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Short-time dynamics of colloidal particles confined between two walls
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The short-time dynamics of colloidal particles in a quasi-two-dimensional geometry is studied by digital
video microscopy. The particlegolystyrene spherg¢sare suspended in water and confined between two
parallel glass plates, forming an effective two-dimensional system(&ffective two-dimensional van Hove
function G(r,t) and its self and distinct part are measured with a time resolution of 1/30 s. We found that the
general behavior of these time-correlation functigasd their Fourier transformss quite similar to that of
their three-dimensional counterparts. The effects of the strong hydrodynamic coupling of the particles motion
to the walls and that due to the hydrodynamic interactions between particles are containedeiifettizve
hydrodynamic functiorH (k) obtained from the initial slope d¥(k,t) [the Fourier transform o&(r,t)]. We
found thatH(k), as a function of the wave vectérand particle concentration, exhibits a similar qualitative
behavior to the hydrodynamic function in homogeneous three-dimensional suspensions of hard spheres. We
also found in our systems that the particle fluctuations relax only by self-diffusion for wave vectors where the
static structure facto®B(k) =1. This result is important for measurements of self-diffusion dynamics in three-
dimensional systems by light scattering techniques.
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[. INTRODUCTION role of the long-ranged hydrodynamic interactions as well as
the complexity involved in their description even in simple
The dynamics of confined colloidal particles is a subjectcases. Thus, the interesting and challenging problem at hand
of wide interest and of great scientific and technological relis the study of the dynamics of a finite humber of colloidal
evance, which is increasingly attracting the attention of manyparticles, either close to a single wall or confined between
researcher$1—-10. The recent interest is partly due to the two of them, where particle-particle and particle-wgllin-
availability of direct imaging techniques that allow one to teractions(direct and hydrodynamjcare present.
study the particles dynamics in real space in great detail. The aim of the present work is, precisely, the study of the
Colloidal dynamics has been extensively studied for moreeffects of confinement on the dynamic processes in colloidal
than two decades in the case of homogeneous thresuspensions at finite concentrations, and in particular the ef-
dimensional3D) suspensionéf charged and hard spheyes fects of the hydrodynamic interactions. We consider the spe-
There, theory, experiments, and computer simulations haveific case of quasi-two-dimensional systems, i.e., colloidal
led to an understanding of many aspects of the dynamic presuspensions highly confined between two parallel walls.
cesses in the bulkl1-17. However, the description of those Here we are mainly interested in the effects of HI both be-
processes when they occur under confinement, is still in a faween particles and between particles and the walls. Thus,
less developed stage owing to the considerable additionave study concentrated systems where such effects are strong,
complexity introduced by the confining conditions. In this but we focus only on the short-time regime, where the effects
case, the dynamic properties are not only determined by thef the HI can be decoupled from those of the DI. In a recent
direct (DI) and hydrodynami¢HI) interparticle interactions, work[10] we addressed this problem and presented measure-
the motion of the particles is also coupled to the confiningments of effective two-dimensional quantities describing the
walls by DI and HI. This makes the description considerablyeffects of the HI. Here we study essentially the same prob-
more complicated than in 3D. The more striking effects are|em, but we provide a more extensive account of the experi-
perhaps, those arising from strong hydrodynamic coupling ofnental details and an extended presentation of the physical
the particles with the walls. For instance, the translatamd  quantities describing short-time dynamics, those measured in
rotation friction coefficient of an isolated particl@ scalar our experiment. We confine colloidal particlédiametero
guantity in the bulk moving close to a single plane wall =2.05 um, suspended in watebetween two parallel plates
becomes a tensor, with its parallel and perpendicular compaseparated a distancé€2.92 um) comparable to the par-
nents diverging as the particle approaches the wall's surfackicles size. The presence of the plates forces the particles to
[18,19. The presence of a secofmhralle) wall complicates form a single layer in the midplane parallel to the walls.
significantly the description. In this case the contributionsUnder these conditions, the particles motion occuorainly)
from an infinite number of reflections between the two wallsalong that plane since the motion in the perpendicular direc-
of the hydrodynamic flux of the suspending fluid have to betion is severely restricted. We use optical microscopy to ob-
incorporated 20]. For an isolated pair of particles close to a serve and record the in-plane dynamics of the particles in
single wall, a detailed study of the relative particles’ motionreal space. Thus, in our experiment we define and measure
has shown the strong effect of the hydrodynamic interactiongexperimentally accessible quantities as if the systems were
with the wall[7,8]. These examples illustrate the determinantstrictly two-dimensiona(2D). However, although the motion
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of the colloidal particles is essentially two dimensional, the j
motion of the suspending fluid is not restricted to 2D. Thus
the measured quantities, defined analogously to those d
scribing the dynamic properties in bulk suspensions, are i
reality effective 2D quantities containing the effects of the §
confinement that we want to study. The formal derivation of

