liquid crystal molecular orien
tion to weak external fields@21#. The authors treated such
system theoretically and predicted Fre´edericksz effect in the
weak magnetic fieldsH;10 G. So the doped matrix exhibit
collective orientational distortion in the weak magne
fields. Also they predicted segregation effects, i.e.,
smooth change of particle concentrationc(R) from point to
point by applying the magnetic field, so that the concent
tion increases in the center of the cell. In a paper@2# authors
observed experimentally the collective behavior in t
MBBA doped with magnetic particles, manifested as a lon
ranged uniform distortion of the molecular orientation of t
entire sample upon application of weak magnetic fieldsH
,1 G. In that experiment, particles were coated w
DMOAP, which provides homeotropic anchoring on its su
faces, so that the magnetic particles lie perpendicular to
nematic director in the absence of the magnetic field.

On reaching the fieldH;30 G, the experiment shows@2#
that the uniform orientational distortion is replaced by a n
field-induced cellular texture with the cells having dime
sions of the order of tens of micrometers. So at the criti
concentration in the center, magnetic particles clump i
aggregates. This clumping had no explanation because
magnetic dipole-dipole interaction is much smaller than
interaction with the external magnetic field. Indeed, the m
netic moment m5Msv induces interactionEdd5m2/R3,
where R is average distance between particlesR23;c
;1010 cm3. So Edd;4310215 erg. Energy of interaction
with external magnetic fieldH;10 G is EH5mH;3
310212 erg andEH@Edd.

We explain this field induced cellular texture by th
clumping of particles, which is caused by the elastic def
mations of the director, i.e., by the elastic interaction b
tween particles. The magnetic field rotates particles and
duces Coulomb attraction between them according to
~17!, which is screened by the collective action of neighbo
9-8
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so that the leading interaction potential becomes a Yuka
attraction,

U52
Q2

R
exp~2jR!. ~25!

Now we can find the conditions of the spinodal decomp
sition in the system of elastically interacting particles. In t
mean-field approximation, the free energy of such a sys
is written in the form

F5
kT

v E f ~R!ln f ~R!dV1
1

2v2 E f ~R! f ~R1r !

3U~r !dR dr , ~26!

where f (R) is the volume fraction of particles,f 5cv, v
being the volume of the particle. We need to find the con
tions under which the homogeneous distribution becom
unstable. The concentration becomesf (R)5 f 01d f (R), f 0
is the ground volume fraction. We make a series expans

f ~R1r !' f ~R!1~r“ ! f ~R!1 1
2 ~r“ !2f ~R!.

Then we have

F2F05 1
2 E Nd f 2~R!1M ~“d f !2,

N52kT/v1
1

v2 E
R0

`

U~r !dr , M52
1

2v2 E
R0

`

U~r !r 2dr .

~27!

HereR0 is the size of the particle. Inasmuch asU,0, a
phase transition occurs forN,0. In our casejR0!1 and we
may write

N'
2kT

f 0v
2

4pe

j2v2 , M'
12pe

j4v2 .

Below the critical pointN;4pe/j2v2. The length of the
most growing instability is

l inst5A2M /N;
1

j
;A K

WcS
. ~28!

There are the following parameters in the experiment@2#
with cylindrical particles:c'1010 cm23, S'2prL , the ra-
dius of the particler'0.05mm, the lengthL'0.5mm, elas-
tic constant K;1027 dyn, anchoring energy W
;1023 dyn/cm, and we findl inst'30mm. This is in a quali-
tative agreement with the experimental size of the cells.

VII. CONCLUSIONS

In this paper we have examined theoretically elastic in
actions in nematic colloids with the help of the general co
siderations concerning breaking of different symmetries
the director field in the vicinity of colloid particles. This i
caused both by the shape of particles and the ancho
strength. Their joint efforts break the symmetry of the dire
02170
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tor in thenear regionand this breaking defines the intera
tion law between particles in thefar region. We take note of
the coat, that is, the region that confines all topological
fects and strong director deformations and has the same s
metry as the director near the particle. Outside the coat th
are no topological defects and the director deformations
small.

