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Wetting and structure of a fluid in a spherical cavity
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The equilibrium local densities, structure, and wetting of a one-component fluid in a spherical cavity, of
variable radiusR, are determined, using density-functional theory, as functions of two parameters characteriz-
ing the system: the radiuR and the cavity/fluid potential parameteyy. The cavity acts as an external
potentialVe,(r) on the molecules of the confined fluid, the particles of which are of constant diadhdtee
equilibrium density profile, as a result of strong confinement, develops peaks in the center of the cavity and/or
close to the pore wall and, in certain situations, in other intermediate points; the cavity can also be liquid full,
capillary condensation.
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[. INTRODUCTION in contact with a reservoir at constant temperatlirand
chemical potentialw implying an open system; in either
Wetting of planar or curved surfaces and porous media bygase, the appropriate ensemble is the grand canonical. In the
fluids has received considerable attention in recent years beurrent case, the considered spherical cavity is an element of
cause of its industrigichromatography, membrane transport,an ensemble of similar cavities connected to each other and
adhesion, lubrication, foam&nd theoretical significance as to the external world by windows and/or narrow channels,
an application of the statistical physics of nonhomogeneouenabling them to exchange particles among themselves and
systems. These inhomogeneous classical fluids can be stuglith an external reservoir of constant temperatiirend
ied via density-functional theor§DFT), a very efficient tool chemical potentialu, resulting in a net flow of particles
for dealing with interfacial phenomena and nonhomogeneouthrough this pore arrangement; consequently, the proper en-
fluids [1,2]. The DFT formulation has successfully been ap-semble is the grand canonical. This arrangement of pores is
plied to adsorption, wetting, layering transitions, and capil-found in zeolite43], which are used as membranes for sepa-
lary condensation at planar and nonplanar substrates. Thating gas or liquid mixtures, causing adsorption of particles
key point in DFT is attributed to the grand-potential densityby their poreq4]. An alternative choice, is to consider that
functional Q\[ p], wherein,ad ho¢ assumptions are intro- the bulk phase of the enclosed phase inside the zeolites’
duced, motivated by physical reasoning, to render the intrinpores is the homogeneous phase that would be found if the
sic Helmholtz free-energy functiond[p] of the inhomoge- external force, for maintaining the inhomogeneity, is re-
neous fluid calculable. These are introduced, reflecting thenoved [5]. Although the previous assumption is adopted,
situation at hand, either by the local density approximatioranother contemplation of the system is to consider the
or weighted density approximation, considering the geospherical cavity as closed, confining a constant number of
metrical characteristics of the system for the calculation ofarticles, specified priori, and study it using the methods of
Qylp]. the canonical ensemb|é]. An important point that is raised
In the current case, the DFT formulation will be applied tois the equivalence of the results from the two approaches,
the study of a gas phase enclosed in a spherical céaity grand-canonical and canonical, a crucial problem of statisti-
infinitely thin solid shell of variable radiusR. In general, the cal mechanics. Since the volume occupied by the cavity and
thermodynamical properties of a fluid confined in the cavi-each particle is finite, the number of enclosed particles is
ties (pores of a solid material are altere@dometimes, even always finite, however, within the grand-canonical ensemble
those of the host materjahs compared to those of a similar it can vary continuouslyalthough it cannot exceed a maxi-
bulk counterpart, i.e., displacement of the location of themum value specified by the repulsive interactions, excluded-
bulk fluid phase boundaries, shifted bulk transitions, andsolume effect, resulting in a variety of configurations inside
competition between surface transitions, since small anthe cavity, in contradistinction to the canonical-ensemble de-
very small cavities can hold a few adsorbed particles, makscription wherein the number of enclosed particles is speci-
ing the enclosed fluid highly spatially inhomogeneous. Infied a priori and remains always constant resulting in a
such systems, the packing constraints are very pronouncegingle configuration, for a given temperature. The grand-
because of the strong confinement. The pores of the hostnonical ensemble might produce the same fluid structure
material can be of any shape, but, on computational groundss that by canonical ensemble, in a similar cavity, when the
they are chosen to be slitlike, cylindrical, or spherical. instantaneous number of particles in the grand-canonical en-
The cylindrical pore is of infinite length and finite radius, semble coincides with the corresponding number in the ca-
the slitlike consists of two parallel walls of infinite area and nonical ensemble.
separated by a finite distance; in both cases, the fluid can be In the statistical mechanics for bulk systems, the probabil-
ity P(N) that a macroscopic system, in the grand-canonical
ensemble, hahl particles exhibits an extremely sharp maxi-
*Email address: ihatziag@phys.uoa.gr mum atN=(N) and, in this case, the mean val(M) coin-
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cides with the most probabl*, (N)=N*, so that the con- appear, as the capillary condensation. The latter case appears
sidered grand-canonical-ensemble systems are those whoseen if the chemical potential or pressure is less than its
number of particles equal®N) and coincides with the fixed value at saturation; in this case, gas particles condense to
number of particledN in the canonical ensemble, equivalenceform a dense liquidlike state inside the pore, liquid-full pore.
of ensembles. This coincidence implies that the chemical poFhe reduction in condensation chemical potential or pressure
tential u is fixed so that the average number of particlesresults from the attractive forces between gas particles and
equalsN. the surrounding pore walls; this early condensation of the gas
Most studies have been focused on fluids adsorbed ophase can be considered as a shift of the bulk coexistence
planar substrates, while previous studies of fluids insidegas-liquid line due to confinement effects.
pores dealt with adsorption of hard spheres in a hard spheri- The phase equilibria of an enclosed fluid in a spherical
cal cavity [5-10], cylindrical pores[9], narrow channels cavity, for sufficiently largeR, can be determined by thermo-
[11]. dynamic arguments. The temperaturés smaller than the
The current study is now extended to include attractivebulk critical temperaturd, (T<T.) and the bulk chemical
interactions in a one-component fluid system composed of potentialu is smaller than that at saturati@n;(u<uss) SO
spherical particlegof diameterd) which, initially, are con- that the bulk fluid is gas. The grand potenti&, is divided
sidered to be hard spheres and an additional attractive inteinto two contributions, the bulk and surface, and the enclosed
action is introduced. These are enclosed in a spherical cavitjuid adopts the configuration minimizin§, . When the
of radiusR (R=d/2) with its center at the origin of axes. The wall-fluid attraction is relatively strong, a liquidlike film, of
boundary of the cavity is impenetrable and each particle inthickness/, intrudes between the wall and the gas phase, so
teracts with an element of the cavity boundary with an atthat the liquid phase wets the wall and the respective grand
tractive interaction, so the total interaction between a fluidpotential(), is
particle and the cavity is