tal system would have to incorporate a number of rather|
complex effects, such as thdirect and hydrodynamjdn-

teractions of the particles, not only among themselves, bu
also with the confining walls. Thus, its derivation will be

in the following sections. Interestingly, we find that the prop- K&
erties thus defined and measured exhibit a qualitative beha
ior strikingly similar to their 3D counterparts. This indicates
that, in spite of all the complexity involved, the description
of the dynamics of colloidal particles in quasi-two- A
dimensional geometries can be cast in a fashion formally n§2"ticles’ diameterr=2.05 um.
more complicated than in the case of 3D bulk suspensions.

Clearly, this observation should serve as an important guidet-Ion of the particles is along the plang,y) parallel to the

line for the future development of the theory of the dynamicswa”S' Thus, the mobile species constitute an effective two-

of confined suspensions. A computer simulation study, of thg:men&?nal 90II0|<SjaI suspeqsrl]og,_ﬁhomogeneous al_ong tr]:e
HI effects on the dynamic properties of colloidal particlespan? of motion. Systems with difierent concentrations o

confined in a similar geometry as in our experiment haém’bIIe pamcles were prepared following th|_s procedure and
been reported by Pesclaad Naele [9]. In that work tHe they remained stable for several months. Figure 1 shows an

. _ 2 . .
authors use Stokesian dynamics to account for the HIMage of are@=76x56 um"of a sample with mobile par-

particle-particle, and particle wall, in systems of charged andi'Cles area fractlo_rk/)az mn*/4=0.38, n*=no” is the re-
neutral particles. Although that work is similar to ours, the duced concentration, amis the average number of particles
authors study different systems and conditions. Thus, a diredt the areaa. The image was takgn using an optical micro-
quantitative comparison between their computer simulatiors¢°P€ With @ 4& objective. In this figure only the mobile
results and our experimental data(imfortunately not pos- particles can be seen, but fixed spacer particles are scattered

sible at this stage. In Sec. Il we give a more detailed accourﬁrou”d the area of observation. We obtained identical results

of the experimental methods. In Sec. Il we present and disio" the physical quantities of interest from measurements at

cuss our results, and in Sec. IV we present our conclusiond

FIG. 1. Top view of a quasi-two-dimensional colloidal suspen-
sion of area fractionp,=0.38. The image is 7656 xm? and the

ifferent sites of the system.

Il. METHODS B. Digital video microscopy

The systems are observed in real space using an optical
microscope with a 48 objective. The motion of the par-

Agueous suspensions of polystyrene spheres of diametticles is recorded using a charge-coupled dey@eD) cam-
0=2.05-3% um and 0,=2.92+3% um (Duke Scien- eracoupled to a videotape recorder. Images are digitzesl
tific) were extensively dialyzettialysis bags of 50000 mo- Fig. 1) using a frame grabber with a resolution of 640
lecular weight cutoff against nanopure water to eliminate X480 pixels. With our setup we measuse=16.8 pixels.
the surfactants in the original batches. In a clean atmospheiEhe position(i.e., thex andy coordinatey of every particle
of nitrogen gas, the suspension of small particles is mixedn the field of view is determined from the digitized images
with a small amount of large patrticles. A little volume of the using the method devised by Crocker and Gf&t|, which
mixture allows us to locate the spheres centers with a precision of 1/5
(=1 ul), is confined between two carefully cleaned glasspixel (~0.01o). The particles motion in our system is quite
plates(a slide and a cover slipwhich are uniformly pressed slow; they move on average only a small fractioncobe-
one against the other until the separatiorbetween the tween frames. Thus, their 2D trajectories can be easily recon-
plates coincides witlr,. As a result, the large particles are structed, with a time resolution of 1/30 s, from their positions
fixed in a disordered configuration across the sample, servingt consecutive frames. From the trajectories, we obtain vari-
as spacers between the plates. The system is then sealed withs effective 2D physical quantities describing self-dynamics
epoxy resin(Epo-Tek 302, and the species of small mobile and collective dynamics, as we explain below. All the results
particles is allowed to equilibrate in this confined geometrypresented here were obtained from the analysis of at least
for a few days at room temperature (2£.3.1°C). Under 10* video frames in runs of 120 consecutive frames. Figure 2
these conditions, the motion along the directmrperpen- shows the trajectories of the particles in the system shown in
dicular to the plates, is almost suppressed, and the main mé-ig. 1, as obtained from one run.

