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Molecular dynamics study of the isotropic-nematic quench
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Effects of cylindrical and spherical confinement on the kinetics of the isotropic-nematic quench is studied
numerically. The nematic liquid crystal structure was modeled by a modified induced-dipole–induced-dipole
interaction. Molecules were allowed to wander around points of a hexagonal lattice. Brownian molecular
dynamics was used in order to access macroscopic time scales. In the bulk we distinguish between the early,
domain, and late stage regime. The early regime is characterized by the exponential growth of the nematic
uniaxial order parameter. In the domain regime domains are clearly visible and the average nematic domain
size jd obeys the dynamical scaling lawjd;tg. The late stage evolution is dominated by dynamics of
individual defects. In a confined system the qualitative change of the scaling behavior appears whenjd

becomes comparable to a typical linear dimensionR of the confinement. In the confining regime (jd>R) the
scaling coefficientg depends on the details of the confinement and also the final equilibrium nematic structure.
The domain growth is well described with the Kibble-Zurek mechanism.

DOI: 10.1103/PhysRevE.65.021705 PACS number~s!: 61.30.Cz, 61.30.Jf, 61.30.Pq
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I. INTRODUCTION

Kinetics of a system evolving towards the thermal eq
librium phase after a temperature quench of a higher s
metry phase attracts considerable attention of researc
from different fields of science@1–3#. This phenomenon ex
hibits several universalities and in this respect bridges v
different branches of physics. The basic mechanism of
annealing process is in most cases controlled by kinetic
defects@4# ~also named vortices, strings, disclinations or d
locations!.

One of the simplest systems to study this phenomeno
a temperature quench of a liquid crystal~LC! from the iso-
tropic ~I! to the nematic~N! phase. The higher symmetryI
phase has properties of an ordinary liquid and does not
hibit any long-range order. The lower symmetryN phase is
characterized by the orientational long-range order. The
erage local orientational ordering is in the continuum pict
@5# well described by the uniaxial director fieldnW . In ther-
modynamic equilibrium the director field in the bulk tends
be aligned parallel along the symmetry breaking direction
a confined nematic LC the equilibrium director profile is
general spatially dependent revealing the balance am
elastic, surface, and~eventual! external electric or magneti
field forces. The time evolution of a texture after anI-N
quench leading to the equilibriumnW distribution is realized
via a coarse graining process in which defects play an
portant role.

Defects in a nematic LC correspond to points or lines
space wherenW is not uniquely defined@5,6#. They are clas-
sified according to theirtopological charge Mthat is defined
in terms of the director field encircling a defect@5,7,8#. To-
pologically stable point or line defects have integer and h
integerM, respectively. Merging and decaying of defects
controlled by topological conservation laws for which t
description of nematic ordering in terms ofnW is sufficient.
However, if the core of defects is of interest additional ord
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parameter fields@5# have to be introduced.
A typical time evolution of a nematic texture after anI-N

quench can be qualitatively described in terms of the
called Kibble-Zurek mechanism@3,9#, originally introduced
to describe symmetry breaking phase transitions in the e
Universe. In the early stage of the quench a multidom
structure forms as a result of the broken continuous orie
tional symmetry@2,3,10–13#. The pattern of these domain
~the so-calledprotodomains@3#! results from random ther
mally induced fluctuations. The average orientational ord
ing of early stage domains~described by an average orient
tion of nW within a domain! is in general uncorrelated in
different regions of space. Their typical size is roughly giv
by the nematic order parameter correlation lengthjn in the
prequench isotropic phase. The texture then gradu
evolves into the ground state. The average domain sizejd
increases with time in a self-similar way exhibiting a scali
behavior.

When studying a rapidI-N quench a density of defects o
a domain sizejd are monitored@2,10,13#. Both observations
yield similar results although domain collision sites do n
necessary give rise to topological defects. Domain walls
mostly nonsingular.

In this contribution computer simulations are used
study quench induced kinetics of a confined nematic LC. O
work was motivated by simulation results obtained by Bh
tacharyaet al. in a continuum-type approach@10#. They
studied anI-N quench using a spin-rotor interaction in
parallelepiped pore subject to different anchoring conditio
A typical domain sizejd was extracted from the order pa
rameter pair correlation function. The time evolutionjd(t),
displaying scaling behavior, was governed by the time
pendent Ginzburg-Landau equation. They showed that c
finement of a typical linear sizeR gives rise to a change in
scaling relationjd(t) whenjd approachesR.