QgL p P : ‘ ,
—=—2(R=/)3= —(3/R*~3/?R+/3)+ v, R?
Ve F)=ns fSwWF<|F— F[)dr, Ly 473 3
+ygL(R=7)?, (2.1

wherew. r—r’|) is the pairwise interaction potential be- , o
tween anTl(J|id mo|IZ>cuIe afpand a wall moIeche af’, ns wherep,’ is the pressure of the metastable liquid with den-

wall density andS the area of cavity’s boundary. The poten- S_"ty_Pf at the same value qf and y,,, g are the wall-

tial (1.1) acts as an external potential for theparticle sys- liquid and gas-liquid surface tensions, respectively. However,
tem in the cavity, inducing the inhomogeneity in the fluid. if the wall-fluid attractive interaction becomes stronger, the
The study considers a suitable grand-potential density funcenclosed fluid condenses abruptly to a liquid configuration
tional, adapted for the current model, from which the equi-(liquid-full pore); the respective grand potentil, is

librium density profile results via the minimum grand-

3
potential principle; the structure, thermodynamic properties, &: _ R_p++ R2y,,. - 2.2
and wetting are also investigated. Similar models have been 4w 3 "
applied successfully to plandd2,13, spherical[14] sub- ) ) )
The stat int ch t h
e state point chosen corresponds to a homogeneous Q=0 2.3

bulk vapor phase, of density, at reduced temperaturg*
=T/T.=0.8, T, is the bulk critical temperature and packing
fraction = m/6d3p,=0.021717 8

The paper is arranged as follows: In Sec. Il the system is

Substituting Eq(2.1) and Eq.(2.2) into Eq. (2.3,

3
defined through a density-functional grand potential. The nu- p—p =RLQ; (2.9
merical calculations are in Sec. Ill and the discussion in Sec. o
V.