A. System preparation
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11 5 L e E R ¥ ] . . . . .
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. T ¥ oo ¥ . f ; P
e Vs ame ; s E T hard disks. In order to check this observation more quantita-
T o ey gy £ LI PO T . . . .
:a, AR IR v N Y, o tively, we run a computer simulation using the Monte Carlo
100 e " 72, T et e Ly TR T T a (MC) algorithm for strictly two-dimensional systems of hard
% Y e e v, .t A R . . . .
s | i* N A R SN D PR disks of diameterr at the same area fractions of the experi-
e coow 7 ¥ gy 2, " | i
NAAT R T T IR ,3‘\" mental systems. As one can see here, the ¢{€) (solid
® L g * 3 E « " . . . . .
) SN TP TR Y S . lines in Fig. 3 follow closely the experimental results with
0 8 160 240 [CB?X ]400 480 560 640 gmall deviations. Thus, according to this comparison, the
) dominant component of the interparticle direct interaction is
FIG. 2. Trajectories of the particles in Fig. 1 obtained from 120'[_he excluded volume interaction. However, the facts that the
consecutive video frames. first peak of the experimentg(r) is not exactly at contact

and small but consistent discrepancies are observed between

the simulated and the experimental radial distribution func-

tions are indications of the existence of an additidisatall)

A. Static structure component in the effective particle-particle interacting poten-

rJ&al. This is an interesting and important matter in its own
ight, but is not within the main subject of the present work.

e will provide a more detailed discussion of these and

ther complementary experiments in a separated report.

Ill. RESULTS

Before discussing the dynamic properties, let us prese
measurements of an important equilibrium property of th
system which depends only on the direct interactions,
namely, the static structure. In real space it is characterized
by the radial distribution function; the conditional probability -
of finding a particle a distance far away from a central B. In-plane self-diffusion
particle. In our quasi-two-dimensional systems we measure The in-plane Brownian motion of individual particles,
the in-plane radial distribution functiog(r), with r being  also referred to as self-diffusion, can be described in terms of
the projection of the distance between particles’ centerg simple quantity, namely, the particle’s mean squared dis-

along the planex,y). Figure 3 shows the measurg(r) for placement(t) given by
four different particle concentratioridots with dashed line

o . . 1
As it is seen here, the structure increases as the concentration W(t) = Z([Ar(t)]z), 3.0
20| — MC(2D) whereAr (t)=r(t) —r(0) is the particle’s in-plane displace-
=-< expt. ment at timet, and the angular brackets represent an equilib-
¢,=0.23 rium ensemble average. However, a more general quantity
1.0 ¢ describing self-diffusion is the normalized probability distri-
bution functionP(Ar,t) of single particle displacementsr
= at time t, with W(t) being only its second moment, i.e.,
5 %0 W(t)=2%[dr(Ar)?P(Ar,t). These quantitiesP(Ar,t) and
20 W(t), are determined in our experiment directly from the
particles trajectories. For homogeneous and isotropic sys-
tems in thermal equilibrium it should happen thH¢Ax,t)
10l =P(Ay,t), with P(Ax,t) and P(Ay,t) being the normal-
’ ized probability distribution functions of displacements
along the directionsx and y at time t, respectively, and
00 P(Ar,t)=P(Ax,t)P(Ay,t), with |Ar|?=Ax?+ Ay?. In Fig.

00 10 20 30 00 10 20 30 40 4 we compare results foP(Ax,t) (open symbols and
P(Ay,t) (closed symbolsat different times, only for the
FIG. 3. Measured in-plane radial distribution functigtr) of ~ System with¢, = 0.38(the results for other area fractions are
quasi-two-dimensional colloidal suspensions for four different areasimilan. This figure shows that in the quasi-two-dimensional
fractions(dots with dashed line The solid lines are the radial dis- Systems studied here the equalRyAx,t)=P(Ay,t) holds,
tribution functions of strictly 2D systems of hard disks at the same.€., the motion of the particles along the directiois indeed
area fractions obtained by Monte Carlo computer simulations.  independent and equivalent to the motion in the direcjion
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0.018 -
12 e . /
o P(Ax, t=0.033 s) 0.012
¢ P(Ay, t=0.033 s) “v
8 ['a P(AX, t=0.5 ) l =
» P(Ay, t=0.5 s) =
* P(Ax. t=1.0 s) 0.006 |
.l + P(Ay,1=1.0 s) | ;
- P,(Ax;) g - DY
0 o/ 02 04 06 08 1
0 - : T t[s]
-0.5 -0. -0.1 0.1 0.3 0.5
AX/G,Ay/G FIG. 5. Effective 2D mean squared displacem@f(tt). Close