Our interest is to analyze in more detail the influence
confinement on the quench kinetics scaling law. As a con
©2002 The American Physical Society05-1
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ing geometry we chose the cylindrical tube except in o
case where a simulation is carried out in the spherical cav
The cylindrical geometry is chosen because it reason
mimics the essential geometrical characteristics of usual c
fining matrices~i.e., anopore@14# and nucleopore@15# mem-
branes, Vycor glass@16#, CPG matrices@17,18#...! of nematic
LCs used in several experiments in which LC phase beha
has been studied. In addition this geometry exhibits a r
variety of different equilibrium nematic structures@19# re-
flecting the interplay among elastic, external field and s
face interactions. In our semimicroscopic model LC m
ecules interact via the modified induced-dipole–induc
dipole-type interaction and are allowed to wander arou
hexagonal lattice points. The time evolution is realized w
the Brownian molecular dynamics@20#.

The plan of the paper is the following. The continuu
predictions of the phenomena affecting the coarsening
namics of the nematic texture are presented in Sec. II. In S
III we describe our semimicroscopic model. The results
the simulation showing the influence of geometry, structu
details, and orientational anchoring conditions on the dom
evolution are presented in Sec. IV. In the last section a s
mary is given.

II. PHENOMENOLOGICAL ESTIMATES

To understand basic mechanisms driving the time evo
tion of a nematic texture we first carry out some estima
based on the continuum description. For this purpose
limit to the uniaxial nematic ordering@5# described with the
nematic director fieldnW (rW) and the corresponding order p
rameterS(rW). The position vectorrW points to a mesoscopi
area corresponding to a cluster of LC molecules. The u
vectornW (rW) points along the average orientation of the loc
optic axis andS(rW) reflects the fluctuations around it. W
neglect biaxial effects that play secondary role in usual ne
atics @5,11#.

In terms of these fields we express the free energy den
f 5 f h1 f i of the nematic phase using Landau–de Gen
approach@5,19# as

f h5
a

2
~T2T* !S22

b

3
S31

c

4
S4, ~1a!

f i5
L1

2
u¹W Su21

L2

2
S2@~¹W •nW !21~¹W 3nW !2#. ~1b!

Here f h and f i stand for the homogeneous and inhomog
neous contributions, respectively. Note that we include o
the essential terms needed to describe qualitatively the
nomena of interest.

The homogeneous term determines the degree of nem
orderingS5Sb in the undistorded bulk nematic phase sta
below the phase transition temperatureT5TNI . In terms of
the phenomenological material constantsa, b, c, andT* , it
is expressed asSb5@b1Ab214ca(T* 2T)#/2c. At the
temperatureT5T* the isotropic phase ceases to exist ev
in the metastable state. For most nematicsTNI2T* ;1K.
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The inhomogeneous contribution tends to enforce a s
tially homogeneous nematic ordering. The quantitiesLi are
the nematic bare~temperature independent! elastic constants
characterizing the free energy costs of the elastic defor
tions in S ( i 51) and nW ( i 52). Typically they are of the
same order of magnitude. Henceforth, we setL1;L2[L
;K/S2, whereK stands for the average Frank elastic co
stant@5#.

We first estimate the evolution of the nematic orderi
developing from a fluctuation inS in the isotropic phase a
T5TI;TNI after the quench deep into the nematic phase
T5TN5TI2DT!TNI . We assume that the quench is su
den in time, i.e., short in comparison to relevant nema
order parameter correlation times. The initial fluctuati
growth can be described with the time dependent Ginzbu
Landau equation@21# 2G]S/]t5] f /]S, where the param-
eterG characterizes the dissipation in the system. Taking i
account the lowest order term in the free energy expans
@Eq. ~1a!# and neglecting the distortion part the fluctuatio
grows as

S~ t !;Sfe
t/t0. ~2!

Here t05G/(aDT) estimates the nematic order parame
relaxation time atTN andSf is the initial fluctuation ampli-
tude inScreated atT'TNI . A substantial degree of orderin
is established when the conditiont/t0*1 is fulfilled. Above
this time @9# the degree of ordering is strong enough so t
the domain structure becomes apparent. At this stage the
mogeneous free energy contributionf h is decreased enoug
to become comparable tof i .

After domains are established the nematic texture gra
ally evolves into the ground state. Consequently the aver
domain size increases with time. In order to understand
basic driving mechanisms of this process we study a mo
of an interface~i.e., a domain wall! separating two domains
~see Fig. 1! in a three dimensional volumeV that we label as
A and B, respectively. For simplicity we assume that t
domain A is spherical of radiusjd and surrounded by the
domainB. At a given time the free energy of the observ
system is roughly given by F;(4pjd

3/3) f A1@V
2(4pjd

3/3)# f B14pjd
2dwf w . Here f A and f B stand for aver-

age free energy densities within domainsA and B, respec-
tively. The quantityf w;Lu¹Qu2;L/dw

2 estimates an aver
age free energy cost to cross the domain wall of widthdw .
The angleQ symbolizes the orientation of the director fie
and ¹ stands for the gradient operator. In generalf AÞ f B
because of different average director field distortions. N
we assume that the free energy released by the motion o
interface is dissipated, thus

2
]F

]t
5E GS ]Q

]t D 2

dV;GS ]Q

]t D 2

4pjd
2dw .

