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Fluids of platelike particles near a hard wall
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Fluids consisting of hard platelike particles near a hard wall are investigated using density-functional theory.
The density and orientational profiles, as well as the surface tension and the excess coverage, are determined
and compared with those of a fluid of rodlike particles. Even for low densities, slight orientational packing
effects are found for the platelet fluid due to larger intermolecular interactions between platelets as compared
with those between rods. A net depletion of platelets near the wall is exhibited by the excess coverage, whereas
a change of sign of the excess coverage of hard-rod fluids is found upon increasing the bulk density.
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[. INTRODUCTION tational degrees of freedom for the corresponding local free-
energy densityf .,/ p=p(r,w)] of the fluid
While many theoretical studies have been devoted to the

understanding of the behavior of elongated hard colloidal

particles near a hard walkee, e.g., Refd.1-8]), suspen- Fex[P(f,w)]:J dridw,drodw,w(ry, o, ;)
sions of disc-shaped hard particles near a hard wall have not

yet been investigated. One reason is that experimentally a Xp(ry,w)felp(rz, )], (2.2

corresponding hard platelet model system, i.e., consisting of

particles with a short-range repulsive interaction has beewith

lacking until recently. From a theoretical point of view, the

platelet fluid problem appears to be difficult because the On- 5
sager approach of truncating the corresponding equation of fedp)=4m

state at second order, which is valid for thin rodlike particles,

cannot be justified for plateletd]. Recently, preparation This functional incorporates fluid correlations via a weight
methods have been developed for other types of platelet SUg;nction W(ry,r,,1,0,) and bulk thermodynamics via a

pens'ions, which may indeed serve as model systems of haF@centIy developed equation of state of thin platefat
colloidal platelets[10-12. In the present paper we use

472

3
V2R°p+ 3

R%p?|kgT. (2.3

density-functional theorySec. 1)) to study the positional and 90 2.2

orientational order as well as the surface tension and excess p,=— (W) =pp| 1+v27R3p,+ TRepﬁ kgT,

coverage of thin-hard platelets near a hard wakc. IlI). Tou

Particularly, the density functional used here includes a third- 2.4

order density term, which is not present in the Onsager sec- ) )

ond virial approximation. wherep,=V ™1 dr f[dwp(r,») is the number density of the

homogeneous and isotropic bulk fluid. We note that the re-

Il. MODEL AND DENSITY-FUNCTIONAL THEORY sulting excess free-energy functioral,| p(r,w)] includes a

cubic term of the density, which is not present in the Onsager
We consider an inhomogeneous fluid consisting of thinsecond virial approximatiof@]
platelets of radiusk in a container of volumé&/. The plate-
lets are taken to be hard discs without attractive interactions. Y
The number density of the centers of mass of the platelets at
a pointr with an orientationw= (6, ¢) of the normal of the
platelets(see Fig. 1 is denoted by(r,w). The equilibrium

density profile of the inhomogeneous liquid under the influ- w
ence of an external potenti&l(r,») minimizes the grand 0
potential functiona[13]: | y
e
Q[p(r,w)]=j dr dwp(r,w)[kgTAN[47A3p(r,w)]—1) 'X
R
—ptV(r o) ]+ Felp(r,w)], 2.9

whereA is the thermal de Broglie wavelength apdis the FIG. 1. The polar angle and the azimuthal angle of the

chemical potential. We express the excess free energy fun@ormal » of a thin platelet of radiusR with its center of mass
tional Fo[ p(r,w)] as an integral over all spatial and orien- located atr=(0,0,0).
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FIG. 3. The two systems under consideration consist of fluids of
monodisperse thin platelets of radilsand thin rods of length.
=2R in contact with a planar hard wall at 0. Particles very close
to the wall must adopt nearly a fully parallel alignment. Here, the
three principal directions are shown.

FIG. 2. Equation of state of thin platelets as obtained from Eq.
(2.4) (solid line), and from computer simulatior{squareg15| and
diamondg16]). The dashed line follows from EqR.4) by omitting
the cubic term~ p.

rod 2 2

fex(p)=mDLp kaT @9 with ;= (sin g cosg; ,sing; sing;cosh), j=1, 2, is ful-
used in the description of thin rods of lengdtrand diameter ~filled. ¥y, is the angle between the normalg and w, of

D near surfacetsee, e.g., Ref§2], [3] and[5]). The neces- WO platelets._ Equatiof2.7) has been _derlved an_d is amply
sity for including this higher-order density term already fol- documented in Ref.15]. In practice, first the weight func-
lows from comparing the ensuing bulk press{ig. (2.4]  tion is calculated by testing Eq2.7) and is stored for all
with corresponding simulation dafa5,16| (see Fig. 2 Flu-  required values ofr(z, w1, w,).

ids consisting of thin platelets exhibit an isotropic and a Thereafter, the integral equati¢2.6) is solved using a Picard
nematic phase with no other liquid-crystalline phases, succheme with retardation.