We show that if the coat has three symmetry planes, t
the far-field interaction is of quadrupole-quadrupole ty
and, in general, depends not only on the angleu betweenR
andn0 , but also on the azimuthal angle, for example, for t
cylinders that lie horizontally in the vertical director field.
one symmetry plane is broken, the dipolar moment is
duced perpendicular to it and leads to the dipole-dipole
teraction between the coats. The typical realization of t
situation is the pair of radial and hyperbolic hedgehogs
nonequatorial disclination rings near the water droplet w
homeotropic boundary conditions.

One more distinctive feature of colloidal particles in nem
atics is the Coulomb attraction between them, when the n
zero torque moment is applied to them by the nematic. T
can be reached by the external field, for example, by
magnetic field in the suspension of magnetic particles, or
the inclined electric field in the nematic emulsions. Fro
symmetry considerations, it is equivalent to the breaking
both the horizontal and vertical mirror symmetries.

Collective action of all anisotropic particles leads to t
exponential screening of the interaction. In the ferronem
ics, external magnetic field gives rise to the Yukawa elas
attraction between particles, which is the reason of
threshold clumping and formation of the cellular texture. W
are planning now to observe experimentally the Coulo
attraction in the nematic emulsions.

In Appendix B, the general expression for the energy
colloid particles in the curved director field is given. Th
quadrupole particles move toward the high splay deform
tions if they have planar anchoring and repel from them
they have homeotropic anchoring on their surfaces.
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APPENDIX A: SCREENING EFFECTS IN THE
INTERACTION

The total free energy of the system—particles plus
nematic liquid crystal—is sum of the bulk~2! and surface
energies~7!,

F5Fb1Fs . ~A1!

We do not consider here the distribution entropy part
the free energy, because it does not influence the dire
distribution and does not influence the finding of the elas
interaction potential between particles. We consider that
9-9
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topological defects are hidden inside coats, so that the di
tor distortion from the homogenous staten0 is small any-
where,

n~r !5n01dn~r !, udnu!1. ~A2!

We can use the Fourier representation for the directo
the entire space, thereby considerably simplifying the pr
lem. In the Fourier representation we have:

dn~r !5
1

~2p!3 E d3q exp~2 iq•r !dn~q!. ~A3!

We substitute Eq.~A3! in the bulk Frank energy~2! to
obtain

Fb5
1

2

1

~2p!3 E d3q$K11uqdn~q!u21K22u@n3q#dn~q!u2

1K33u~n•q!dn~q!u2%. ~A4!

To simplify this expression we choose the special bas

e15
~q'3n0!

q'

, e25
q'

q'

, e35n0 , q'5n03q.

~A5!

For this basis we have q5(q',0,qi) and dn
5(dn1 ,dn2,0), and Eq.~A6! reduces to

Fb5
1

2

1

~2p!3 (
i
E d3q$Kii q'

2 1K33qi
2%udni~q!u2.

~A6!

Because we assume that the director varies smoothly f
point to point and relation~A2! is true, we can consider th
director to have a given value inside the volume of the p
ticle. This assumption is valid if the total volume of th
suspended particles is much less than the entire volum
the system, i.e., the volume fraction of particles is sm
cv!1, wherec5N/V is the concentration andv is the vol-
ume of the particle~the ‘‘gas’’ approximation!. For the real
system@2#, c51010 cm23, v;10215 cm3, and cv;1025,
and our assumption is therefore true.

The director on the surface can therefore be expres
through the director in the center of massRp of the particle
and its derivatives,

dn~s!5dn~Rp!1~r•“ !dn~Rp!1 1
2 ~r•“ !2dn~Rp!,

wherer is the vector drawn from the center of mass to t
point s on the surface. The complete expression for the
rector on the surface through the director in the center
mass of the particle is therefore given by

n~s!5n01dn~Rp!1~r•“ !dn~Rp!1 1
2 ~r•“ !2dn~Rp!.

~A7!

We now fix a coordinate system~x,y,z! where thez axis is
parallel to the nondeformed directorn0 and x,y are perpen-
dicular to it. This system is firmly fixed in space. We ne
substitute director field~A7! in the scalar product@n(s)
02170
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•n(s)#2 and alsoinclude the second powers of the perpe
dicular director deformationsdnx anddny . We thus write

@n~s!•n~s!#25~n•n0!212~n•n0!~n•dn!12~n•n0!~r•“ !

3~n•dn!12~n•n0!~r•“ !2~n•dn!