Assuming

]Q

]t
;u¹Qu

]jd

]t
;

1

dw

]jd

]t
5-2
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MOLECULAR DYNAMICS STUDY OF THE ISOTROPIC- . . . PHYSICAL REVIEW E 65 021705
one finds, forjd ,

]jd

]t
;

dw~ f B2 f A!

G
2

L

jdG
. ~3!

The first term tends to enforcejd}t if f AÞ f B . The sec-
ond term, which tends to reduce the overall domain w
surface, enforcesjd}t1/2.

Note that within theKibble-Zurek mechanismthe only
source of defects are collision sites of domains. However,
combination of the geometry and the boundary condition
a domain wall can in principle impose topological constra
yielding defects within domains@8,21,22#. The total topo-
logical charge of the director field within the domain is th
determined with the Euler characteristics of the enclos
surface. But this constrain comes into the play only if t
orientational internal anchoringWa

~intrinsic! ~i.e., the aniso-
tropic part of the surface tension! at the domain wall is

FIG. 1. Schematic presentation of a typical domain structure~a!.
Average director orientations within domains are depicted by
rows. In ~b! the domain geometry used in derivation of Eq.~3! is
shown.
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strong enough, i.e.,Wa
~intrinsic! jd /K@1. For most liquid crys-

tals this condition requiresjd@0.1mm. Thus we believe tha
this phenomenon does not play a significant role in the co
ening dynamics.

III. MICROSCOPIC MODEL

A. Potential

We model interaction between two rodlike LCmolecules
placed atrW i andrW j and oriented alongeW i andeW j , respectively,
via a simple modified induced-dipole–induced-dipole pa
wise interaction@23,24#

f i j 52
J

r 6 FeW i•eW j2
3«

r 2 ~eW i•rW !~eW j•rW !G2

. ~4!

Here rW5rW j2rW i , J is a positive interaction constant, an
the dimensionless parameter« describes the orientational an
isotropy. In the continuum picture the thermodynamically a
eraged value ofeW i over a small volume located atrW i defines
the nematic director fieldnW (rW i). Case«50, known also as
the Lebwohl-Lasher or the lattice Maier-Saupe model, cor
sponds to the so-called equal Frank elastic constants app
mation in the continuum description. This refers to the ca
K115K225K335K24[K, K1350, where K11, K22, K33,
K24, andK13 stand for the splay, twist, bend, saddle-spla
and splay-bend constant, respectively. For«Þ0 the elastic
constants are no more equal. Some further properties of
model are given in@24,25#. It reasonably describes propertie
of nematic liquid crystals for«<0.3.

At the confining surface we assume strong orientatio
anchoring@26#. Therefore, at the surface nematic molecu
are strictly aligned along the direction preferred by surfa
interactions.

Note that in our description amolecule in fact corre-
sponds to a cluster ofNc molecules@25,27,28#, whereNc is
believed to range between 1 andNn11. The numberNn
countsmolecularsites within a sphere of radiusa0 describ-
ing the lattice constant of the hexagonal lattice used in
simulations.

The interaction energyWint of the whole sample is given
as a sum over all pair interactions. In calculations we limit
the sum over neighbors within a sphere of radiusr n
52.5a0 , corresponding to approximately 100 pairs. Testi
examples indicate that increasingr n above this value does
not affect the simulation results within our accuracy. We a
limit to relatively low temperatures, whereWint and the free
energyF are almost equal.

B. Parametrization and Brownian molecular dynamics

In this contribution we concentrate on a nematic LC co
fined to a cylindrical cavity with the symmetry axis along th
z axis. This suggests the following parametrization of t
molecularorientation in the laboratory frame:

eW i5eW x sinQ cosF1eW y sinQ sinF1eW z cosQ. ~5!

r-
5-3
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The anglesQ5Q(rW i ,t) andF5F(rW i ,t) are the variational
parameters given at a discrete timet and position rW i
5(xi ,yi ,zi) in the Cartesian coordinate system. We also
local frames attached to molecules. In this case thez axis in
Eq. ~5! is set along the long axis of the molecule and
label the corresponding coordinates and variables with
superscript~l!.

