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Supersensitivity in a chain of closely spaced electric dipoles with variable moments
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A chain of closely spaced oscillators is studied theoretically. The oscillators are interrelated electric dipoles
whose moments may vary within a wide range. An expression for the oscillator interaction potential is sug-
gested. On the basis of this potential, a one-dimensional nonlinear equation of motion is derived with allow-
ance made for dissipation and external driving. A numerical investigation is carried out, and various nonlinear
phenomena are revealed in the chain. Among them are the size effect and ultrasensitivity, i.e., a giant response
of the chain to extremely weak periodic perturbations. The findings are compared with previously obtained
experimental results on naturally occurring objects with similar structure. It is inferred that the model is
realistic.
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[. INTRODUCTION wide peaks at any moment of growth. They are smooth
curves obeying the Debye-spectrum dispersion relation. The
This paper deals with a system of closely spaced oscillatpoint is that dipole-dipole interaction in the chain has been
ing electric dipoles with variable and interrelated dipole mo-neglected when dealing with inhomogeneous media in ULF
ments in the presence of dissipation and perturbation. It is fields because of computational difficulties. Accordingly, at-
challenging problem to ascertain the behavior of the systertempts to relate the giant susceptibility bursts at ULFs to the
even in a one-dimensional case. In practical terms, thigiant mechanical response resulted in rather academic mod-
model may provide valuable insight into remarkable phe-els of gas breakdown in microcracks of crystalline-hydrate
nomena in some types of heterogeneous condensed medgikates under compression. The models imply that a ULF
that has been exposed to an electromagnetic field of an upeak may arise in input-power spectral density, which leads
tralow frequency(ULF) below 1¢ Hz. The medium consists to a singularity in the ultrasensitivity spectry®). The peak
of a nonconducting or semiconducting continuous phase andould be noticeable if the charge relaxation timef the
inclusions with liquid or quasiliquid conducting sheaths. sheaths was about 10 ?s and the particle size was in the
Such structures are usually formed in almost any insulatomicrometer range. In realityy=1/Q~10"°s, whereQ~5
during a phase transition. They permanently exist in powders< 10* Hz is the frequency corresponding to the maximum in
and water-saturated rock. They are also basically similar talielectric loss. Furthermore, the models state that a ULF
certain systems of cells in organisms. A realistic model ofpeak arises only if each physical property of the gas in mi-
such media should take into account the close spacing of therocracks is within a very narrow range. The above consid-
oscillators and the variation in their dipole moments. Other-erations have led us to the conclusion that a chain of closely
wise, many interesting phenomena may be overlooked.  spaced oscillating dipoles with variable moments should be
Among the phenomena is the ultrasensitivity of crystal-used as a physical model of ultrasensitivity. In particular, this
line hydrates to ULF under strong compression. This reapproach could help one understand why the phenomenon is
cently detected effect manifests itself in the giant mechanicatonfined to a narrow ULF range, at least at the onset of
response to an extremely weak electric field in a very narrovexcitation.
ULF range where the field strength is lower than the electric To explain the above phenomena, a one-dimensional
breakdown threshold by a factor of aboutlC® [1]. Further-  chain of closely spaced oscillating electric dipoles is consid-
more, the frequency range shifts if the medium is hef2éd ered, witha and 2 standing for the average dipole spacing
The effect is preceded by giant bursts of dielectric susceptiand the charge spacing of a dipole, respectivélig. 1).
bility at ULFs, which apparently result from the formation of Based on this model, the total potential of the interaction
short-lived heterogeneous structures, including nonconducbetween the oscillators should be determined and the system
ing microinclusions with thin liquid sheaths containing mo- behavior under the action of an ULF electric field should be
bile ions. Susceptibility bursts in such media experiencingnvestigated. Recall that well-known models based on oscil-
ULF fields have been reported by many researckess the lator chains with nonlinear coupling typically imply that the
references if3]). The phenomenon stems mainly from the dipole moments are constant aagt 2r [4—7]. Although this
accumulation of extremely large amounts of polarizationapproach works well with certain quasi-one-dimensional
chargedfree anions or cationsat the poles of the microin- chains, it fails when applied to various systems where dipole
clusions so that the dipole moments of the oscillators changeharges vary by one to four orders of magnitude, depending
considerably. However, in contrast to dielectric-loss spectragn the oscillator spacing, oscillator natural frequencies, etc.
the reported shapes of ULF permittivity have no narrow orAccordingly, this study follows the course outlined in this
section. Also, we compare the computed behavior of the
chain with experimental data.
*Email addresses: fateev@ipm.uni.udm.ru and e@fateev.udm.ru  The structure of this paper is the following. In Sec. Il, the
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model describing the interaction between closely spaced di-
poles in a chain with strongly variable moments is given.
Solving the Euler-Lagrange equation with the help of the
corresponding potential of interaction, we find the nonlinear
equation of motion in this system. In Sec Ill, the actual order
of certain coefficients for this equation is evaluated. In Sec.
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FIG. 1. Configuration of the dipole-oscillator
chain (h=1,2,...N) with spacinga. Each oscilla-
tor represents a particle of diameter @vith a
sheath containing oscillating charges. The sheath
thickness may be-30—300A.
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IV, the results of the numerical computations are given. The n 12
existence of the dependence of the value of the maximal +acos<w) } , 2
level of polarization in the dipole chain with variable mo- 2
ments on the quantity of dipoles in the chain is demonstrated. L ] ] )
It is shown that this size effect results in the possibility of ~ Rn-1n={[@+r(siN¢n-1=Singy)]
supersensitivity in these chains or strong polarization at least 2 012
. . . ; . ) 0 + —
in one dipole oscillator in the chain when the entire chain is r*(Cos¢n-1~C0Sen)}
excneq by ultra-weak electromagnetic signals at yltralow frg- [, [ en— @n-1 en—@n-1
guencies. In Sec. V, the results of the computations are dis- =ja“+4rsin — 5 |
cussed. In the final part, the conclusions are given.
ent en-1 12
—aco{T) ] , 3)
Il. MODEL DESCRIPTION
The model is illustrated in Fig. 1. The potential energy R, in= ={[a+r(sing,_1+Ssine,)]?
will be calculated for the case ai>2r, wherea is the 5 12
average oscillator spacing ands the oscillator radius with +re(cospn—1+Cosen)“}
variable dipole moments. Thus, neighboring oscillators may B B
be in contact. Furthermore, we assume that the polarization —la?+ar cos( M) rcos( M)
level may be very sensitive to both the frequencies and the 2 2
strengths of local and external fields. Dipole-dipole interac- et o 112
tion will be treated in the Coulomb approximation. For the +asin ”—”1”} , (4)
respective oscillators, lep,_1, ¢,, and ¢,.; denote the 2
deflection angles of the dipole axes from the unstable- ) ) 5
equilibrium positions(Fig. 1). Then, the potential energy of Ra-1p={[a—r(sing,_;+singn)]
the oscillator system has the general form +r2(cos<pn,1+cos<pn)2}1’2
U — 1 E Qn 1Qn I:zn 10 Qn-1QnRn-1n ={a%+4r CO{%) I’CO%%)
" 4mee, G (Ry 102 (R 10)?
12
[ @t en-
Qn 1Qn n— 1n_ Qn 1Qn Rn 1n —asin RALERE 2n l)” . (5)
(Rn ln)2 (R+71n)2
- + +— ++
QF Qn+1Rn fer QnQniiRnnia In Eg. (:9 R, ~1n: Ri-1ny Racins Rocins Roners
5 R-)? Riynt1s anl, Rion+1 ,_denote th.e radius vector_s bet_vveen
(Ry, n, n+1) (Ryn+1 the respective charges in the chain. The respective distances
++ —— -+ +-
Qn Qn+1Rn n+1 Qn Qn+an n+1 Rrkn+1’ R_n,n+11 Bn,n+1’ arjd.Rn'n.Jrl between the Charges
R )2 R )2 : (D Qpi1s Qni1, Qn, @andQ,, in dipolesn+1 andn obey
n,n+1 n,n+1