1~n•dn!2, ~A8!

wheren5n(s) and dn5dn(Rp). We note that this expres
sion involves two smallness parameters. The first is the
pendicular component of the directorudnxu, udnyu;«, dn3
;«2 and the second is the ratio of the particle size to
average deformation lengthl n of the director%5r/ l n . In
@1#, the respective terms that are proportional to«, %«, and
%2« were taken into account. The expansion in% is equiva-
lent to the multipole expansion in@9#. In this paper we also
take the last term proportional to«2 into account. This term
is not essential at the distances comparable to the ave
distance between particles, as we see below, and it can th
fore be omitted for the systems considered in@4,5,9#, where
the concentration of the dispersed particles is small. It
comes essential for dense colloids, where there are too m
particles and where the interference of the distortions fr
all particles is considerable. In@9#, udnmu ~with m5x,y! was
shown to fall off asR22 andR23, depending of the dipole o
quadrupole symmetry. We thus conclude that«;%2 for the
third term in Eq.~A8!, which has dipole symmetry~and«2

!%« for this case! and«;%3 («2!%2«) for the fourth term
with quadrupole symmetry. In any case, taking the last te
into account gives only small corrections at the average
tances and for a small number of particles. As we see be
it is essential in the collective effect of the screening at la
distances, where the concentration of particles is high.
specifically clarify this problem in what follows.

For this, we write the scalar products@n(s)•n(s)# in the
local basis (k1 ,k2 ,k3) associated with each particle. For e
ample, n(s)•n(s)5( l 51,2,3(n•k l)(dn•k l)5n ldnmkl m
1n ldn3kl 3

, where n l5(n•k l), kl 3
5k l•n0 , and dn3

52 1
2 (dnx

21dny
2). The surface energy is then written as

Fs5Fs
~0!1Fs

~1!1Fs
~2! , ~A9!

Fs
~0!5N R ds Wc~s!@n~s!•n0#2, ~A10!

Fs
~1!'(

p
R ds Wc~s!n lnmkl 3

$2dnmkl m
12~r•“ !dnmkl m

1~r•“ !2dnmkl m
%, ~A11!

Fs
~2!5(

p
R ds Wc~s!n lnm@dnmdnnkl m

kmn

2~dnx
21dny

2!kl 3
km3

#. ~A12!

HereN is the total number of particles in the whole vo
umeV of the liquid crystal matrix,Es

(1) andEs
(2) are surface

terms linear and quadratic indnm , respectively. It can be
9-10
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rewritten in terms of the tensors~11! so that the elastic en
ergy Fel , i.e., the energy of the deformations of the direct
field has the form

Fel5Fb1Fs
~1!1Fs

~2! , ~A13!

Fs
~1!5(

p
$a lm1b lms~ks•“ !1g lmst~ks•“ !

3~kt•“ !%dnmkl m
km3

, ~A14!

Fs
~2!5 1

2 (
p

a lm@dnmdnnkl m
kmn

2~dnx
21dny

2!kl 3
km3

#.

~A15!

The main difference between this approach and@1# is in
taking the term in Eq.~A15! into account. It is quadratic in
the director deformations and can be regarded as the co
bution of all particles to the interference of the distortion
Precisely this term leads to the screening effects. Some o
features can be considered without finding the director.
example, it is clearly seen that it vanishes for the spher
particles. Indeed,a lm5ad lm andkl m

kl n
5dmn for the sphere,

and thereforeFs
(2)[0. For any other shape, Eq.~A15! does

not vanish. To describe its effect analytically, we go to t
continuum limit in this expression and replace the summ
tion with the integration over the entire space,(p⇒c*dV,
wherec5N/V is the concentration of particles,

Fs
~2!5

c

2 E dV ãmndnm~x!dnn~x!,

ãmn5a lm@kl m
kmn

2kl 3
km3

dmn#. ~A16!

We thus consider the interference of only long wavelen
distortions of the director field. In the Fourier representati
we have

Fs
~2!5

c

2~2p!3 E d3q ãmndnm~q!dnn* ~q!. ~A17!

The tensorãmn is here taken in the~x,y,z! coordinate sys-
tem, which is not convenient. It is much more suitable
write the surface energy and the bulk energy in Eq.~A6! in
the same basis (e1 ,e2 ,e3). This basis is rotated by the ang
c(q) with respect to~x,y,z! around thez axis. In the new
basis the director has the componentsdn5(dn1 ,dn2,0) and
dnm5Ãm idni ~with m5x,y andi 51,2!. The rotation matrix
is given by

Ãm i5Fcos~c! 2sin~c!

sin~c! cos~c!
G .