Molecules, positioned at pointsrW i(t), are allowed to wan-
der around the points of the three dimensional hexago
lattice with spacingao . By such a box restricted dynamic
we get rid of the lattice induced ordering anisotropy kno
to appear in the cubic lattice@20,23,24#. The amplitudeDr
5uDrW i u of isotropic random wandering is distributed by th
Gaussian distribution centered atDr 50 whose width de-
pends on temperatureT. In our simulations the results, rela
tively, weakly depend on a specific choice of paramet
characterizing the distributionDr .

The cylinder radius is set toR5Nrao . At a distanceL
5Nzao along the cylinder axis the periodic boundary con
tions are imposed simulating an infinite cylindrical capilla
HereNr andNz are positive integers.

The local frame molecular orientation is updated at e
point i in a time intervalDt @29# according to

Q~ l !~rW i ,t1Dt !5Q~ l !~rW,t !2(
j Þ i

Di j
~ l !

kt
Dt

] f i j

]Q~ l ! 1Q r ,i
~ l ! ,

~6a!

F~ l !~rW i ,t1Dt !5F~ l !~rW i ,t !2(
j Þ i

Di j
~ l !

kT
Dt

] f i j

]F~ l ! 1F r ,i
~ l ! .

~6b!

k stands for the Boltzmann constant,Di j
( l ) is the rotational

diffusion tensor, andQ r ,i
( l ) and F r ,i

( l ) are stochastic variable
obeying the Gaussian distribution. The corresponding pr
abilities are centered atQ r ,i

( l )50 andF r ,i
( l )50 and the width of

the distribution is proportional toAT. The rotations corre-
sponding toDQ ( l )5Q ( l )(rW i ,t1Dt)2Q ( i )(rW i ,t) and DF ( l )

5F ( l )(rW i ,t1Dt)2F ( l )(rW i ,t) are mutually perpendicula
and also perpendicular toeW z

( l ) . The tensorDi j
( l ) is diagonal in

the local frame. The eigenvalues are assumed to be deg
ated and equal toD. The shortest time intervalDt0 of the
model in the simulation is set byDt0D;0.01. For a typical
nematic LC this ranges within the intervalDt0;0.001ms to
Dt0;0.1ms depending on the size of a molecule. An es
mate of aDt0 value was obtain by comparing a response
the system to an external perturbation calculated from
semimicroscopic and the continuum-type approach@30#.

In the simulation either the stronghomeotropic(ueW s•eW n

u51), tangential(eW s•eW n50), or tilted (1.ueW s•eW nu.0) sur-
face anchoring@26# is used. HereeW n points along a surface
normal. The easy axiseW s defines the orientations of nemat
molecules at the surface that minimize the surface free
ergy contribution. Simulations are performed for 2Nt be-
tween 16 to 54 andNz between 44 to 96. The anisotrop
parameter is set to«50.1. The liquid crystal was first equili
brated in the isotropic phase and then suddenly cooled d
into the nematic phase.
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C. Characteristic parameters

We first introduce semimesoscopic parameters revea
essential properties of our nematic textures. Going bey
the simple picture used in Sec. II, local properties at a
rW5rW i are described by the mesoscopic nematic order par
eter @5#

QI ~rW !5 1
2 ^3eW i ^ eW i2II&5

S

2
~3nW ^ nW 2II !1P~ lW ^ lW2mW ^ mW !.

~7a!

The triadnW , lW, andmW defines theQI eigenvectors, the eigen
values of which are expressed with the uniaxial~S! and the
biaxial ~P! order parameter. The local time-and-space av
aging is denoted bŷ¯&. The local spatial averaging is pe
formed by taking into account the neighbors within a sph
of the radiusa0 . The time averaging is calculated within th
time ta;10Dt0 . This time interval is long enough so that w
obtain S;0 in the isotropic phase. The eigenframe and
corresponding values ofS(rW) and P(rW) were obtained via
diagonalization ofQI (rW) at each lattice point. We introduc
also the corresponding global spatially averaged values
the order parametersS̄ andP̄ obtained by averaging over a
sites of the lattice.

In order to monitor the time evolution of nematic textur
we introduce the average projectionP2z of the nematic or-
dering on the cylinder symmetry axis and the average
main sizejd . The quantityP2z is defined as

P2x5 1
2 @3~eW i•eW z!

221#. ~7b!

ThusP2z51, P2z520.5, andP2z50 correspond to a homo
geneously aligned structure along thez axis, radially aligned
structure in the~x,y! plane@see Eq.~5!#, and isotropic distri-
butions ofeW i , respectively.