(,=2.3x10"%) and open ¢,=0.38) circles are experimental
FIG. 4. Probability distribution functions of single particle dis- data from video microscopy. The solid line is the initial linear be-
placements in the directionsandy for different times(symbols. havior of W(t) in the system with¢,=0.38, and the dashed line
Here one can see that the motion of the particles along the perpegerresponds to free diffusion in 3D.
dicular directions is symmetric, independent, and equivalent. For
comparison, we show the Gaussian functions with zero mean valughus, the individual lateral motion of the particles in our
and dispersion/{Ax%(t)) (solid lines. In this systemp,=0.38, but  systems is essentially a Gaussian random process character-
similar results are obtained for other area fractions. ized only by its first two momentgAx(t))(=0) and
o  ([AX()IP)[=2W(1)].
This indicates that the systems are homogeneous and isotro- Figure 5 shows the measur®d(t) only for two illustra-
pic along the ky) plane. Then, we can write V() tive cases, a highly dilute systeng{~2.3x10 %) and the
=([Ax(1)1%)=([Ay(1)]?). Thus, we can describe the self- most concentrated system studied hede,£0.38). In the
diffusion properties using only eithd?(Ax,t) or P(Ay,t).  dilute system(closed circle} the effects of the interparticle
In this figure one can see that the functioR6Ax,t) are jnteractions, direct and hydrodynamic, are negligible and
symmetric, centered aroundix=0. Initially they are very \(t) contains only the effects of the particle-walls hydrody-
narrow, and then they spread out as time increases due Kxmic interactions. The effect of the direct interaction be-
self-diffusion of the particles. In isotropic systems of nonin-tween the particles and the walls is the particles confinement.
teracting particles th&(Ax,t) are Gaussian functions with For this concentrationW(t) is shown only for short times
(Ax)=0 and dispersion/(Ax?(t)) [22]. For 3D colloidal  since reliable values oWV(t) at longer times requires the
suspensions at finite concentration, the corrections to thgnalysis of a considerable large amount of data. The dashed
Gaussian form introduced by the interactions between théne in Fig. 5 isW(t)=D,t, corresponding to free diffusion
particles are negligible anB(Ax,t) are very well approxi-  of the same particles in 3D, with,=kT/37 7o being the
mated by Gaussian functioi@3]. In the case of confined free diffusion coefficient. Comparison of the initial slope of
particles, one can ask whether the in-plane particles displacgy(t) in the dilute systemD =8.28x10"'° cné/s, with
ments are also random variables with Gaussian distributiong j=2.59x 10°° cn¥/s, shows that the hydrodynamic cou-
or the effects of the walls change the qualitative behavior objing of the particles with the walls has a strong effect al-
the individual motion of the partiCleS. ThUS, one could CheCkready on the motion of isolated partide@;is On|y about
how well the experimentaP(Ax,t) in Fig. 4 fit to Gaussian 309 of D,). At finite concentrations, in addition to the ef-
functions. We proceed here as we did in previous paperfects from the walls, the individual motion of the particles is
[3,10. We compare the measur&{Ax,t) with normalized  also affected by the interparticle interactions, leading to a
Gaussian function®y(Ax,t) having zero mean value and further reduction of the particles mobility, i.e., to lower val-
dispersiony2W(t), i.e., ues forw(t) (open circles In the bulk of homogeneous 3D
systems, the mean squared displacement increases linearly
Ax? 39 with time at short timesi.e., W(t) =Dgt] and it bends down
\/Tw(t)ex AW | 3.2 at later times due to the effect of the direct interparticle in-
teractions. The quantitp=Ilim,_ oW(t)/t is referred to as
Figure 4 shows also the functior,(Ax,t) (solid lines,  the short-time self-diffusion coefficient and its value de-
constructed using the measured mean squared displacemeneéasesfrom D= D, at infinite dilution as the particle con-
W(t). As one can see here, the measuréd x,t) coincides centration increases due to the interparticle hydrodynamic
with the Gaussian distribution functions in a wide range ofinteractions. The same features are observed in the quasi-
times (similar results are obtained for other concentrations two-dimensional systems. The solid line in Fig. 5 is a straight

Py(AX,t)=
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line with its slope DY) determined by a linear regression 20 || (a)
] t=0.033 s

1.0
C. In-plane collective dynamics: real space 0.0

using only the five initial experimental data poirfés166 $ = (®)

of W(t). As it is seen here, the linear regime spans up to ~ ° [\——_— |
about 0.5 s. For timets>0.5 s,W(t) deviates from the linear 3'8 i

behavior due to the direct interactions between neighborin¢f= ™ t=1.0s

particles. Thus, at finite particle concentrations, the initial =, 1.0 (/\—_ \_/\/*
slopeD¢ contains the effects of both the particle-particle and ;: 0.0

particle-walls hydrodynamic interactions. As it is seen here, (5 201 % t=2.0s \

the strongest effect comes from the hydrodynamic interac- 1.0 1 ‘ '
tions with the walls since the difference betweahandD 0.0

is smaller than the difference betweBg andD,,. 20 \ t=3.0 s \/\'