as a columnar phase, obsenjdd]. The isotropic-nematic

(IN) transition is first order with coexistence densities at  |ll. PLATELETS AND RODS NEAR A HARD WALL
ppiIR3=0.46 andp,R®=0.5 according to a computer simu- .
lation [17]. For model systems of hard particles near a hard wall at

z=0 (see Fig. 3 apart from a possible surface freezing at
high densities, nonuniformities of the density occur only in
the z direction, so thap(r,w)=p(z,6,¢). Figure 4 displays
the calculated platelet density profile for the bulk density
kT IN[47A3p(r,w)] ppR®=0.2. The calculations rende(z, 6, ¢) to be indepen-
dent of the azimuthal anglé for this density, i.e., there is no

Minimization of Q with respect top(r,w) leads to the
following integral equation for the equilibrium density dis-
tribution:

- biaxial order emerging at the wall like for hard rods at high
=u—V(r,0)=87°R” | dridw,p(ry, »1) densities[6—8]. For z<R, orientations with large values
s 23 are forbidden so that the density profile has a discontinuity
XW(r,ry,0,01)[V2+ 57 R 2p(r,w) along the linez,,,=Rsin 6. There is a pronounced increase
+p(fy 01 ]]KsT. (2.6) of the density near the surface. Moreover, slight packing ef-

fects are visible through oscillations &t 2R. For compatri-
We have solved this equation numerically for a givenson, Fig. 5 displays the density profile of thin rods near a
chemical-potentiak and a given external-fiel(r,w). The  hard wall calculated from Eq¢2.1), (2.2, and(2.5). Fluids
weight function is taken to be a function of the relative po-consisting of thin rods exhibit an isotropic-nematic transition
sitons ry,=r,—r,, and is normalized so that With coexistence densities gi,DL*=3.3 and p,\DL?
fdr,dw,W(r 10, w1, w5)=1. In this paper, the weight func- =4.49 according to the Onsager approg&h The bulk den-
tion is given by the Mayer function, except for the normal- sity has been fixed such that the second virial coefficient of
ization. The Mayer function equals1 if the platelets over- the equation of state of thin plateletsee Eq.(2.4)] and of

lap and is zero otherwise. Two platelets, separated by Eie equation of state of thin rods,

distancer ,,, intersect if the inequality od )
PR = pu(1+ 5DL2pp)kgT, (3.0

Ir12 (@1 X @y)|<R%sin Yio— (12 w)?

S . are equal in units oR® and DL?, respectively. Due to the
+\R%sinyl,— (112 @)% (2.7 presence of the wallp(z,6,4) vanishes if z<zp,
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FIG. 4. Center-of-mass density profiéz, 6, ) R® of thin plate- . . . ) i
lets near a hard wall for various anglésof the platelet normals FIG. 6. Normalized, orientationally averaged density profile

relative to the surface normal. The density profile is independent of(2) for platelets(lower-solid curve and rods(upper-solid curve
the azimuthal anglep. At small distanceg from the wall, large " contact with a hard wall for the same bulk density as in Figs. 4

values of¢ are forbidden due to overlap. Therefore, the profile isnd 5: The length of the rods and the diameter of the plateleks 2
exactly zero ifz<z,;;=Rsin 6. The bulk density is fixed tp,R® are taken to be the same. The dashed lines represent the results for

=0.2. an ideal gas of platelets and rods, respectively. The upper curves are
shifted by one.

=(L/2)cosh. Hence, in terms of the normals of the platelets 27 = _
and the normals of the rods along their main axis of symme- Pp= kBTfo d¢JO dosindp(zmn6,¢), (3.2
try the preferred orientation of rods near a hard wall is per-

pendicular to the preferential orientation of the platelets. Thisand we found good agreement. Equati8r®) is an extension
means that in both cases, the main body of the particles tendg the pressure sum rule of a hard-sphere fluid near a wall
to lie parallel to the wall(see Fig. 3. In agreement with (see, e.g., Ref18]). The weighted density-functional theory
earlier calculation$5], for rods, no packing effects are vis- guarantees that the wall sum rule is satisfied, provided that
ible because of the relatively smaller intermolecular interacthe pressure enters through the corresponding bulk equation
tions between rods as compared with those between platele®f state.
(For thin rods, the intersection volume is pointlike, whereas A set of position-dependent order parameters quantifies
for discs it is similar to a line segmet. the deviation from isotropy of the number density. For a
We have tested successfully the accuracy of the numericalniaxial density profile, the most general form @z, 6, ¢)
calculations by comparing our results for the profiles withis independent o so that one can write
the pressure sum rule

o 20+1
p(2.0)=2 ——Q(2)P[cos 0], (33

whereP,[ cos(®)] are the Legendre polynomials. The normal-
ized, orientationally averaged number density profil€s)
=2mQq(2)/py, are displayed in Fig. 6, together with the re-
sults for noninteracting platelets and rods. Upon increasing
from the wall the averaged number densities increase and
exhibit cusps az=R for platelets, and az=L/2 for rods,
respectively. For rods, the maximum at the cusp is only about
10% above the bulk value, which is essentially reached al-
ready forz=L. For platelets, the maximum is more pro-
nounced and slight packing effects are visible at larger values
of z due to the relatively larger steric interactions between
y platelets.