In the basis (e1 ,e2 ,e3) the surface energy becomes

Fs
~1!5(

p

1

2~2p!3 E d3q$e2 iq•rpam* @dn~q!•km#

1eiq•rpam@dn* ~q!•km#%, ~A18!
02170
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am5~k•n0!@a lm1 ib lms~q•ks!2g lmst~q•ks!~q•kt!#,

Fs
~2!5

c

2~2p!3 E d3q ai j dni~q!dnj* ~q!, ~A19!

ai j 5Ã im
T ãmnÃn j . ~A20!

We now add the bulk energyFb and the surface energyFs

and find the total energy of the systemF total5Fs
(0)1Fel with

the elastic energy

Fel5
1

2~2p!3 E d3q Vi j ~q!dni~q!dnj* ~q!1bi* ~q!dni~q!

1bi~q!dni* ~q!, ~A21!

Vi j ~q!5~Kii q'
2 1K33qi

2!d i j 1cai j , ~A22!

bi~q!5(
p

eiq•rpamkmi
. ~A23!

Here,m51,2,3, i , j 51,2, anddni(q), andkmi
are the pro-

jections of these vectors on the basis (e1 ,e2 ,e3).

1. Director distribution in the doped nematic liquid crystal

Having found the complete expression for the elastic
ergy of the liquid crystal with particles, we can find the d
rector at any point of the system from the extremum con
tion

d

dnj* ~q!
Fel5Vi j ~q!dni~q!1bj~q!50,

dni~q!52Vi j
21~q!bj~q!. ~A24!

In matrix form, the last equation becomes

S dn1~q!

dn2~q! D52
1

D F V22 2V12

2V12 V11
G S b1~q!

b2~q! D ~A25!

with D5V11V222V12
2 .

2. Elastic energy and the pair interaction potential between
particles

Having found the director field, we substitute Eq.~A25!
in Eq. ~A21! and obtain the elastic energy of the direct
deformations in the DNLC,

Fel52
1

2~2p!3 E d3q Vi j
21~q!bi* ~q!bj~q!,0.

~A26!

The negative sign implies that the total free energyF5Fs
(0)

1Fel evaluated for solution~A25! is less than the energyF
5Fs

(0) for the undeformed director fieldn0 . The total energy
9-11
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Fel can be represented as the sum of the pair potentials
tween two particles. Indeed, we introduce the operatorÂm ,
such that

Âmeiq•r5ameiq•r, ~A27!

Âm5~k l•n0!@a lm1b lms~ks•“ !1g lmst~ks•“ !~kt•“ !#.
~A28!

The elastic energyFel then takes the form

Fel5
1
2 (

p,p8
Upp8 , ~A29!

Upp852
1

~2p!3 Âm
p Âm8

p8 E d3q eiq•~rp2rp8!Vi j
21~q!kmi

km
j8
.

~A30!

The expressionUpp8 has the meaning of the pair interactio
potential between particlesp and p8, which is caused by
long-range deformations of the director field. The subscripp
indicates that we must substitute“5]/]r p in the operator
Âm

p . This expression is valid for particles of ordinary sha
and orientation. It accounts for screening effects that a
from the interference of the director field distortions by
particles.

3. Pair potential in the diagonal approximation:
Analytical results

Although expression~A30! is exact, it is too difficult to
find the results analytically. In the most general case, the
potential U(R,V) depends on all the three components
the radius vectorR5r p2r p8 and on three Euler anglesV,
which determine the orientation of particles in space~we
assume that all particles are oriented in the same way,
therefore all of them have the same Euler angles!. To take the
screening effects into account analytically, we consider p
ticles with rotational symmetry around one axis. For su
particles, the pair potentialU(R,u) depends on the angleu
between this symmetry axis and the director. Ifu50, all
particles are parallel to the director. In this case, the en
DNLC has the rotational symmetry around the directorn0
and the pair potentialU(R' ,Ri) depends on the perpendicu
lar and parallel projections ofR with respect ton0 . But in
the case whereuÞ0 there arises the second preferential
rection in the system—the direction in which all particles l
We project this direction on the plane perpendicular to
director and lets denote the projection,s•n050. In this case,
we have potentialU5U(R' ,Ri ,w,u), wherew is the azi-
muthal angle betweenR ands.