. . . 00 10 20 30 00
In this section we present results for the in-plane collec- r'c

tive dynamics. As mention above, we shall be mainly inter- ) ) ) )
ested in studying the effects of the hydrodynamic interac- FIG. 6. Measured effective two-dimensional van Hove function
tions. Thus, we focus on the short-time regime where thos&(":1)/n* vs r/o, at different times, for quasi-two-dimensional
effects can be decoupled from the effects of the direct intercolloidal suspensions witte) ¢,=0.23 and(b) 0.38.

actions. The general quantity measured in our experiment is . . .
the time correlation functiorG(r.t) of the 2D (in-plane pression for the van Hove function for strictly 2D or 3D
local particles concentratiam(r,t) at the(in-plane position s_ystems[wherer andr;(t) are 2D or 3D vectors, respec-
r and timet, i.e., G(r,t)=(LN)(n(r’,t=0)n(r",t)) with r tively]. It should be clear, however, that E@.S) is not the
=|r"—r| z;nd t’he aﬁgular brackets, represeniing an equilibgaxpressmn for the actual van Hove function for quasi-two-

rium ensemble average. The local concentration is written a@mensmnal systems. The derivation of such an expression,

n(r,t)=2jN=15(r—rJ—(t)), with N being the number of par- Certainly more complex than in 2D or 3D due to the presence

. . . . of the confining walls, is not pursued here. Instead, we dis-
.t'CIeS.'n the system ang(t) the (in-plang position of the cuss the dynamic properties of the confined colloidal par-
j-particle at timet. Thus,

ticles in terms of the effective 2D quantities introduced
N above and other quantities defined below.
G(r,t)={ >, S(r—ri(t)+r,(0)) ). (3.3 Figure 6 shows the measured effective two-dimensional
jr=1 van Hove functionG(r,t) for the systems with(a) ¢,

=0.23 and(b) 0.38. One can see here the contributions of
the self-correlation and distinct-correlation functions to the
total correlation functiors(r,t) at different times. For times
t<1 s, both components are clearly distinguishable from
each other, and at later times they merge together combining
their relative contributions t&(r,t). At time t=0, the self-

1.0 20 3.0 4.0

The correlation functiors(r,t), which describes the collec-
tive motion of the particles, can be split into two terms, the
self-part and the distinct parG¢(r,t) and Gy(r,t), respec-
tively. The former containing the ternjs=| and the latter the
termsj #1, i.e.,

G(r,1)=Gq(r 1)+ Gy(r,1), (3.4) part is a peaked function at=0 (data not showpn i._e.,
G4(r,0)=4(r) [see Eq.(3.5], and G4(r,0)=n*g(r), with
with g(r) being the in-plane radial distribution function. At times
t>0, G4(r,t) spreads out, due to self-diffusion, following a
G(r,t)=(8(r—ry(t) +r4(0))) (3.5 Gaussian function with dispersiof2W(t) as shown in Fig.

7, while the initial structure of the distinct part smears down
due to the loss of interparticle correlation as time evolves. In
1/ N fact, for very long times the dynamics of the particles is
Gy(r,t)=< E S(r—ri(t)+r,(0))). (3.6) completely uncorrelated and the distinct part is a constant,
N\ = i.e., Gy(r,t)—n* ast—o. Of particular interest is the time
at which the contributions o64(r,t) and G4(r,t) start to
' overlap. This time provides a quantitative way to define the
time span of the short-time regime. In the set(oéncen-
Strated systems studied here, the merging time is between 0.5
1s.

and

The quantityG¢(r,t) describes the process of self-diffusion
i.e., the self-correlation of individual particles, ag(r,t)
describes the time correlation between different particle
These correlation functionsG(r,t) and their self-part and
distinct parts, are defined and measured in our experiment as
if the systems were 2D. However, one should keep in mind
that in reality they are effective two-dimensional quantities
containing the effects of the confinement on the dynamic The dynamics of colloidal particles in 3D suspensions is
processes of the colloidal particles. We will refer here tousually studied in terms of the dynamic structure factor
G(r,t) as the effective 2D van Hove function since the defi-F(k,t), which is the quantity measured in dynamic light
nition given abovdEq. (3.3)] coincides with the formal ex- scattering experimentB.(k,t) is the Fourier transform of the

D. In-plane short-time collective dynamics: reciprocal space

021406-5



JESUS SANTANA-SOLANO AND JOSELUIS ARAUZ-LARA

PHYSICAL REVIEW E 65 021406
i 2 T T T
150 | 1
+ t=0.033 s
*t=0.1s
: s+ =028
100 | +t=03s
= .\\ _____ P (r»t)
= \
o :
50 [Ma. ‘\
LN \
RN
e
ey,
0 ANNILEL = s SN
0 0.2 0.4
rl o
FIG. 7. Measured5(r,t) vsr (symbolg compared with nor-

malized Gaussian function®y(r,t) (dashed lines of width
V2W(t). In this system¢,=0.38.