which is similar to the Laplace expression for the pressure
difference across a spherical surface, whose effective radius
Il. THEORY of curvature is (2R—/)/3). When Eq(2.4) holds, it signals
A. Thermodynamic description the beginning of condensation; however, its drawback is that

, , _ there is not a systematic way for calculating the thickn€ss
When a single planar solid substrate exerts an attractivgs ihe wetting layer.

force on the particles of a bulk gas phase, under certain con-
ditions, some of the particles will be adsorbed by the sub-
strate, forming a liquidlike film on it and causing wetting of
the substrate. The thickness of the film, on approaching As was mentioned in the introduction, one of the most
saturation, can be finitgoartial wetting or infinite (complete  widely used theoretical descriptions of inhomogeneous fluids
wetting[12,13). If the gas phase is enclosed in a péeg-  is the density-functional theory, which relies on a proper
lindrical, spherical, slitlik¢ of a porous solidhost phasg  choice of the grand-potential function&\[p(r)]; conse-
then, in addition to the wetting transition, other ones camquently the key step is to specify a form fax,[ p(r)] that is

B. Density profile
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tractable and more or less accurate. In general, the grand-potential functional of an inhomogeneous one-component fluid in the
presence of an external fie\d.,(r), representing the substrate[i52]

1
Qv[p(F)]=fV[fhs[p(F)]+ 7p(F) fvp(F')q)FFJr[Vext(F)—M]p(F) dr, (2.5

whereu the bulk vapor chemical potential aMdthe volume  dius R; this dependence has significant repercussions on the
of the system. The repulsive force contribution to the Helm-structure of films inside the cavity. In the limit—0, Eq.
holtz free energy is treated in the local-density approxima<{2.9a takes the form

tion (LDA) in that f,d{ p(f)] is the Helmholtz free-energy

density of a uniform hard-sphere fluid at densijt{f), r lim Vey,(r)=—ew(\R)e %, (2.9b

=|r| is the distance to the center of the cavity. Although =0

LDA fails to describe the oscillatory behavior of the density hil th itv boundary = R
profile at strongly attractive walls, it gives reasonable resultd/ "€ ON the cavily boundary, =K,

for the surface tension, adsorption, and the density profile of e

the free liquid-vapor interface. The long-range attractive Vext(R)z——W[l—e*ZKR], (2.90
forces between fluid molecules are treated in the mean-field 2

approximation® () is the attractive part of the pairwise

potential between two fluid moleculesdistant apart. The th herical substrate b valent t |
equilibrium densityp(r) of the inhomogeneous fluid is ob- € spherical substrate becomes equivalent 1o a pianar one.

k LT - ; Although the chosen interaction potentials are short ranged,
tained by minimizing Eq(2.5 through the variational prin- . . .
ciple 8Q[ p(F)]/8p(F) =0, they are not only suitable for numerical calculations, but they

yield an immediate classification of the wetting classes
[12,13 and provide the general characteristics of wetting
M=Vext(r)+ﬂhip(r)]+f p(F®e(|F—F')dF’, phenomena and interfacial structure, sacrificing some de-
v grees of quantitative accuracy.
(2.6) The chosen short-range interaction potent{al3), (2.9a
. ) . have repercussions on the wetting behavior of the system,
where und p()1=0fnd p(7)1/dp(F) is the chemical poten- inqycing first- or secondécontinuous order wetting transi-
tial of a uniform hard-sphere fluid of densig(r). Choosing  tions. This behavior depends on the inverse range parameters
the potentialsVe(f) and ®ee(r), properly, the integral ) and,,., characterizing the fluid-flui€2.7) and wall-fluid
equation(2.6) can be converted to a functional nonlinear 2 94 interactions; if they are taken to be equal, the resulting
second-order differential equation with appropriate boundaryyetting transitions are continuous, called short-range critical

which, for largeR, Vg, R)~ — ew/2, i.e., independent dR

conditions. The fluid-fluid potential is wetting because they are dominated by short-range forces
3 o [16], on the opposite case, the transitions can be first order or
Prr(r)=—(ak*/4m)e M/, (27 continuous depending on their ratio and the strength of the

wall-fluid interaction[17,18. Although critical wetting at-

where\ is an inverse-range parameter amds given by tracted much theoretical attentigh,2,19,20, it eluded ex-