To obtain analytical results, we average over the anglew.
For this purpose, we average the tensorai j in Eq. ~A20! over
the anglec and diagonalize it. We call this dropping of th
off-diagonal terms the diagonal approximation,

ai j ~c,u!⇒^ai j &c5 1
2 F ã111ã22 0

0 ã111ã22
G5a~u!d i j ,

~A31!
02170
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where a(u)5 1
2 (ã111ã22). This approximation makes th

propagatorVi j
21(q) diagonal and allows us to take all th

integrals analytically. The diagonal approximation is exa
only for u50, when the whole system has the rotation
symmetry in the~x,y! plane. The coefficienta(u) depends on
the shape of particles. For example, for the cylinders w
r !L, we havea(u)5prLW(223 sin2 u), and for flat~pan-
cake! particles with r @h, a(u)52pr 2W(123 cos2 u)
~where u is the angle between the normal to the panca
plane and the director!. In the diagonal approximation, th
propagator therefore becomes

Vi j
21~q!5@Kii q'

2 1K33qi
21ca~u!#21d i j ~A32!

and the pair potential is given by

Upp852
1

8p
Âl

pÂl 8
p8@ I l l 8~R!#, ~A33!

I l l 8~R!5I 1l l 8~R!1I 2l l 8~R!, ~A34!

I 1l l 8~R!5E d3q eiq•R
@k l•~q'3n0!#@k l 8•~q'3n0!#

p2q'
2 @K11q'

2 1K33qi
21ca~u!#

,

~A35!

I 2l l 8~R!5E d3q eiq•R
~k l•q'!~k l 8•q'!

p2q'
2 @K22q'

2 1K33qi
21ca~u!#

.

~A36!

It is easy to integrate overq in Eqs. ~A35! and ~A36!
using the coordinate system with the basis

r15
R'3n0

R'

, r25
R'

R'

, r35n0 , R'5n03R.

~A37!

This basis is rotated with respect to that in Eq.~A5! by some
angle w about the axisn0 . The quantitiesq' and qi are
similar in both bases. We therefore have exp(2iq•R)
5exp@2i(q'R' cosw1qiRi)# and the denominators of th
fractions involved in Eqs.~A35! and~A36! do not depend on
the anglew. Integrating over thew gives

I m l l 8~R!5E
0

`

dq'q'$Ql ,l 8
1 J0~q'R'!

1~21!mQl ,l 8
2 J2~q'R'!%

3E
2`

`

dqi

exp~2 iq iRi!

p@Kmmq'
2 1K33qi

21ca~u!#
,

~A38!

where m51,2 andQl ,l 8
(6)

5(r1•k l)(r1•k l 8)6(r2•k l)(r2•k l 8)
andJ0 andJ2 are the Bessel functions.

In order to take these integrals we must scrutinize th
oughly the function a(u). As mentioned abovea(u)
5prLW(223 sin2 u) for cylindrical particles. The case
where W.0 corresponds to the planar anchoring, andW
,0 corresponds to the normal anchoring. For planar anch
9-12
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ing the equilibrium state of particles isu50 andaplanar(0)
52prLW.0, and for normal anchoring the equilibrium
state isu5p/2 andanormal(p/2)52prLW.0.

We write I m l l 8
expt(R) for the expressionI m l l 8(R) and intro-

ducepm5AKmm /K33Ri , s5R' , andzm5Aca(u)/Kmm. Af-
ter the integration over theqi , I m l l 8

expt(R) becomes

I m l l 8
expt

~R!5
1

AKmmK33
E

0

`

dq'q'

exp~2pmAq'
2 1zm

2 !

Aq'
2 1zm

2

3$Ql ,l 8
1 J0~sq'!1~21!mQl ,l 8

2 J2~sq'!%.

~A39!

For the Bessel functions, we have the relation

2nJn~x!5xJn11~x!1xJn21~x!,

which for n51 gives

J2~x!5
2

x
J1~x!2J0~x!.

The corresponding integrals with the functionsJ1(x) and
J0(x) are given by

E
0

`

dq'q'

exp~2pmAq'
2 1zm

2 !