We estimate a typical linear sizejd of an average domain
of a texture after the quench using two criteria, one based
the geometry and the other on energy of domains. In the
case we obtainjd directly from a nematic pattern. For thi
purpose we calculate at the timet an average volumeVd in
which only relatively small changes of the orientational o
dering occur. As the criterion of being in a domain we cho
ucosQi,i11u5ueWieWi11u.12D, whereQ i ,i 11 is a relative angle
between a pair of adjacent molecules. In the simulations
set D;0.2 corresponding to the amplitude of thermal flu
tuations at approximately double width of the Gaussian d
tribution. The domain size is then estimated as

jd
~g!;S 3Vd

4p D 1/3

. ~8a!

In expressing the domain size on energy grounds we s
with the excess free energyDF5F(t)2Feq. Here F(t) is
the free energy of the system at the timet and Feq5F(t
→`). We then assume that all energy contributions co
from the domain walls@i.e., f A5 f B in Eq. ~3!#. Consequently
the average excess free energy of a volumeV is roughly
given byD f 5DF/V; f wVw /Vd . The quantityf w estimates
5-4
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a deformation average free energy cost of a domain w
Vd;jd

3 is the average domain volume, andVw;jd
2dw is the

average volume of the domain wall. With this in mind@1,20#
one finds for the domain size

jd
~F !;

c

D f
, ~8b!

wherec is a constant. In the numerical simulation we det
mine a value ofc from an average domain size of a nema
pattern at an arbitrary time.

The superscripts~g! and~F! in Eqs.~8a! and~8b! remind
us that the domain size was obtained on geometry and en
grounds, respectively.

IV. SIMULATION RESULTS

A. Confinement: Equilibrium structures

An important parameter of our study is the final nema
equilibrium structure. For a given confinement it reflects
interplay between the elastic and surface interactions. In
following we describe the structures that enter our study. T
corresponding figures of structures are shown in the nem
director field representation~Fig. 2!.

The stability diagram of nematic structures confined to
infinite cylindrical capillary withhomeotropicanchoring was
discussed in detail in Refs.@25,31#. In our study we focus to
the conditions where either theescaped radial~ER! or the
planar polar structure with line defects~PPLD! @25,31# is
stable. In the ER structure the molecules orientated along
cylinder axis at the cylinder center gradually reorient towa
the radial orientation as the cylinder’s lateral wall is a
proached@Fig. 2~a!#. In the PPLD structure@Fig. 2~b!# the
molecules are constrained to the azimuthal plane@the ~x,y!
plane according to Eq.~5!#. Close to the cylinder axis mol
ecules are preferentially aligned along a symmetry break
direction. In order to fullfil strong homeotropic anchoring
the cylinder wall two line defects parallel to the cylinder ax
are formed. The ER structure is stable forR>Rc @32# and the
PPLD structure forR<Rc . The critical valueRc depends on
temperature, anchoring strength, and LC elastic prope
@25#. In the strong anchoring regime and deep in the nem
phase 2Rc /ao is between 44 and 54 for«50.1.

We further limit ourselves to the regime where the E
structure is stable for strong homeotropic anchoring~i.e., eW s
•eW z50!. Note that in this structure the director field avoi
singularity at the cylinder axis by ‘‘escaping’’ along thez
direction @32#. Because both directions~i.e., 6eW z! of the es-
cape are equivalent the corresponding free energies are
same. If, however, a finite tiltq t from the surface normal is
imposed, defined by cos@(p/2)2q t#5eW s•eW z , the degeneracy
is lifted in favor of the escape along2eW z for q l.0. We refer
to the resulting structure forp/2.q t.0 as the ER-like one
with a typical representative shown in Fig. 2~c!. For q t
5p/2 the tangential boundary condition is realized enforc
a homogeneously aligned structure along the cylinder a
Note that the ER-like structure can be stable also in the
gime R,Rc for a large enough tilt angleq t .
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For the spherical confinement we limit to a large enou
spherical cavity~with respect to a typical nematic order p
rameter correlation length! and strong homeotropic ancho
ing. In this case theradial structure@33,34# is realized in
which the director field radially streams from the cen
where apoint defect is located. The resulting structure e
hibits a spherical symmetry only for defects with the uniax
core structure. In this case the center of defect is melted. T
core structure is realized only forT;TNI and for a certain
anisotropy of Frank elastic constants@35,36#. In general the
point defect is broadened into aring where LC locally ex-
hibits biaxial ordering. The details of thering structure are
given in Ref.@36#. The ring radius is comparable to the nem
atic biaxial correlation length@36#. The resulting structure in
the nematic director field representation is shown
Fig. 2~c!.