perimental confirmation, it was observed by Ross, Bonn, and
B ® dF Meunier[21] in the binary liquid mixture of methanol and
a- fv Fr(r)dr. 28 honane. In this mixture, the film thickness of methanol on
nonane increases continuously from thin to thick and the
If a wall molecule interacts with a fluid molecule via a divergence of the thickness is logarithmic, consistent with
the renormalization-group and mean-field calculations for
short-range critical wetting20,22.
If the interaction forces are long rangalgebraic decay
the wetting transitions are, in general, first order; continuous
wetting transitions can also occur, called long-range critical
. wetting transitions, observed for the first time in an experi-
Voi(r)=—ey(A\R)e" R sinh(Ar) , (2.99 ment by Ragilet al.'[.23]; they ob;ervg:d, using ellipsometry,
AT a continuous transition from a thin film of pentane on water
to a thick one, on increasing temperatdré&om low values
whereey, is a new parameter characterizing the substrate antb a wetting temperaturg,,=53 °C when the adsorbed film
proportional tong andC; it is a measure of the well depth for diverges[16].
the wall-fluid interaction. A feature of the potenti@.93 is From the previous discussions, one concludes that the or-
that its strengtlithat part separated from the distance depender of the wetting transition governs the evolution of the
dence, ey (AR)e”*R) depends strongly on substrate’s ra- thickness of the wetting film; a first-order transition yields a

potential of the formWWyg(r)= —Ce*”WFr/()\WFr), where
Awe=M (Awg inverse-range parameter of the wall-fluid at-
tractive interactionp and C are positive constants, then Eq.
(1.1) gives
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jump in film thickness when temperatufeapproached, 87— 97%+37°
while in a second-order transition films grow continuously as Burndp)=Inn+ R (2.16b

T approached .
For the sake of simplicity, all subsequent quantities andyheres,= 7pd3/6 is the packing fraction, which will be used
equations are transformed to dimensionless units, as the dependent variable instead of the density.

Substituting Eq(2.16b into Eq. (2.11) yields
wr=Bu, Pr=pdp, RI=AR rf=nr, pr=pd? 9 Faiz160 o Ea. (210

2
a*=Bald®=11.102T*, Vi=pBVe. (2.10 7'(1)==—7"(r)=By( 7 7' ?(r)—Ba( 1) —Ba(n) 7(r),

although the asterisks will be suppresspds pressure3 217

=(kgT) !, andkg Boltzmann’s constant. subject to the boundary conditions resulting from E@sl14)
Substituting the potential®.7) and (2.9 into Eq. (2.6), and(2.15),

and differentiating the resulting equation twice with respect

tor, yields 7'(0)=0, (2.183
4 2 ! ! 1
prdp(D1+ —ppd p(N]= wed p(N]+ p=—ap(r), 7' (R)=1 ew—| 1+ 5| [undn(R)— 4]
2.1
(210 Al n(R)], (2.18b
the prime denotes derivative with respect rtoThe final h
equation(2.11) depends only on the radial distancesince ~ WN€r€
both potentials are spherically symmetric. This is a func- P 1 8-2 IA
tional differential equation, depending @ifr); its solution A(n)= (Bind =4 772, Ax(n)= 1(7)
is uniquely defined if supplemented by appropriate boundary an 7 (1=7) an
conditions. In the limitr —0, the solution is less well be- 1 30-67
haved, since at the origin=0 it is singular unlesg.;(r) -—+ = (2.193
vanishes in that limit, K K
’ ’ A (77) ,BM_,BIU*hi??)
_mpdr) o duppdr)dr Bi(7)= ~, By(n)=
im 1S~ fim 1 ~lim pupgr). (242 (M=3Gy BD=""R
r—o0 r—0 r—0
. . . : 6aB
according to de I' Hopital rule, therefore, in the neighbor- Bs(7n)= A (2.19p
hood of the origin(2.11) becomes 7
. w1 Initially, the coexisting bulk densitieg,, andp, are cal-
r'f:) Hnd )= 5Lpndr) = p=ap(r)]. (213 cylated for various temperatures by solving the simultaneous
equations
Thus, the first boundary condition is D(pw)=P(pL)s  mlpw)=mpy) (2.20
W/ — L/» w) — L/ .
#1d 0)=0, (214 for T=0.8, p,=0.041478, anch,=0.586 731.
and the other on the substrate, I RESULTS
1
/ _ _ The boundary value problert2.17), (2.18 was solved
R)= 1+ = R , 21 . .
#rdR) = ew R [ind R = (2.19 numerically for a wide range of values & and ey; the