Here, the distances between the charges of thel()th di-

pole and those of thath dipole are expressed as

formulas that can be derived from Eq2)—(5) by replacing
n with n+1 andn—1 with n. Finally, e is the relative per-
mittivity of the medium andg, is the permittivity of free
space. It is convenient to recast Ef) as
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Now, let us take into account that the charge of dipole 9

depends on external and local electric fields, the latter being

produced by the moving charges of dipotes 1 andn+1.

Assume that the other dipoles act on dipolenly indirectly  where 7 is the relaxation time of bound charges in sheaths
via the chain as a result of shielding. We neglect other physiande ande.. are the maximum static low frequen¢$LF)

cal and chemical processes in the oscillators and arounghd the minimum high-frequendgpptica) values of the per-
them that may affect polarizatioffor details, sed9-11)).  mittivity, respectively.

The contribution of external and local fields to the polariza- e coefficientc, is the number of elementary dipole

tion of any of the chargeQ, , Q, . Qu-1, andQ, 1 IS chargese that change the permittivity of the system by unity
assumed to obey the superposition principle, allowing for thgyyring polarization. Let the chain be subjected to a uniform

frequency dependence. For any oscillator, the frequencies @f;rmonic external field directed along the chain axis. In the
the positive and the negative charges are considered to be t ﬁ:inity of an nth oscillator, the field is expressed as

same. For each oscillator, let the dependence of the polariza-
tion on the frequencies of the local and the external figld

and (), respectively, obey the Debye dispersion Ig@y10].
Since (Q.|=]Q, ), the respective dipole charges of the
(n—1)th, nth, and @+ 1)th oscillators are expressed as

ESX= 2, ~1E sin( 27 Q1) cos ¢y). (10)

+
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Similar expressions describe the field near oscillators
—1 andn+1. To evaluatee,,, E,_;, andE,,, ; we assume
that the charge of dipole or n—1 tends toQ..=c.es., for
wy— and toQ,=c,(es—€,,) for w,— 0. Also, we assume
thatc,= const for each oscillator in the chain. The coefficient
B corresponds to the dipole charge that is induced in a field
of unit strength. In other wordg3 specifies the polarization
susceptibility of an oscillator. It is similar to dielectric sus-
ceptibility, which represents the relationship between the po-
larization and the field strength in a macroscopic dielectric
body. To a first approximation, we rega@ as a constant
here. In reality, it may depend on many other parameters.