FIG. 2. Possible nematic ground state structures in the cylin
cal ~a!–~c! and spherical~d! confinement. The representative cro
sections are shown to which the molecules are restricted on
average.~a! The escaped radial structure~ER!. The ~y, z! cross
section: full line, the cylinder wall; dotted line, the cylinder axis.~b!
The planar polar structure~PPLD!. The ~x, y! cross section: full
line, the cylinder wall. The small circles indicate line defects ru
ning along the cylinder axis.~c! The ER-like structure. The~y, z!
cross section: full line, the cylinder wall; dotted line, the cylind
axis.~d! The radial structure with a ringlike point defect. The stru
ture is shown in the cross section through the center of the confi
sphere that lies perpendicular to the ring of the point defect. T
dotted line indicates the rotational symmetry axis of the struct
and the small circles indicate the location of the defect.
5-5
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B. Quench induced kinetics

We next follow kinetics after a sudden quench from t
isotropic to theN phase of a confined LC. These simulatio
mimic the regime where the quench time is short in comp
son to the characteristic relaxation time of nematic fluct
tions. In this study we focus to the influence of a confin
ment geometry and boundary conditions. In order to po
out the influence of confinement on the pattern evolution
first analyze the bulk behavior.

1. Quench kinetics in bulk

We simulate abulk sample by enclosing a LC in a cube
length Rp and impose periodic boundary conditions at
surface. We checked the annealing kinetics for different v
ues ofRp to verify that the choice ofRp does not introduce
an additional length scale into the model. The main result
simulations are summarized in Figs. 3. We plot the time e
lution of a typical domain sizejd and of the spatially aver
aged uniaxial nematic order parameterS̄.

The annealing kinetics in bulk exhibits three qualitative
different stages. Theearly regime is dominated by the
growth of a long wave fluctuation mode ofS. This mode
tends to establish spatially homogeneous structure w
S(rW);Sb . In this regime the order parameter@Fig. 3~a!# ex-
hibits the exponential growth in accordance with our e
mate Eq.~2! and lasts till the so-calledZurek time @9# tz

*t0 . At this time S̄ becomes comparable to its equilibriu
value and the domains just become apparent.

The second regime, which we call thedomain regime, is
characterized by a multidomain structure. The domain str
ture at different times is visible in Fig. 4. Their size distrib
tion seems to be relatively sharp. With increased time lar
domains, which have a lower free energy because of la
volume with relatively uniformly aligned molecules, pro
gressively grow on expense of smaller domains. The co
spondingjd(t) dependence monotonically grows with tim
In this regime the scaling regime is entered where the in
details of the quench are forgotten. The scaling lawjd}tg is
well obeyed, as shown in Fig. 3~c!. The scaling factor value
g;0.4760.05 is in agreement with the estimate Eq.~3! pro-
viding that the main driving mechanism is the tendency
reduce the overall surface of domain walls. Further supp
for this conclusion is the excellent match ofjd(t) dependen-
cies calculated using theexcess energy@jd

(F) , Eq. ~8b!# and
the geometrical@jd

(g) , Eq. ~8a!# method described in Sec
III C.

In the third regime, to which we refer as thelate stage
regime, the structure of individual defects begins to domin
the nematic pattern. In this regime domains are not any m
well defined andjd now better represents an average se
ration between neighboring defects. Finally this regime e
in the defectless nematic structure.

2. Quench kinetics in confined samples

In practice theI -N quench is always realized within
cavity. As already shown by Bhattacharyaet al. @10# an ad-
ditional qualitative change of behavior in comparison to
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bulk scenario is expected whenjd becomes comparable t
the shortest typical linear dimension of the confining cav

We first follow the quench induced kinetics in the cylin
drical confinement. In Fig. 5~a! we plot thejd(t) dependence
for three different values ofR for strong homeotropic anchor
ing. For R,Rc ~cases 2Nr516 and 30! the PPLD structure
is stable and the ER one forR.Rc ~case 2Nr554!. One sees
a qualitative change at the crossover timetc , which is
roughly determined by the conditionjd(t5tc);R. The time
tc helps us to distinguish between the bulk and theconfine-
mentregime. In the first regime the domain growth is on
weakly influenced by the confinement and consequently
scaling lawg;0.4960.05 is similar~slightly different! as in
the bulk. In theconfinementregime the qualitative change o
the scaling law is observed due to the restricted dom
growth along the cylinder symmetry axis. We obtaing
;0.2560.05 andg;0.1260.02 for the PPLD and ER sce
nario, respectively. In the ER scenario the domain growth
apparently slower due to the competition between the
degenerate ER solutions, corresponding to the escapes a
eW z and2eW z , respectively.