_ o _ solution is the equilibrium density profile, which, depending
by differentiating Eq(2.6) once with respect to and evalu-  on the values oR and ey, displays various growth modes

ating it atr =R. The differential equatioi2.11) in conjunc- inside the cavity and the boundary various types of wetting
tion with the boundary condition§.14), (2.195 constitute  pehavior.

the problem under consideration, which will be solved nu- |nitially, the density profiles for a cavity of radiuR
merically since Eq(2.11) is an implicit nonlinear second- =45 are evaluated for various values f. The configu-
order differential equation and cannot be solved analyticallyrations, adopted by the confined fluid and possible phase

The calculation will be based on the Carnahan-Starlingransitions, depend on the specific valueegfand the inter-
approximation for hard-spherg24]; the pressure and chemi- particle interactions.

cal potential are, respectively, For small values ofey, (ey<12.15) a spherical liquid
, 3 drop, of constant density(0), grows in the origin of the
1+n+n°—7 (2.163 cavity, the rest part of the density profile is monotonically

Bpndp)=p (1—- 77)§ ’ decreasing up to the pore boundary, resulting in a depletion
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FIG. 1. Density profilesp,(r)=»n(r)— »(0) vs radial distance from the center of a spherical cavity of radiRs-4.5, labeled by the
parameteky,, characterizing the wall-particle interactidia) e,,= 12. The density profile consists of a thin liquid drop in the origlansity
71(0)] and a monotonically decreasing branch up to the boundary, with contact dengitysuch thaty,(0)> 7, so that the boundary
is weakly wetted(b) e,y=12.16. A thin liquid drop grows in the origin with density (0), theboundary is covered by a layer of adsorbed
particles with contact density;\,> 7,(0), strong wetting of the boundarfc) e,,=12.21. The density profile consists of a thick liquid drop
in the origin (thin-thick transition and a thin film at the boundary with,< 7:(0), weak wvetting of the boundaryd) e,=12.22. The
density profile consists of a thick liquid drop in the origin and a monotonically increasing branch up to the boundary which wgjs it
>n,(0)], the cavity is liquid full, capillary condensation. Both quantities are dimensionless. Remark. Each plot represents the difference
[ 71(r)=n(r)— 7(0)], so that the structure of the confined fluid is more evident.

of particles at the pore wall and a subsequent reduction dfal film to the wall where the density attains a maximum
wetting (weak wetting. The local density at the pore wall value[p(0)<py] due to the strong attraction of the wall
(pw, contact valugis an overall minimum, Fig. (B); how-  (strong wetting resulting in a filling transition since the pore
ever, forey,=12.16, in addition to the thin liquid drop in the is now liquid full [capillary condensation, Fig.(d)]. For
origin, the wall now attracts the particles favorably, forming 12.23<¢e,=<12.33, the weak-wetting situation reappears
a film at the wall, wherein the contact value exhibits an over{ p(0)>py,] with a thick liquid drop in the origin and the
all maximum[p(0)<py] because of the strong accumula- system returns to the situation depicted in Fi¢e)10n fur-
tion of particles within the wall region, strong wetting ther increasingey,, 12.34<e,<12.37, the system jumps
(weak-strong wetting transitionThe cavity region, between from thick to thin liquid drop formation in the origifthick-

the two shells, presents a depletion of particles and the denhin transition; the wall attracts strongly the particles
sity profile attains a minimum value at an interior point, Fig.[p(0)<pw] forming a film in the region of the boundary,
1(b). For 12.1%ey=<12.21, the density profile consists of strong wetting(weak-strong wetting transitionthe contact
two branches: the thin liquid drop in the origin, as in Figs.value is a maximum while a depletion of particles appears in
1(a), 1(b), is transformed into a thick one, thin-thick transi- the region between the two branches as in Fidp) &and,
tion, the second branch is monotonically decreasing up to theltimately, for e,,=12.38 the system makes a transition to
pore boundary implying weak-wettingtrong-weak wetting the initial case, Fig. (), with a single thin liquid drop in the
transition; the contact value is an overall minimum of the origin. The formation of the central liquid drogsainly the
density profile, Fig. (c). For ey=12.22, the thick liquid thicker onegis related to the strong potential field appearing
drop in the origin persists but the second branch of the denin the pore center in certain circumstances, since the strength
sity profile now increases steadily from the edge of the cenef the wall-particle potentiaV,,(r) depends strongly oR
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T’1 (b) FIG. 3. Density profilen,(r) vs radial distance from the cen-