Let us assume that the variableg are nearly identical
for neighboring dipoles at the same point in time. Accord-
ingly, if we perform the changaa—x and ¢,(t) — ¢(X,t)
in the continuum approximatiog,— ¢,,_1~ &, thenU;,; can
be expanded in terms of a small parameter as

de

ﬁon_‘Pn—lz‘Pnﬁ—l_‘PnNa&- (11

In view of Egs.(1)—(11) and the accompanying comments,
we obtain an expression fdJ;,, by passing to the limit for
a—2r+A in the expansion to second-order terms. In the
continuum approximation, it can be written as
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X c,=Q//e. (25)
Uint:mf gﬁle(X,t)Vz(X,t)X[—[P(t)005(90) non
° In the continuum approximation, expansion to the second-
+B(X,t)V3(x,t)]—B(x,t)[ P(t)cog ¢)V4(X,t) order terms yields
de 2
+V5(x,DV5(1) ] =~ BO,D[5P(t)cog @){Ve(x,t) Tk:ﬁﬂf %{Vl(x,t)JrB(x,t)Vg(x,t)Z—(P
e a X
+V7(X,0)}+9V3(x, 1) V(X )], (12 FBOCOVe(, 1) —z 1| =] (26)
X
with with
2E sin(27Qt) _
P(t)= W (13 V8(X-t):6raz cog¢)S; Z(X-t)u 27
—_ 3 ai -2
Si(x,t) =a%+4r2—4rassin(g), (14) Vo(x,t) = —5ra’sin(¢)S; “(x.t)
+36r2a* co(¢)S; 3(x,1). 28
Sy(x,t)=a?+4r?+4rasin(e), (15 a'cos(e)S "(x @8
Now, we assume that the dissipative forces are linear
— Cobles &) functions of charge angular velocities. Then, withdenot-
Admeeo[1+ (T¢)7] ing the dissipation parameter, the dissipation has the form
Vi(x,t)=P(t)cog o) + B[S, H(x,) = S; 1 (xD)], 1 den|?
(17) Dzzg Cnénl? ﬁt” . (29)
Vo(x,1) =S Y0+, YAx, 1), (18)

The above reasoning for the kinetic energy, including for-
mulas (25) and (7), can be also applied to the dissipation
function. In the continuum approximation, expansion to the
second-order terms yields

Va(x, 1) =S (X, 1) +S, H(x,1), (19

Va(x,t)=4ra?cog o)[S; 2(x, )+ S, 2(x,1)], (20

r2  dx d
V5(x,t)=—ra2cos(go)B(x,t)sl’1(x,t), (21 D= g?J?[Vl(x,t)ﬁtB(x,t)Vg(x,t)(9—:?
Ve(x,t)=2ra®sin(¢)S, ?(x,t) + 4r2a* co()S, 3(x,1), Po) (92
(22) +B(X,t)V9(X,t)[?—XZ' E (30)
— 3o -2 2.4 -3
V()= —2rasin(¢)S, “(x.1) +4r%a COSz((P)Sl (X(’;)s') The force with which the external field acts on the chain

can be expressed as

When deriving Eq(12), formula(6) was used, because in
the limit of a—2r + A, the first two summands in parenthe- o1 o
ses become negligible compared to the remainder. For the F=2e ESIn(ZTer); Qncoston)- 3D
same reason, each of the formu(&@$—(9) was used without
the first two summands that account for the interaction bewhere Q,, addictively depends on local and external fields,
tween like charges of neighboring dipoles. Obviously, thisaccording to Eq(7). Let us expandF into a series. By anal-
simplification is justified by the existence of potential wells ogy with Egs.(26) and (30), the continuum approximation
at ¢,= 7/2+n, which become deeper as opposite chargeyields
of neighboring dipoles grow owing to polarization.