FIG. 8. Effective dynamic structure factbi(k,t) vs k at differ-
ent timesF(k,t) is a decaying function of time, and the decay rate
is increasingly faster for larger values of the wave vector.
3D van Hove fUnCtion, i.e., it is the time correlation function semble average of a phase factor which oscillates Very rap_
of the fluctuations of the local particle concentration ofqly at Jarge values ok. Thus,Hq(k) —0 andH(k)—D? in
wavelengthh =2#/k. Thus, the van Hove function and the ha large wave-vector limit.

dynamic structure factor describe the structural properties of Thus, an important advantage of describing the dynamic
colloidal suspensions in the real and in the reciprocal SPacroperties of 3D systems in the reciprocal space is that, at
respectively. At short times, the correlation functiB(k,t) short times, the HI and DI effects can be decoupled, with the
decays a$11,13 former being measured by the initial slope of the dynamic
3.7 structure factor. In our case the reciprocal space description

' of the dynamic properties is provided in terms of teffec-

tive) 2D dynamic structure factdf(k,t), defined here as the

where S(k)=F(k,t=0) is the static structure factor and Fourier transform of the measur&{r,t). AlthoughF(kt)
D3(k) is the short-time collective diffusion coefficient. Thus, defined in this way is not, strictly speaking, the actual dy-
the initial relaxation of thermal fluctuations in the local par- hamic structure factor of our systeni®r which a formal
ticle concentration is exponential, with a wavelength-€Xpression has yet to be derived should be clear that this
dependent time constant. A very important propertjbé(k)

F(k,t) =S(k)exd —k*Dg(k)t],

quantity describes the dynamic processes in the Fourier
is that it can be written as the ratio of two quantities; oneSPace as far as(r,t) provides the appropriate description in
[H(k)] describing the effects of the hydrodynamic interac-the real space(k,t) can also be written as the sum of two
tions, and the othefS(k)] being an equilibrium property t€rms,

that depends on the direct interactions, i.e:),f(k)
=H(k)/S(k). Thus, the initial decay of (k,t) measures the
effects of the HI. The functiom (k), referred to as the hy-

F(k,t)=F4(k,t)+Fq4(k,t), (3.8
drodynamic function, is expressed as an ensemble average $ith Fs(k,t) and Fq(kt) being the Fourier transforms of
the diffusion tensor®;(r"), i.e.,

Gq(r,t) andGy(r,t), respectively. Since both components of
G(r,t) can be determined independently through the par-
ticles trajectories, then both componentskgk,t) can also
H(k)=<1/NEﬁj:1R« D|j(rN)~Rexr(ik~ [ri—rD). be determined independently. Figure 7 shows the self-part of
G(r,t) vsr at short times(symbolg for the system with
) ) ) ) . ¢,=0.38. As one can see here, it is a very narrow function
This quantity has interesting general properties. The selfpf r and we have only few experimental data points defining
part, Hs=(k-Dy,(rN) - k), is independent ok and quantifies this function. Thus, the determination Bf(k,t) from a di-
the HI effects on single particle motioHls is the short-time  rect Fourier transformation of the experimental data might be
diffusion coefficient given by the initial slope of th&D) somewhat inaccurate. Figure 7 shows also a comparison of
mean squared displacemeWi(t)=([Ar(t)]?)/6, i.e., Hs  the measuredGg(r,t) with Gaussian functionsPy(r,t)
=DZ=lim,_,W(t)/t. Here,t—0 means the limit of short (dashed lines constructed from the measur@d(t). As one
times within the diffusive time regime. The distinct part can see here, the experimental data are very well represented