ter of a spherical cavity of radiuR=1.25 and wall parametes,
=1.3. The profile corresponds to two shells, one localized close to
the center and the other to the boundary connected by a very long
“bridge.” The wetting of the boundary is wealg;y< 71(0). Both
guantities are dimensionless.

in the whole pord 25]; the maximum value of the density
profile occurs in an intermediate point and not at the wall, as
usually in strong wetting, although this value does not differ
significantly from the contact value. The structure of the con-
fined fluid in the latter case is due to the stronger potential
ol L L field in comparison to that in the former one. These two
° 07 0208 040506070809 1 11 1219 characteristic cases can be juxtaposed with the wetting of a
planar wall; the former case, corresponds to the coexistence
of two films, a thin and a thickprewetting transitiop while
FIG. 2. Density profilen,(r) vs radial distance from the cen-  the latter one, corresponds to the complete wetting of the
ter of a spherical cavity of radius and wall parameter, respectivelyplanar wall by a liquid film of infinite thicknesfgl2].
(@ R=1.05,ey=1.64,(b) R=1.3,ey=1.3. In both cases, the cavi- However, this is not the only structure that can be ob-
ties are liquid full, in caseb) the cavity, practically, is full of a  served in a cavity, more complex structures can also appear
constant-density liquid, while in caga) the density profile consists due to packing constraints. In such a case, the density profile
of two branches, the one at the boundary corresponds to a densgf nonmonotonic in that, the particles in a cavity can be lo-
phase. Both quantities are dimensionless. calized in various points forming shells, as in Fig. 3, where
R=1.25 andey=1.3. In this case, two zones of strong lo-
(2.99; in pore centeN,(0)= — e,yRe R while at boundary calization appear in intermediate points, one close to the ori-
Ve R) = — (ew/2) (1—e~2R) resulting in a weaker field at gin and the other to the boundary, due to the accumulation of
boundary for theR's under consideration; fdR=6, V¢(R) particles in the respective regions, while a very thin liquid
becomes constafiV.,{(R)= — e/2] and thus equivalent to drop grows at the origin. The points of strong localization are
a planar wall. This behavior &f (1) favors, in some cases, connected by a very long “bridge,” forming a relatively
the formation of a liquid drop in the origin, although the final thick film, with mean density larger tha®0), and occupying
equilibrium configuration is a result of all interactions. the larger part of the cavity. However, the wall attraction is
Now, we proceed to examine the behavior of the fluid fornot strong enough, resulting in a depletion of particles at the
various values ofR and €. Both Figs. 2a,b, whereR  wall region[p(0)>py], the corresponding branch is de-
=1.05 andR= 1.3, respectively, correspond to the liquid-full creasingly monotonic and the contact value is an absolute
pore; however, they differ in the way the condensation ociminimum of the density profile, weak wetting.
curs. In the former case, the liquid-full pore consists of a A similar structure can appear in larger cavities, see Fig.
thick liquid drop in the origin and a monotonically increasing 4, whereR=6 andey =9, where the density profile is also
branch up to the wall because of the strong wall attractiomonmonotonic and corresponds to three branches: The prin-
and the contact value is a maximum of the overall densitiesgipal one is a thick liquid drop in the origin. The pore wall
in the latter case, the pore is nearly full of the liquid phase, ofattracts the particles moderately, thus the corresponding film
almost constant density, except in the origin where a thiris not so thick as in strong wetting, apg, is not much larger
liquid drop grows, thus the condensation, practically, occurghan p(0). Between these two branches there exists a shell,
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FIG. 4. Density profilen,(r) vs radial distance from the cen- ) ) ) )
ter of a spherical cavity of radiuR=6 and wall parametee, FIG. 5. The radiusyon vs the radiusk of the cavity.Ryon is a
=9. The profile consists of a thick liquid drop in the center, a film measure of the thickness of the liquid drop grown in the center of
at the boundary and a concentric spherical shell close to the cavity€aVity- It shows significant variation fdR smaller than or equal to
center with a high peak density. The wetting of the boundary is# BOth quantities are dimensionless.
strong, 7,w> 171(0). Both quantities are dimensionless.