Let c,, denote the number of uncompensated charged par-
ticles (such as cations or anionin the sheath of amth
oscillator so that the total mass of the charged particles at the
ends of thenth dipole is M,=c,m, each particle having
massm. Then the kinetic energy of the chain is given by

) dx
F=28_1ESIMZWQt)f?COi¢) Vi(x,t)

Jde &Zgo
+B(X,t)Vg(X,t) X +B(X,t)Vo(X,t) W] . (32

T :EE (%)2 (24) It follows from expressiongll) and (30) that the effec-
kKipa vl ot ) tive force applied to the chain is proportional to the squared
amplitude of the external ac field. Now, let us write the
Here, J,=c,mr? is the moment of inertia. Furthermore, in Euler-Lagrange equation with regard for dissipati8f) and
view of Eq.(7) perturbation
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do | dL +&(p aL é’L_ &D-I-F ) 33
ot \ ) T ox \Ggy) T8 g 0. 33

Here, the Lagrangian
L=Tyx—Ujnt (34

involves formulag26) and(12) for the potential and kinetic
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where
Viax,t)=2ra cog @)[S; ¥(x,t) - S; ¥Ax,0)], (42

Via(X,t)=—P(t)sin(¢) +4raAy

energies, respectively. In the continuum approximation, Eqgln addition,

(33) can be transformed into the following nonlinear motion

equation written in natural units

(92(P 2<p ) ~de
Wi— +Wo+ Xy— 7 + X, =Ty sin(¢) —I'p+ Dis—- =F.

(39

When deriving Eq(35), for each differentiation, we ne-
glected the terms with &/raised to the minimum power.
This simplification is based on the assumption tagl in
natural units. Introducing the notation

140 e 19290 &ch
(Pt_ﬁ1 (px_ﬁ_x’ @xt_m- ‘Pxx_a_xz'a

we write expressions for the functions appearing in &)
as

Wl(X,t) = 2MV1(X,t) + 2V2(X,I)V11(X,t)

X

[ 2
Vl(x,t)V3(x,t)+V10(x,t)([?—X) } (36)

Wi (%,1)=2M 7V (x,t) 5 +282Va(X,1) 1 B(x,1)

X4 V(X 1) V(X 1)+ V(X 1) 2 V5(X,1)
d I\ 2 e\ 92
+Ev10(x,t)(a—;f +2v10(x,t)(ﬁ—z)ﬁ ,
(37
where
Vio(X,1) =5P(t)cod ¢)[ Ve(X,t) + V7(X,t)]
+9V5(x,t)V(X,t), (38
2Ax T 4(Tet)?
V)= I G PP | T (re? ] %9
mr?
A=c.e(es—€), (40)

= M= —.
X Admee,’ 2e
Also, we have,

I'1(x,t)=M sin"Y(@)[Via(x,t) + 48r2a3MB(x,t)
r?(p)z
ot
+125sir( o) B2V1(X,t) V1 X, 1) [ P(t)cog @)
+B(x,t)Va(x,t)], Ty(x,t)=0, (41

X cof( @) Sy 3(x,1) oy

xcog@)[S; A%, 1) —S, A(x.)]. (43
X1(X,1)=2MB(x,t)Vo(X,1) o2+ 2 B2P(1)V(X,1)
X {5 cog @)[ Ve(X,1) +V7(x,1)]
+9Vg(X, 1) V(x, 1)}, (44)

Xo(X,1)=MB(X,1) % Vg(X,t) o2+ 2MB(X,t) % Vo(X,1) pZ ¢y
+ABV, (X, 1){2Vs(X,1) % Va(X,t)
+2V3(x,1) % Vs(X,1) = P(1)Sin(@) V4(X,t) ¢}
+ 18AB2V,(X,1){V7(X,t) % V3(X,1)

+ V(1) % VX, D} ¢y - (45)

Finally,

Dis(x,t)=2B8W{V;(x,t)+B(X,t)[ Vg(X,t) ox+ Vg(X,1) 0]

—B(X,1)(1+ 292 " WVg(x,t) iy, (46)
with
ér?
V=g (47)
and

F(x,t)=2& *EBsin27Qt)cog ¢)[V,(X,1)
+B(X,1)Vg(X,1) oy + B(X,1)Vg(X,1) ©2]. (48)

It is convenient to recast E435) in a form similar to the
sine-Gordon(SG) equation

Po L e, I
Here,
UOZ \ Xl(X,t)/Wl(X,t), (50)

is an analog of the maximum velocity at which a perturba-
tion propagates into the chain. Also,

00: \/Fl(x,t)lwl(x,t)

is an analog of the plasma frequency. In E&p), the level of
dissipation is represented by

(51)

n=Dis(x,t)/Wq(X,t), (52
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and the perturbation, by C (10® arb.units)

y(X,1) =[F(X,t) = W,(X,t) = Xo(X,t) + T'5(X,t) [/W1(X,1).
(53

With | denoting the length of the chain, we introduce the
boundary condition

e(0t)=¢(l,1)=0. (54)
Physically, condition(54) may correspond to an interphase

boundary, which is impermeable to the perturbations under
consideration.