L) 3 70 The position-dependent uniaxial, relative nematic order

parametes(z) = Q,(2) p, /[ 27Qy(2)] is displayed in Fig. 7.
FIG. 5. Center-of-mass density profijg(z,6,$)DL?/\/32 of At small values ofz, the value of the nematic order param-

thin rods (/D—=) near a hard wall for the bulk density eter reflects the geometric constraints. A platélet)) lying
ppDL?%/\/32=0.2. The profile is exactly zero ifz<z,, Very close to the wall must adopt nearly a fully parallel
=(L/2)cos6 due to overlap. alignment, so that the order parameter reaches the limiting
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FIG. 7. Relative uniaxial nematic order paramedr) for plate- FIG. 8. Surface tension of a fluid consisting of thin hard plate-

lets (solid curvg and rods(dashed curvein contact with a hard lets of radiusR (lower-solid curvé and hard rods of length and

wall for the same bulk density as in Figs. 4 and 5. Positivega-  diameterD (upper-solid curvel/D—) near a hard wall. The
tive) values of the nematic order parameter indicate that the platedashed lines represent the results for an ideal gas of platelets and
lets (rods are preferentially aligned parallel to the wall. rods, respectively. The upper curves are shifted by(@ofed line.

value 1=P,[cos(0), {—0.5=P,[cos@@/2)]} there, whereas hard wall lead to a net depletion near the surfate<Q).
isotropic orientation at large distances from the wall is char-The excess coverage of rods exhibits a change of sign with
acterized bys(z) =0. Interestingly, the nematic order param- increasing density in agreement with recent density func-
eter for platelets has a minimum a¢ 2R due to a depletion tional calculationg6,7] and computer simulatior{$].

of platelets parallel to the wall. In other words, a platelet,

next to the platelet at=R with the rim touching the wall IV. SUMMARY
(see Fig. 3, is oriented rather parallel than perpendicular to ) ) . )
the former. We have applied a density-functional theory to fluids con-

It is useful to consider not only local but also global prop- sisting of_thin-ha}rd platelets and rods in contact with a hard
erties of a liquid near a surface. There are two global quan@ll: Particles lying very close to the wall must adopt nearly
tities, which are of experimental interest and of interest ford fully parallel alignment due to interactions with the wall
simulations: the excess coverage, which is accessible b{f9- 3. The probability of finding a particle touching the
e.g., gravimetric measurements; and the surface tensidffall is increased compared with the bulkigs. 4 and % A

which, for example, is important for contact angles. The sur£omparison between the rod fluid and the platelet fluid ex-
face tensiony is defined via hibits slight orientational packing effects for the platelet fluid

(Fig. 7 and that the increase of the surface tension with

Q[p(2!01¢)]szb+ysa (34) 0.8

whereSis the surface area ane,= —p,, [see Eq.2.4)] is I J
the bulk grand-canonical potential density. The surface ten- 06 F rods J
sion depends on the definition of what is denoted as the
volume V [19]. We have defined/ as the volume of the | ==l

. ol . - X 04  TTTTTemeee L .
container with its surface given by the position of the rim of =
the particles at closest approach so that the regieiz O ~
<Znmin is part of V. Figure 8 displays the calculated surface % 02 ]
tension together with the results for noninteracting platelets ~ platelets
and rods. The steric interaction between the particles, which 0 -
is more pronounced for the platelets, increases the surface T
tension with increasing density. The results for the rods are 02F Tl .
in agreement with those obtained in Rdf3] and[5]. . L . . .

The excess coverage 0 0.1 0.2 0.3
. p,R’, p,DLY32"
r pbjo dzn(z)—1] 39 FIG. 9. Excess coveragsee Eq(3.5)] of a fluid consisting of

] ) o _ thin platelets of radiuR (lower-solid curvg and rods of length.
provides an important overall characterization of the densityand diameteb (upper-solid curvel./D— ) near a hard wall. The

profiles. Figure 9 summarizes the results for platelets andashed lines denote the corresponding results for an ideal gas of
rods. Repulsive interactions between the platelets and thgatelets and rods, respectively. The upper curves are shifted by 0.5.

021505-4



FLUIDS OF PLATELIKE PARTICLES NEAR A HARD WALL PHYSICAL REVIEW E65 021505

increasing density is more pronounced for platelets than fowetting. Work is currently in progress to study the wetting
rods (Fig. 8 due to larger intermolecular interactions be- behavior of platelets at higher densities.

tween platelets as compared with those between rods. The

calculated excess coverageig. 9 reveals a depletion of LSS

platelets close to the walFig. 6), whereas a change of sign L.H. gratefully acknowledges support by the Deutsche
of the excess coverage of hard-rod fluids indicate the onset dforschungsgemeinschaft.
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