tends to be organized into layered structures, forming con-

closer to the origin, whose peak-densityis larger tharp(0) ~ centric spherical shells around the cavity center; this is re-
andpyy. The thick liquid film in cavity's center results from flected in the oscillations of the mean local density with ra-
the strong attractive fieltV,{(0)=—eyRe R, present at dial distance, provided that the boundary is smooth on a
=0 and influenced bR, in contrast to its value at the bound- molecular scal§€27]. The layering can be captured better if a
ary where it is constan¥/e{R) = — e,/2 and noninfluenced more sophisticated theory is us&moothed, weighted den-
by R, in the latter case, the boundary behaves as a planar wallty approximation[1]), but the behavior found earlier, ac-
[2,12,26. o ) . o cording to LDA, is an indication that this approximation can

The variation of the width of the spherical liquid drop captyre the qualitative behavior of a system satisfactorily.
formed in the center of the cavity, for various valuesR)f  The radiusR, ., of the drop formed in the center varies from
can be traped out if we conS|der_|ts radm,%m, Fig. S.Rhom _very small valuesR,,<R, see Fig. 5 enclosing a few
is the radius for yvh|c_h the derl\_/at|ve of the density with particles, up toR, filling the cavity, capillary condensation.
respect to 'the radial dlstanca/anls_hes _for every <Rpom. The specific caseR,,m/R)<<1 can enclose even one patrticle
For smallR's ('smaller' or equal to ¥it varies S|gn|f|cantly, in (Fig. 5 and corresponds to the so-called quasi-zero-
some cases is negligblee.g., R=15 or R=4), while it dimensionalOD) situation, wherein the effective dimension-

attains a maximum value fdR=3; for largerR’s, Ryonm in- . N . o .
creases steadily, which is an indication that the system beqIIty of the fluid inside the_ _drop IS re_duced drastically and
an be assumed as a limiting behavior of a 3D system. The

comes equivalent to one with planar substrate instead df _ . : .
spherical. 0D cavity cannot hold more than one particle and this notion

can be used for describing the freezing transifi®8]. When
the confined fluid does not fill the cavity, the central density
IV. DISCUSSION p(0) varies, in that the peak of the densityrat 0 grows with

The equilibrium local densities and structure of a one-<N> andR and at this point differences appear between the

component fluid confined in a spherical cavity and wetting Oftheoretmal and computational resul6.

the boundary have been investigated via density-functiona] 1€ drop formed in the center of the cavity imitates a real
theory considering short-range interactions between the fluidduid drop in a vapor background, thus it will exhibit a
particles and wall fluid; although these interactions do nofimilar behavior, nevertheless. Its bounding surface is not
yield the right physics for any physical system, such a Syssharp but undergoes thermally excited surface oscillations,
tem was found wherein the wetting transition is consistentvhich consist of various modes. The lowest mode corre-
with the short-range critical wettini21]. This investigation sponds to a translation of the drop through the cavity; be-
has pointed out the existence of significant structure insidéause of the absence of a radial stabilizing figdy., gravi-

the cavity, monotonic or nonmonotonic density profiles. De-tationa), the drop is free to wander throughout the cavity and
pending orR and e, the fluid particles are accumulated not there is a possibility of the drop to collide with the cavity
only in the center of the cavity or its boundary, but also inboundary. The higher modes cause size-dependent phenom-
intermediate points, so that the density profile possesses vagna, as is the dependence of the mean-square surface thick-
ous shells and becomes nonmonotonic, that is, the distribuiess on the logarithm of the drop radius. These surface fluc-
tion of the particles of the confined fluid, in some casestuations are superimposed on the original surface, which has
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an intrinsic thickness, and in an experiment for the measurdinite there cannot be wetting transitions as they appear in a
ment of the thickness of the interface it is difficult to separatesystem with a planar wall12,13].
the intrinsic and capillary componenta9].
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