[ll. ESTIMATIONS FOR THE COEFFICIENTS IN
EQUATION (49)

3

) - . 10
Let us find the values for the coefficients in E49) so 10* Qud

that the chain can simulate most closely the behavior of natu- 10° 10
rally occurring objects, such as disperse systems or long

chains of living cells. To this end, let us estimate the number FIG. 2. Evolution of polarization-level spectrum under the ac-
of uncompensated elementary charges in the thin quuidion of an extremely weak harmonic ULF electric field.

sheaths which determine the spherical shape of each oscilla- ) ) )

tor (Fig. 1). We assume that a particle of the majority carrierfrequency of the dipolg8]. Accordingly, all other things be-
has a chargee~1.6x10"C and a massm~1.6 INg the same, formulag6) and (30) imply that

X 10 ?7kg (its effective mass may be much largeFor ex-

X g . . o 1 dp\? 1 dp\?
ample, such a carrier may be af kbn, since its mobility is Zw,mmr? —| ~ —Srr2<—) ) (56)
much higher than that of OHor other anions and cations. 2 ot 2 ot
Let r~10-103m and a~3%x10 6-3x10 3m. The . .
sheath thicknesd may be set at about 10 °-10 8m [8]. Hence, we obtain the estimate
We assume that at leagt ~1% of water in the sheaths is i~ wrm~10"3,
dissociated and thag,~1% of the anions and cations con-
stitute the uncompensated charges. Then the density of el-
ementary charges that may be involved in polarization is IV. RESULTS
estimated at As is known, the disturbed SG equation has been solved
3 3 . analytically only in certain special casgt9]. Nevertheless,
C1=x1x247[(r+d)”=r"]py,0o(3m) we will demonstrate that motion E@49), which describes

the transmission of signals in disperse systems with double
electrical layers, allows resonancelike excitation at ULFs de-
) ) spite very stringent restrictions that were imposed on the
where p~10°kg/m® is the water density andnyo~3  equation. This section deals with the numerical analysis of
X 10™% is the mass of a water molecule. Eq. (49) with a constraint on the length of the chaithe

Thus, we see that the above estimate pagrees with the computational scheme is outlined in the AppendiXhe
well-known value of ~10"charge/mm [8]. Correspond- analysis aims at ascertaining the nature of the excitation and
ingly, Q" =c,e is ~10 '2-10°C. Strictly speaking, the to explore the possibilities for other effects.
parameters should depend on the thermodynamic and local As one would expect, the chain exhibits ULF ultrasensi-
properties of the medium. tivity in a wide range of relaxation times; ~10 -1 s.

We select the value of; such that the uncompensated Figure 2 depicts the evolution of the polarization-level spec-
chargeQ is no larger than 10'>-10"° C when the polariza- trum when the chain is subjected to an extremely weak har-
tion is at its maximum. The relaxation time is definedras monic electric field with a chain lengthof 1 m and a field
=r2/2D, where D is the volume diffusion coefficient of strength of E=10"V/m. Numerical analysis was per-
charges in the sheaths. The relaxation time is evaluated frofiormed with the following realistic values of the parameters:
the frequencyw = 1/7; which corresponds to the highest di- r=10"%m, a=2.1x10 ®m, 7,=1.6x10°s, c,=10,
electric loss. In the context of this studyw~6.29 ¢.,=8, £,=650, =1, é{=10 3 and m=1.6x10 ?"kg.

X 10%rad/s, so that~1.6xX10 °s. Moreover, the values of.., e, and r; are typical of dis-

Finally, consider the case of a disperse system. Fonthhe perse systems where manifestations of ULF ultrasensitivity
dipole, the fraction of its kinetic energgpart from thermal were first observed1-3] according to our interpretation.
fluctuationg that is converted into heat is proportional to the The values of anda are selected on the basis[df-3]. In
dielectric-loss tangeritg 5,,~ w,7 where w,7 is the natural this study, unless otherwise stated, the teotarization level

~10"-10" charge/mm, (55)
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C (108 arb. units) C (arb.units)

57
’ "'l,lll T
ho /'I;," - ,;‘;‘\\\‘m
y/
i
0

;}o.o,o:o::{lz,/lli{/’//"l//f%‘\\’ﬁi T
s ﬁ\\“‘%o‘““%
o iy \" 5
ey
S

"l,',;/"""l///‘u

7 W2

XL, RIS

wggﬁ“\\\%g&“\s;«
Sk

o
3% S

< S
S
SIS

FIG. 4. Polarization level vs time and chain length for an ex-
tremely small drive amplitude.