Aq'
2 1zm

2
J0~sq'!

5
exp~2zmApm

2 1s2!

Apm
2 1s2

, ~A40!

E
0

`

dq'

exp~2pmAq'
2 1zm

2 !

Aq'
2 1zm

2
J1~sq'!

5
1

szm
@e2pmzm2exp~2zmApm

2 1s2!#. ~A41!

Using these relations we find

I m l l 8
expt

~R!5
1

AKmmK33
H @Ql ,l 8

1
1~21!m11Ql ,l 8

2
#
e2zmApm

2
1s2

Apm
2 1s2

1~21!mQl ,l 8
2 2

s2zm
@e2pmzm2e2zmApm

2
1s2

#J .

~A42!

The pair interaction potential is then given by

Upp852
1

8p
Âl

pÂl 8
p8@ I 1l l 8

expt
~r p2r p8!1I 2l l 8

expt
~r p2r p8!#,

~A43!

which is equivalent to Eq.~21!.
02170
APPENDIX B: BEHAVIOR OF PARTICLES IN CURVED
DIRECTOR FIELDS

In this appendix we consider the behavior of particles
the curved director field. We suppose that the director field
not homogeneous because of the global boundary conditi
and that the director deformation length is much more th
the size of particles. So in this section we do not consider
deformations of the director that are caused by partic
themselves. The anchoring strength on the surface of the
is written as

Fsc5 R ds Wc~s!@n~s!•n~s!#2. ~B1!

Inasmuch as the global deformations scale is large,
can express the director on the surfacen(s) through the di-
rector in the center of mass of the coat,

n~s!5n01~r•“ !n01 1
2 ~r•“ !2n0 .

r is the vector from the center of mass to the points. Heren0
is the local director field, which would have been in th
center if there was no coat in that place~See Fig. 4!. Then
the anchoring energy takes the form

Fsc5F01F11F2 ,

F05 R ds Wc~s!~n•n0!2,

F152 R ds Wc~s!~n•n0!~r•“ !~n•n0!,

F25 R ds Wc~s!@~n•n0!~r•“ !2~n•n0!

1$~r•“ !~n•n0!%2#.

FIG. 4. Movement of the small particle in the curved direct
field. Quadrupolar particles with planar anchoring move toward
high splay deformations while those with homeotropic anchor
are repelled from such regions.
9-13
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The first itemF0 is responsible for the orientation of th
particle with respect to the director, whereas the second
the third items describes the behavior of the whole particle
the curved director. All the scalars can be represented in
basis (k1 ,k2 ,k3) as n•n05(n•k l)(n0•k l)5n lnl , (r•“)
5rs(ks•“)5rs]s . Then the result is

F15b lmsnl]snm , ~B2!

F25g lmst]s~nl] tnm!. ~B3!

These are the general expressions that describe move
of particles in the curved director field. The particle w
move in the way to minimize the sum ofF1 andF2 . The first
term describes the behavior of the coat with dipolar symm
try in the curved director and the second one describes
behavior of the coat with quadrupole symmetry in the curv
director. If the coat has azimuthal symmetry, then nonz
components of theb are b3115b322 and in the Cartesian
frame @n5(0,0,1)#, F1 takes the formF15b311n3(]1n1
1]2n2)524pKpznz div n, which coincides with the resul
@9# and indicates that dipoles assemble in the places w
ce

J

ev

,

.

02170
nd
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high splay deformations. This is confirmed experimenta
small water drops gather in the center of the big nema
droplet with homeotropic anchoring on the surface~near ra-
dial hedgehog! and assemble near the surface boojums, w
the global conditions are planar@3#.

The F2 term for the quadrupole particles with azimuth
symmetry takes the form

F25g1313~n•“ !div n. ~B4!

We see that particles that do not have a dipole mom
~for example, small spherical particles for whichWR/K!1!
move differently as a function of the sign of the anchorin
For planar anchoringW.0 and g1313.0, for homeotropic
anchoringg1313,0, so that particles with planar anchorin
move toward the places with high splay and particles w
homeotropic anchoring are repelled from the regions w
high splay. We see that although the sign of the anchor
does not influence the interparticle quadrupole-quadrup
interaction@see Eq.~16!#, it plays a crucial role in the behav
ior of particles in the curved director fields.
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