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Symmetry-breaking instability and strongly peaked periodic clustering states
in a driven granular gas
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An ensemble of inelastically colliding grains driven by a horizontally vibrating wall in two dimensions
exhibits clustering. Working in the limit of nearly elastic collisions and employing granular hydrodynamics, we
predict, by a marginal stability analysis, a spontaneous symmetry breaking of the laterally uniform clustering
state. Two-dimensional steady-state solutions found numerically describe laterally periodic clustering states.
Well within the instability region the density of these states is strongly peaked, with most of the granulate
located in “density islands.” Time-dependent granular hydrodynamic simulations show that strongly peaked
states can develop from small-amplitude single-mode density perturbations.
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[. INTRODUCTION mation of laterally periodic clustering states. Then we inves-
tigate nonlinear steady states of this system numerically. We
Granular flows exhibit fascinating nonequilibrium phe- find that, well within the instability region, the density of the

nomena and continue to attract much intefds?]. We will laterally periodic clustering states is strongly peaked. Finally,
concentrate here on the striking tendency of granulafve report a series of time-dependent granular hydrodynamic
“gases” (rapid granular flowsto form dense clusterE3]. simulations that show that strongly peaked clustering states
Clustering results from energy losses by inelastic collisionsdevelop from small-amplitude single-mode density perturba-
and it is a manifestation of thermal condensation instability1ONS-
also known in other medi§4]. Since the discovery of the
clustering instability, the validity of granular hydrodynamics  Il. MODEL PROBLEM AND LATERALLY UNIFORM
[5] has been under scrutiny. In a freely cooling granular gas, CLUSTERING STATE

all grains eventually come to rest, making a hydrodynamic ¢ ,hgjger a big ensemble of identical spherical grains of
(and even kinetic description problematic. In ariven  giameterd and massny=1 rolling on a smooth horizontal
granular gas hydrodyngmlcs can be conver.uen.tly tgsted 08, rface of a rectangular box with dimensidns<L, . The
its steady states. The simplest system of this kind is a suljyyt of Ly—2 corresponds to an infinite strip. This impor-
monolayer of grains in two dimensions, driven by a vibratingtant |imit will also be considered. The number density of
sidewall at zero gravity. This and related “test bed” systeMsgrains isn(x,y). For a submonolayer coverage the maxi-
have been investigated by molecular dynafM®) simula-  mum value of n corresponds to theghexagonal close-
tions[6—8] and in experimenf9]. For sufficiently high av-  packing valuen,=2/(v3d?). Three of the walls are immo-
erage densities a clustering state was observed in these worlsite, and grain collisions with them are assumed elastic. The
away from the driving wall. This clustering state was almostfourth wall (located atx=L,) supplies energy to the granu-
uniform in the lateral direction in rectangular boX&s7,9], late. We will consider two different models of energy supply
and in the azimuthal direction in a circular bpg]. We will (see below. The energy is being lost through inelastic hard-
call this laterally(or azimuthally uniform clustering state an core grain collisions. We neglect the grain rotation and pa-
“extended clustering state(ECS. The basic physics of the rametrize the inelasticity of grain collisions by a constant
ECS is simple. Because of the inelastic collisions the granurormal restitution coefficient.
lar temperature decreases with increasing distance from the We assume atronginequality 1-r2<1, which makes a
driving wall. To maintain the momentum balance, the granu-hydrodynamic description valid6—8|. Therefore, steady
lar density should increase with this distance, reaching thetates of the system can be described by the equations of
maximum at the opposit€elastic”) wall. When the density momentum and energy balance:
contrast is large enough, the enhanced density region is ob-
served as the ECS. p=const, V-(«VT)=I, (1)
Comparisons of the steady-state density profiles obtained
in MD simulations of this class of problems with those pre-wherep is the granular pressure,is the thermal conductiv-
dicted by granular hydrodynamics showed that hydrodynamity, | is the rate of energy losses by collisions, ahis the
ics is valid only in the limit of nearly elastic collisions granular temperature. To proceed, one needs an equation of
[6—8,10. This limit has not been fully explored, and it is statep=p(n,T) and relations fok andl in terms ofn andT.
nontrivial. To demonstrate it, we start with a marginal stabil-In the low-density limitn<n, these relations can be de-
ity analysis of this simplest granular system. This analysigived from the Boltzmann equatiofb]. The high-density
reveals a symmetry-breaking instability of the ECS, and fordimit n,—n<n; was considered by Grossmagt al. [6].
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They also suggested convenient interpolations between thghole box and using the Gauss theorem and @y. It is
low- and high-density limits, and verified them by a detailedconvenient to write the governing equations in a scaled form.
comparison with MD simulations. We will adopt this practi- Introduce scaled coordinates.,—r so that the scaled box