10

hand, the region occupied by the satellite resonances extends
FIG. 3. Polarization level vs drive frequency and relaxationto higher frequencies as the temperature is raised.
time. Remarkably, in the realistic model under consideration,
the chain exhibits the dependence of the polarization level on
means the number of elementary charges involved in polaithe chain length. Figure 4 illustrates how this size effect
ization c=Q/e. This number is determined from a con- changes with time fof)~31 Hz ancE as low as 108 v/cm.
tinuum version of formuld7), namely, In particular, the effect indicates that the chain may possess
an ultrasensitivity to ULF. On the other hand, ultrasensitivity
de arises only if the chain length exceeds a certain threshold.
Q(X't):ﬂ{ Vi(x, 1)+ B(X,)Vg(x,1) X Specifically, ultrasensitivity is impossible lifis smaller than
1 cm but is appreciable fdr-5—10 cm, withr ~10 ®m and
a~2.1x10 ®m (Fig. 4). In the latter case, the polarization
level increases by a factor of L0Furthermore, it was found
that the polarization level of a long chain exposed to an
after the spectrungp,(€2,t) has been computed. extremely weak field may be as large as that of a short chain
Let us examine the behavior of the chain under the actiofil <10 3m) subjected to a strong fieldig. 5. However, it
of a ULF field. It can be seen that the polarization-leveltakes a certain time for the response to develop after a har-
spectrum has a resonance-excitation portion<ifL s. Fort ~ monic field is applied with the delay increasing with The
>1s, this portion gradually changes into that of the disperabove behavior can be detected in spite of the considerable
sion law Debye characteristic. In the first stage, we observehanges in the pattern when any of the parameters are varied.
main-resonance peaks and satellite resonances tfor  The nonlinear nature of the above effects is demonstrated
>103s. With t—1s, they all shift to the region of) by Figs. §a) and 7. They show the polarization le\élig.
<10Hz. Such frequencies are called ultralow frequencie®(a)] and phase velocityFig. 7) as functions of the coordi-
ULFs. The dispersion properties of the chain at ULFs benate and time. Figures® and 7 clearly shows that soliton-
come apparent if th& axis is transformed to a logarithmic like excitations develop at both ends of the chain, with
scale. In the final stage, the characteristic does not follow the=1 m andt>0.2 s. Ift<0.1s when the chain responds reso-
Debye law in the strict sense. Instead, we can see a plateaantly, then the polarization level oscillates fairly regularly
disturbed at certain harmonics and occasionally disrupted bghroughout the chain exposed to an external field vih
subharmonic bursts. Indeed, the evolution of the~31Hz [Fig. 6] Afterward, these oscillations become
polarization-level spectrum depends on the parameters renore and more chaotic, starting from the chain endd. If
lated to the driving, the oscillators, etc. Nevertheless, the>0.2s, the chaos gives way to distinct periodic positive
pattern retains the distinctive features of Fig. 2 even whemursts. This obviously suggests that solitonlike standing
computed for other values dfand 7,. Figure 3 shows this waves develop synchronously in the chain. Arising at the
phenomenon in relation to the polarization level as a functiorends, they gradually extend to the entire chain. Clearly, any
of Q and 7. two neighboring dipoles occupied by any of the solitons os-
We note that a decrease i corresponds to an increase cillate in antiphase(since opposite charges of the dipoles
in the temperature of the chain. It can be seen that the freprefer a positive-to-negative oscillation patterfihis grow-
quencies of both the main and the satellite resonances aieg oscillation seems to end in the rotation of the dipoles in
virtually fixed when7; is varied within a wide ranger;  opposite directions. The chain thus acquires a special type of
~10°-10 ?s. A slight frequency shift occurs only when dynamics whereby the charges of a dipole move throughout
the chain is cooled in the region ef>102s. On the other the sheath. Specifically, the rate of polarization bursts is

(92<p
+B(x,t)V9(x,t)W] (57)
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10° level and sign throughout the chain. A deeper insight into the
10¢ [ phenomena described by the model could be gained from its
F two-or three-dimensional versions. Also, quite a different
2 10 i pattern may be obtained if we allowed for the magnetic field
510" | of the oscillating dipoles. At higher driving frequencies, the
€ 10° [ magnetic field must scatter a fraction of the concentrated
5’10.2 B charges in the region where solitons are formed. This factor
+F may reduce the polarization level at medium frequencies.
10 The size effect and ultrasensitivity in the chain are direct
ok

consequences of the strongly nonlinear coupling between the
dipoles. Their moments change considerably, primarily due
to the fact that, varies from 0 to about;~c,(es—¢€.). In

the context of this study, the maximum valueaf may be

on the order of 18,

As indirect experimental evidence for our theoretical re-
sults, we cite the giant response of strongly compressed crys-
talline hydrates to an extremely weak electric field in the
frequency range of 20—40 HZA-3]. This effect seems to
cause the pronounced loss of mechanical strefigtha fac-
tor of 1.5-2 observed in some cases certain compressed
crystal hydrates. Clearly, the ultrasensitivity spectrum of a

10 e 1(‘)4 1(‘)2 1(‘)1 1(')0 1(')1 1(')2 vy substance can be determined from the dip in the ULF spec-
h (m) trum of ;he threshold of mechanical strength. The beauty of
using this approach to design high-sensitivity ULF transduc-