Hq(k) of H(K) (the termd #]) describes the hydrodynamic by Pg(r,t). Thus, in order to avoid inaccuracies in the deter-
coupling between particlelsandj. This quantity is the en-

mination of F(k,t), we proceeded in the following way for
021406-6
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FIG. 9. f(k,t) vst (symbols for various values ok. The initial
slope(lines) defines the effective 2D hydrodynamic functibigk). FIG. 10. Effective 2D hydrodynamic function, normalized with
the 2D short-time self-diffusion coefficient, for various concen-
short times {< 0.5 9. The distinct parf4(k,t) is obtained  trated systems.
by Fourier transforming the measurddy(r,t), and for ) ] . ]
Fe(k,t) we use the Fourier transform of tHey(r,t), i.e., drodynamic functionH (k) measured in 3D_ suspensions of
Fo(k,t) = exd —KAW(D)]. hard spherefl6]. AIth(_)ugh there is not a simple correspon- _
Figure 8 shows the results féi(k,t) vs k, at different dence between guasi-two-dimensional and _3D systems, this
times, for a system withp,=0.38. F(k,0)=S(K) is the ef- observation suggests that, perhaps, the main effect from the
fective 2D static structure factor, the wave vector space anaValls can be accounted for by the valuedy [the largek
log of g(r). For this particle concentratios(k) is a highly  limit of H(k)].
structured function of the wave vecthy exhibiting several
well defined maxima and minima. Far-0, the curve of E. Self-diffusion versus collective diffusion

F(k,t) vsk decreases with time and the decay rate is increas- Dynamic light scatteringDLS) experiments in 3D sus-

ingly faster for larger values of the wave vector. F“rther'pensions measure the correspondi) F(k,t), i.e., the 3D

more, the initial decay oF (k,t) vstis exponential, as it is  cqjlective dynamics of the particles. Self-diffusion dynamics
shown below. Thus, the overall behaviorfefk,t), shown in is obtained only at large wave vectors wheFgk,t)

Fig. 8, _is qualitatively similar to the general behavior of the _ F.(k,t). The distinct part of (k,t) vanishes in this limit,
dynamic structure factor of homogeneous 3D systems. Thugjce it is the configuration average of a phase factor that
in analogy to Eq(3.7), we define here the effective 2D hy- qijjates very rapidly wittk. However, at large values
drOdy”am":_‘;U”C“O""(k) as the initial slope of the function he correlation function decays very fast, and only the short-
f(k,t) =~k "S(k)In[F(k)/S(k)]. Figure 9 shows (k,t) VS {ime regime ofF (k,t) is obtained by DLS. Thus, in order to

t, for the system in Fig. 8, for various values kfAs itis  paye access to self-diffusion dynamics at larger tifies, to
seen here, the initial time-evolution bfk,t) is indeed linear F«(k,t) at lowerk], one has to resort to the assumption that
[i.e., the initial decay of(k,t) is expongn.ti.ail for a wide F(k,t)=F(kt) at values ofk=k, where S(k;)=1. This
range of values ok. Then, we use the initik-dependent  gqgumption is actually equivalent to the assumption that
slope off(k,t) to defineH(k). Figure 10 show$i(k)/D3,  F_(k; ,t)=0. As discussed in Sec. Il D, an important advan-
i.e., the effective hydrodynamic function normalized with theage of our experiments is that we can determine the self-part
initial slope of W(t), for four values of¢, . The structure of 5 the distinct part of the effective 2D correlation functions
H(k) shows that the HI contribute differently to the relax- jndependently in the real space. Then, we can determine the
ation of the particle fluctuations of different wavelengths, se|f- and distinct-correlation functions in the reciprocal space
and that the effect is larger for higher concentrations. Ongn the whole range of wave vectors. Thus, we can quantify
can also see here that single particle motion, characterized Qje relative contributions df(k,t) andF4(k,t) to the total

D (which depends only omp, but not onk), serves as a correlation functionF(k,t) for any value ofk, particularly
reference to the collective motion described Wyk), and  for k=k;. As discussed above, the self-part (k1)

that in the limit of largek H(k)—Dg. Deviations ofH(k) = exg—kAW(t)]. Thus, let us show the results for the distinct
from Dg are due to the fact that collective motion is not just part. Figure 11 shows the effective ZBy(k,t) vs k, at dif-

a superposition of the individual motion of the particles, ex-ferent times, measured in the system wijth=0.38. One can
cept at values ok whereH(k)=D3. Although in our case appreciate here the time and wavelength dependence of the
the HI between particles are combined with the hydrody-correlation function between different particlédots with
namic effects from the walls, it is interesting to see that thdines). One can also see here that the distinct paff @,t)
effective H(k) measured in our systems resembles the hydecays faster for larger values kfand it vanishes in the