FIG. 3. ~a! The time evolution of the average domain sizejd(t)

and the average nematic order parameterS̄ in a bulk nematic tex-
ture. Thejd(t) dependence is calculated using the excess ene
(jd

(F)) and geometry (jd
(g)) grounds. In calculation we use a cub

sample with the typical length 44a0 and periodic boundary condi
tions.~b! The log-log diagram reveals the scaling lawjd(t);tg and
g50.4760.05.
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The effect of the anchoring on the kinetics can be infer
from Fig. 5~b!. The cases of homeotropic (q t50), conic
(q t5p/4), and tangential (q t5p/2) anchorings are show
leading to the PPLD the ER-like, and the homogeneou
aligned structure along thez axis, respectively. The typica
time to achieve the equilibration is the shortest for thetan-
gentialand the longest for the homeotropic anchoring. In
homeotropic anchoring case the surface does not prefer
direction along the cylinder axis that results in a relative
slow decay. In thetilted case the ER-like structure is stabl

FIG. 4. The multidomain structure of a nematic texture for d
ferent times after theI-N quench. A point corresponds to a molecu
pointing out of the plane.~a! t540Dt0 , ~b! t580Dt0 , ~c! t
5120Dt0 .
02170
d

ly
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ny

The surface imposed tilt acts as an effective field giving pr
erence to the ‘‘escape’’ along a single direction. Note that
structure with the ‘‘escape’’ along the opposite direction s
exist as a metastable solution. For the tangential ancho
condition only one final solution exists resulting in the fast
equilibration after the quench. It is to be stressed that
q t.0 the scaling coefficient also depends on the cavity s
With decreasing radiusR the influence of surface induce
effective field is increasing and consequently also a value
g. For chosen examples we get the following values
the scaling coefficient:g(q t5p/2, 2Nr516, homogeneous!
50.8560.05, g(q t5p/2, 2Nr530, homogeneous)50.52
60.05, g(q t5p/4, 2Nr530,ER-like)50.2560.05, and
g(q t50,R.Rc , ER!50.1260.02. Therefore, in the con

FIG. 5. Influence of cylindrical confinement on thejd(t) depen-
dence. The full lines are guides for the eye,Nz596 and«50.1. ~a!
Dependence on the cylinder radiusR for the homeotropic anchor
ing: 2Nr516, the PPLD structure; 2Nr544, the PPLD structure;
and 2Nr554, the ER structure. The bulk regime:g50.4960.05;
the confinement regime:g~PPLD!50.2560.05, g~ER!50.12
60.02. ~b! Effect of boundary conditions onjd(t), 2Nr530. The
cases of homeotropic (q t50), conic (q t5p/4), and tangential
(q t5p/2) anchoring are shown. The corresponding equilibriu
profiles are PPLD, ER-like, and the homogeneous structure, res
tively. g(q t5p/4, 2Nr530, ER-like);g(q t50, 2Nr530, PPLD)
;0.2560.05,g(q t5p/2, 2Nr530, homogeneous);0.5260.05.
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finement regime the scaling coefficient strongly depends
the confinement details and is far from being determined
the space and order parameter dimensionality.

In Fig. 6 we simulate the annealing kinetics in the sphe
cal confinement. The equilibrium nematic director profile
the radial one, shown in Fig. 2~d!. As expected in the spheri
cal confinement the domain growth is after the timet.tc
restricted in all directions with the cavity size, evident
shown in Fig. 6~a!. But the approaching towards the fin
equilibrium structure is not so trivial. This evolution is fo
t.tc monitored by observing the time dependence of
radiusRd of the ring defect. Att;tc a monodomain structure
is formed characterized by a relatively broad ring of rad
Rd;R/2, shown in Fig. 6~b!. With increasing time the ring
gradually shrinks@Fig. 6~c!# asymptotically approaching it
equilibrium size. Note that the equilibrium ring size is com
parable to the nematic biaxial correlation length yielding
further gauge for the system sizes used in the simulat
@34#.

V. CONCLUSIONS

We study the influence of confinement on the kinetics o
temperature drivenI -N quench. The semimicroscopic mod
is used in which molecules interact via a modified induc
dipole–induced-dipole interaction. The dynamics of the s
tem is followed using the Brownian molecular dynamic
This approach enabled us to study phenomena on ma
scopic time scales that is necessary to follow the evolu
towards equilibrium states. The liquid crystal molecules
also allowed to wander around the sites of a hexagonal
tice of lattice spacinga0 . Consequently preferred direction
in the model induced by a specific choice of a lattice
averaged out. A molecule of the model corresponds to a c
ter of Nc molecules whereNc is estimated to be less or equ
to the number of neighbors@25,28# within a sphere of radius
a0 , i.e., Nc<26. The time step of the simulation strong
depends on the size of a molecule and with this resp
ranges within the intervalDt0;0.001ms to Dt0;0.1ms.
The estimates for~i! Nc and~ii ! Dt0 were obtained by com
paring ~i! the defect core size of a point defect of the rad
structure and~ii ! the relaxation rate of a twist induced di
tortion in a plane-parallel cell obtained by our simulati
with the result of the analogous continuum-type calculat
@30,36#

In the simulations we limit to a sudden quench. In pra
tice this mimics the quench that is realized fast with resp
to a typical nematic order parameter relaxation time. T
results indicate several qualitatively different stages of
annealing process after the quench.