FIG. 5. Polarization level vga) time and (b) length for Q ers consists in the following. We believe that ultrasensitivity
~31Hz. The solid and the dashed lines referBe-10"% and  is possible when crystalline hydrates experience short-term
10° V/m, respectively. phase transitions involving partial dehydration produced by

considerably nonuniform compression at a high pressure
lower than the pump frequency by a factor of abolfF&. (over 5 kbaJ or temperatur¢1—-3]. Under such conditions,
6(a)]. This is also confirmed by the power spectrin Figo)6  crystalline hydrates are basically heterogeneous media that
For example, if the chain is subjected to an extremely weakan be regarded as one-dimensional seas of nonlinear elec-
harmonic field withQ) =31 Hz, it exhibits polarization bursts tromagnetic oscillatorgideally, the oscillators can be re-
at the fundamental frequendy-5 Hz and its subharmonics garded as grains with double electric layer®n the one
2f and 3. It was found that subharmonics at other frequen-hand, the short duration of the phase transitions allows one to
cies may also appear and disappear as a result of bifurcatio@scertain the ultrasensitivity spectrum in the initial stage of
with respect to certain parameters. excitation. On the other hand, we believe that the model
furnished with realistic parameter values, such as those used
above, can provide an estimate of the average dehydration
time under highly nonuniform compression. The phase tran-

It follows from the above results that a resonance resition is sufficiently long for resonance electromagnetic ex-
sponse to a harmonic perturbation at any ULF develops duitation to develop with threshold parameter values allowing
ing three to five periods. Afterward, the chain is in a chaoticefficient detection of ULF ultrasensitivity from the mechani-
state for three to seven period3epending on parametgrs cal responséimpaired mechanical stabilitylf the threshold
Finally, its behavior changes to correspond to the Debye dissonditions of a pronounced response are aroused only by the
persion law. By this moment, the chain develops solitonlikemoment when the state of the excited system entered the
wave packets, which are confined to its ends or occupy thdispersion portion of the polarization characteristic, then su-
entire chain. These features testify to the nonlinearity of thepersensitivity would occur in the entire ULF region. Since
system dynamics, which obeys an SG-like equation. In simuthe latter was never observed, we can infer that the oscilla-
lating the oscillator coupling, the complicated and evidentlytion ceased growing as early as the resonance stage. For
nonlinear fashion in which the polarization level of any os-systems with a narrow resonancelike peak, ULF ultrasensi-
cillator depends on those of its neighbors was taken intdivity is most likely to occur at 26:Q) <40 Hz, according to
account, as well as the frequencies with which concentrateexperiment$1—-3]. Figure 2 demonstrates that this frequency
charges oscillate in them. The interaction between the oscikange corresponds to an excitation time of abdut
lators was treated in the Coulomb approximation, allowing~0.1-0.2s. Thus, we see that the attempts to attribute the
for the fact that the intercharge spacings vary with time.ULF ultrasensitivity of the heterogeneous media the
Indeed, if the parameters of the basic equations were varieépove-mentioned frequency range the Debye frequency
we could find many more trajectories, main and satellitedispersion only{1-3] were based on the highly overstated
resonances, and chaotic-region widths. Furthermore, weelaxation times for disperse systems~(10 2—~10 ). The
could observe domains in the distributions of the polarizatiorreason is that the early models relying on these values pre-

C (arb. units)

V. DISCUSSION
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dict that ultrasensitivity peaks will lie fairly close to the

ULFs at which the excitation threshold of the Bridgman ef-

fect decreases. In reality, experiments with certain model ob-

jects yield 7~10 °s at normal temperaturg3]. Further- C (10® arb. units)

b4 4
\\\\\\““
,l'\
\

more, the early models seem to be unable to adequately

explain the shift of the ultrasensitivity spectral peak in the 1 \\\\\\\\\\\ o
ULF region for crystalline hydrates under strong nonuniform ]‘o‘»ﬂ\\\\\\s‘\ A \\\\ﬂ\\ { \\\\\\\\\\,\,\ -
compression, the effect of which was first reportefizh By 0 ,,ﬁ\sg\:’,\\\\\ \\\\\\\ 1 \M\\ §
contrast, the model suggested in this paper attributes the -1 "3 t \\\ ‘/’ \\°”‘ &

slight of the peaks to higher frequencies shift as the tempera-
ture of crystalline hydrates is raised to the fact that the delay

is decreased below the threshold of electromagnetic spike as
early as in the resonance stage. The numerical analysis
showed that the decrease results neither from an increase in r,-,,,e(s) 05
the number of elementary charges in the oscillators under

heating nor from changes in the dissipation of oscillation 4S(arb' .
energy, oscillator diameter, or spacing, etc. We believe that a L
shorter time of phase transitions in the crystalline hydrates 5
under strong compression and heating leads to a shorter 10
resonance-excitation time, which in turn produces the shift to
higher frequencies. 100 |
It is worth noting that ultrasensitivity was also theoreti-
cally discovered in an overdamped Kramers oscillator sub- 1021
jected to a weak time-dependent signals with parametric ! ! ‘ . . !
noise [10]. Furthermore, high sensitivity to weak constant 0 5 10 15 20 25 30
perturbation and noise was studied in the context of a chiral QH2)