021406-7
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copy. The particles form a single layer between the walls,
and execute essentially a 2D motion. However, the suspend-
ing fluid is not restricted to move only along the plane of
motion of the particles; it flows in all directions, coupling
(hydrodynamically the particles motion to the walls. Thus,
the system is not 2D, but quasi-2D. The particles dynamics is
described in terms of quantitie§(r,t), F(k,t), and their
% self-components and distinct components, defined and mea-
/ sured here as if the systems were strictly 2D, but which are
o025 | ‘/’ in reality quasi-2D. We found that these quantities behave in
f a very similar way as their 3D counterparts. We also report
measurements of an effective quantity describing the effects
; of the hydrodynamic interactiongparticle-particle and
Y particle-wallg in quasi-two-dimensional geometries, namely,
-075 5 3 " the effective hydrodynamic functiohl(k), defined by the
ko initial slope of the effective-(k,t). Interestingly, the quan-
tity H(k) measured here exhibits the same general features
FIG. 11. Time correlation function between different particles of the hydrodynamic function of 3D suspensions of hard
Fd(k,t) vsk at different timee(dots with Iines. Open circles are the Spheres_ In summary, the results reported here are an impor-
valuesk; of the wave vector wherg(k)=1. One can see here that tant step in understanding the dynamic properties of confined
Fa(ki ,)=0 for t=0. colloidal particles and in particular the role of the HI in re-
stricted geometries, and can serve as a guide for theoretical
and computer simulation studies of these phenomena. As an
additional result, we show that in our systems the particle
fluctuations relax only by self-diffusion at wave vectors
whereS(k) =1. This result is important for the interpretation
of measurements of colloidal dynamics by light scattering
hechniques.

Fd(k,t)

large wave-vector limifthe behavior of4(k,t) is similar to

its 3D counterpaiit The open circles represent the vallkes
whereS(k;)=1. This figure shows that (k; ,t) is vanishing
small in the neighborhood df=k; . Thus, in our quasi-two-
dimensional systems one can conclude thatk;,t)
=F4(k;,t). This is an important result that can be useful
concerning measurements by light scattering techniques i
3D systems, i.e., it provides experimental support for the
assumption that one can measure self-diffusion at wave vec-
tors where the static structure factor equals 1.

ACKNOWLEDGMENTS

This work was partially supported by the Consejo Nacio-
nal de Ciencia y Tecnologi(CONACYT, Mexico), Grant
Nos. G29589E and ER026 Materiales Biomoleculares, and

The dynamic properties of colloidal particles confined be-by Instituto Mexicano del Petteo, Grant No. FIES-98-
tween two parallel walls was studied by digital video micros-101-I.

IV. CONCLUSIONS

[1] N. A. Frej and D. C. Prieve, J. Chem. Ph@8 7552(1993.
[2] L. P. Faucheux and A. J. Libchaber, Phys. Rew4% 5158

Amsterdam, 199) p. 763.
[12] J. F. Brady, Curr. Opin. Colloid Interface Sdi. 472 (1996.

(1994

[3] M.D. Carbajal-Tinoco, G. Cruz de Lapand J. L. Arauz-Lara,

Phys. Rev. B56, 6962(1997.

[13] G. Nagele, Phys. Re272, 215(1996.
[14] C. W. J. Beenakker and P. Mazur, Physicd 26, 349(1984).
[15] M. Medina-Noyola, Phys. Rev. Let60, 2705(1988.

Lett. 79, 175(1997).

5070(1995.

[5] H. Acura-Campa, M. D. Carbajal-Tinoco, J. L. Arauz-Lara, [17] A. J. C. Ladd, H. Gang, J. X. Zhu, and D. A. Weitz, Phys. Rev.
and M. Medina-Noyola, Phys. Rev. Le80, 5802(1998. Lett. 74, 318 (1995.
L6] A.2H. Mgegcus, J. Schofield, and S. A. Rice, Phys. Rew6(: [18] W. B. Russel, D. A. Saville, and W. R. Schowalt@olloidal
5725(1999. . ) Dispersions(Cambridge University Press, Cambridge, 1989
[7] E. R. Dufresne, T. M. Squires, M. P. Brenner, and D. G. Grler,[lg] G. S. Perkins and R. B. Jones, Physica®9, 447 (1992.
. ?h?\’ﬂs' ge:i'r'e‘st;sn% ﬁlg(zgf’e?{ner Phys. Rev. Las 4976  [20] L. Lobry and N. Ostrowsky, Phys. Rev. 58, 12050(1996.
¥ S T » FTYS: ' [21] J. C. Crocker and D. G. Grier, J. Colloid Interface SET9,

(2000.
[9] R. Peschand G. Ngele, Phys. Rev. B2, 5432(2000. 298 (1996.

[10] J. Santana-Solano and J. L. Arauz-Lara, Phys. Rev. Bett. [22] D. A. McQuarrie, Statistical MechanicsHarper and Row,

038302(200)). New York, 1976.
[11] P. N. Pusey, irLiquids, Freezing and Glass Transitioadited ~ [23] W. van Megen and S. M. Underwood, J. Chem. Pigs.7841
by J. P. Hansen, D. Levesque, and J. Zinn-Juéfisevier, (1988.

021406-8