In bulk we distinguish between theearly, domain, and
late stageregime. The early regime is dominated by the e
ponential growth of the nematic uniaxial order parameter.
the end of it domains are formed that are easily recogniza
in the domain regime. With time the nematic texture grad
ally enters the late stage regime dominated by structure
individual defects. After the early regime the domain grow
exhibits to a good approximation the scaling lawjd;tg, g
50.4760.05. A similar result was obtained by Bhattachar
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ofet al. @10# within a simple continuum Langevin approac
yielding g50.4560.02. Almost identical values ofg ob-
tained via different approaches indicate that results are ra
weakly sensitive to the details of the model.

FIG. 6. The annealing kinetics in the spherical confinem
2Nr544 and«50.1. The time evolution of~a! jd and ~c! of the
ring radiusRd . The ring appears in the confinement regime.
evolution is monitored above the time depicted by the arrow in~a!.
The structure at the time indicated by the arrow is shown in~b! and
the equilibrium structure in Fig. 2~d!. In ~a! and~b! the small circles
locate the ring of the defect.
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In confined samples an additional qualitative change
the behavior appears whenjd becomes comparable to th
typical linear sizeR of the system@10#. The conditionjd
;R roughly distinguishes between the bulk (jd,R) and
confinement (jd.R) regime. Only in the latter regime ar
apparent departures from the bulk behavior observed.
scaling coefficient now reflects confinement details and a
a final equilibrium director structure. The scaling expone
changes fromg50.4960.05 in the bulk regime tog
5g ~q t , R equilibrium structure! in the confinement regime
For the cylindrical confinement we obtain either slow
@e.g.,g(q t5p/4, 2Nr530, ER-like);0.2560.05 andg(q t
50,2Nr554, ER);0.1260.02# or faster @e.g., g(q t
5p/2, 2Nr516, homogeneous);0.8560.05, g(q t5p/2,
2Nr530, homogeneous);0.5260.05# domain growth with
respect to thebulk regime.

For q t50 the effective field in the direction of the do
main growth is not present. In the late stage regime the
main growth is restricted along the cylinder symmetry ax
This does not significantly reduce the overall size of dom
walls until a disappearance of a less favored domain. In
case the main driving mechanism is the difference in the
energy between neighboring domains that in general cha
with time. If this difference is small enough the structure c
freeze. In practice this often happens for the case of hom
tropic anchoring in the regime, where the escaped ra
structure corresponds to the ground state. However, often
escaped radial structure with point defects is realized ins
@37# characterized by domains with the ER-like profile wi
alternative preferred orientation along the cylinder axis.

Our results confirm that the domain growth is well d
scribed with theKibble-Zurek mechanism@3,9#. This mecha-
nism was originally introduced in cosmology to explain t
. E

,

l-

llo
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formation of topological defect in the early Universe. Bas
on simple causality arguments it yields estimates of the
main density and consequently defects~i.e., vortex lines or
strings! produced in the phase transitions in which a contin
ous symmetry of the relevant order parameter field is brok
In a nematic LC phase an additional source@21,22# of de-
fects could arise due to topological constraints at the dom
wall boundary. In case of strong tangential or homeotro
anchoring they would, e.g., enforce defects with total b
chargeM52 or M51, respectively. But this source of de
fects becomes effective when the conditionWa

~intrinsic!jd /K
@1 is realized. For most nematic LCs this condition wou
be fulfilled in a relatively late stage of the texture evolutio
in case of appropriate conditions at a domain wall. In o
simulation this source of defects was not observed. It mi
be important in the temperature regime where the isotro
phase is still metastable.

In our theoretical study we considered a sudden temp
ture quench. In reality this mimics well a case when t
quench is realized in a short time scale in comparison t
relevant order parameter relaxation time. In the case o
nematic liquid crystal this condition is relatively hard to r
alize. For this purpose we will focus in our future study o
the influence of quench rate on the nematic texture evolut
This study would be of particular interest because of its r
evance to other fields of physics, particularly cosmology.
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