selective chemical reactidid1]. By contrast, the ultrasensi-
tivity examined here is induced by a weak alternating signal FIG. 6. (&) Polarization level vs time and the coordinate, &od
and the response level depends on chain length, excitatidhe corresponding power spectrum after averaging over the chain.
t|me and other parameters However the effect does ndihe data were obtained for an extremely small drive amplltude and
result from a radical change in the asymptotic behavior of!~31Hz.
the system(the crossoverin response to a noise-induced
perturbation of a parameter appearing in the model equdhat the chain may feature strongly nonlinear dynamics. It
tions. Instead, it is caused by nonlinear effects producingvas demonstrated that if a SLF harmonic field is applied to
giant narrow peaks of charge density in the chain. Consethe chain, the latter first experiences a resonance type of
quently, no crossover boundary conditions are required t@xcitation, then passes to chaos, and finally enters a state
test our model in experiments. with the Debye dispersion. During the first stage, the reso-
Finally, let us estimate the local electric fikg,, between nance frequency shifts to still lower frequencies and may
the sheaths of two neighboring oscillators. Existing for areach a fraction of a hertz. We also found some other inter-
limited period, the field arises when the dipoles intenselyesting features typical of many systems with nonlinear cou-
oscillate under local focusing during an electromagnetic
spike. The formulaE=Q?(4mee,mrq,) * yields Ejpy
~10"-10"V/cm, with the dipole charg€ set to its maxi-
mum value for the stated condition~10 ?>-10°C. 10°
Such charge spikes can cause a microscopic breakdown at '°
numerous sites together with shock waves and explosionlike 10
phenomena. This effect is possible in various materials sub- 9
jected to relatively weak ULF electric field&—3].

0, (arb. units)
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VI. CONCLUSION + il
2 2, .8

We examined the behavior of a chain of closely spaced
dipole oscillators §=2r +A) with interrelated and variable
dipole moments. To this end, a potential was determined for
the dipoles. On the basis of this potential, the Euler-Lagrange o AN
equation was solved and a corresponding one-dimensional
nonlinear-motion equation was derived. The latter was then FIG. 7. Phase velocity vs time and the coordinates of the chain.
transformed to a modified SG equation with dissipation.  The chain is driven at an extremely small field amplitude &hd

The numerical analysis of the above equations suggests31 Hz. The other parameter values are specified in the text.
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pling, such as the emergence of resonance frequencies tiynction ¢, ;= ¢(nh,ik) for ¢(x,t), we obtain the following
heating in the first stage and the formation of solitonlikeapproximate formulas:

objects in the third one.

Remarkably, the computation has revealed the size effect
in the chain. This implies that the model may possess ultra-
sensitivity to extremely weak periodic signals. We believe

= (@ni+1— Pni—1)/2k+0O(K?), (A1)

eu=(@nis1—2@ni+ @ni—1)/K*+0(k%), (A2

that such phenomena were observed in experiments with dis—,,=(¢p1j+1=2@ni+1+ Cn1i+1FT Pnt+1i-1—2¢ni-1

perse substances exposed to a ULF electric field3]. Ap-

parently, experimental evidence for the size effect was the

+¢n_1j-1)/2h*+0(h?+k?). (A3)

ultrasensitivity of crystalline hydrates in an appropriate dis'lnserting Eqs.(A1)—(A3) into Eq. (49 and neglecting the

perse phase, with the particle size lying in the millimeter
range[1-3]. With those media, ultrasensitivity arises if the

0O(k?) andO(h?) terms, we arrive at

amplitude of the perturbing signal is smaller than the a;(¢ni1j+1T@n—1j+1 T @nr1ji—1t@n—1j-1)ta2eni-1

electric-breakdown value by a factor of 1000.

Admittedly, we had to neglect many features of naturally
occurring oscillator systems with variable dipole moments.
Nevertheless, the paper has demonstrated some effects that

were previously observed in physical experiments. We thereyhere
fore believe that our approach can be used to predict phe-

nomena.

ACKNOWLEDGMENTS

+a3¢n,i+ 11400 = 05 SiN(@n )~ 7, (Ad)
n=1,2,..N; i=0,1..1,

a;=v2/2h?,  a,=(nl2k—v3/h?+1/k?),

az=(n/2k+v2h?+1k?), a,=—2/Kk>  (A5)

The author is grateful to T. V. Bakitskaya for his helpful Here, the parameters,, ®,, 7, andy are determined from

participation in discussions.

APPENDIX

To numerically solve Eq(49), we use an appropriate
finite-difference methodsee, e.g.[12,13). Using the mesh

Egs. (50—(53), respectively, withx=nh and t=ik. The
computational procedure for E§A4) with k=h is robust
only if the steph is less than 0.19]. If, e.g., | ~1000 and
N~1000 with h~0.001m andk=0.001s, thenl=Nh
=1 mandt=1k=1s, wherd is the chain length antis the
observation time.
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