cal approach{see, however, Sec. VIn our notation dimensions become XA, whereA=L,/L, is the aspect
ratio of the box. Introducing théscaled inverse granular
ne+n ; _ ;
p:nTnC_n' @ densityz(x,y)=n./n(x,y), we obtain
C
V- [F(2)Vz]=LQ(2). )
k= (u/n(al +d)?TY?2 andl=(u/y1)(1-r?)nT%2 Here
| is the mean free path of the grains, The boundary conditions are
1 ng—n V.z=0 at x=0, y=0, andy=A, (6)
l=—— : ()
V8nd Ne—an and
a=1—(3/8)"2, and« and y are numerical factors of order 1A
unity. Grossmaret al. [6] found thata=1.15 andy=2.26. f f Qdxdy
The value ofu, another numerical factor of order unity, is G(Z)g -7 0Jo @)
irrelevant in the steady-state problem. X/l _, A '
The boundary conditions include the no-flux conditions o Hlz(1y)]dy

V,T=0 at the “elastic” wallsx=0, y=0, andy=L, (V,
means the component of the gradient normal to the)wall The normalization condition becomes
Previously, the “thermal” wall conditiorT = const was used

atx=L, [6-8,13. We will use a different boundary condi- 1A

tion, to simulate the vibrating wall more directly. Our main Aflf f z tdx dy=f, ®)
results, however, will be shown to hold for the thermal wall 070

as well. When the system is infinite in the lateral direction,

Ly=2, only two boundary conditions remain, a0 and while the functionsF, G, H, andQ are the following:

X:LX. 2 . o A5 - 2

The problem of computing the energy flaxfrom a vi- F(z)= (z+2z71)[az(z 1/1);2 32/3(52/2 )] . (9
brating wall into granulate has been addressed in several (z—a)(z-1)"Z¥qz+1)
works [13]. Let the wall oscillate sinusoidally:x=L,
+Acoswt. For small area fractions the granulate near this _(#+2z-1)[az(z-1)+ 3213z~ a)]
wall is in the dilute limit. We assumA<I, so the vibrating )= z2(z—a)(z—1)(z+1)? » (10
wall does not generate any collective motions in the granu-
late. Grain collisions with the vibrating wall are assumed F(2) (z—a)(z—1)12
elastic. Also,w is much larger than the rate of granular col- H(z)= @ and Q(z)= (z—+1)372?’2_ (12

lisions near the vibrating wallT*%1, so there are no corre-
lations between two successive grain collisions with the wall
The limit Aw<TY? was considered by Kumardn4] for a
nonzero gravity. We will work in this regime. Direct calcu-
lations analogous to that of Kumarft¥], but for zero grav-
ity, yield q= (2/7)Y2A?»?n T2 In the language of hydrody-
namics,q is the heat flux at the wall:

Finally, £=(32/3y)(L,/d)?(1—r?). The other two govern-
ing parameters are the grain area fractfen({n)/n. and A.
For an infinite stripA=o, and one is left with only two
governing parameters; andf. Notice that the steady-state
densitydistributions are independent A&fand w (in contrast

to problems with nonzero gravity, where the gravity accel-

kdTlox=q at x=L (4) eration, combined with the maximum wall acceleration?,
X forms an additional governing parameter
For this hydrodynamic relation to be validcalculated near Equations (5)—(8) make a closed set. Their one-

the wall should be much smaller than the characteristiimensional(1D) (y-independentsolution Z=Z(x) is de-
length scale of the gas phase, which, for typical parametergcribed by the equations
we are interested ifsee below is close to mini,,L,). Fi- .
nally, (FZ')'=£Q, Z'|,-p=0, and f z dx=f, (12
1 Lx I-y °
LiLy fo fo n(x,y)dx dy=(n)=const where the primes stand for thxederivatives. Equatio7) is
now satisfied automatically. Equatiori$2) coincide with
is a normalization condition, whex@) is the average grain those obtained by Grossmai al. [6] for a thermalwall at
density. x=1. Therefore, the density profiles of the 1D states coin-

Using Eq.(2), we eliminateT in favor of n andp. Inits  cide for the different types of driving. Equatiofk2) can be
turn, p can be eliminated by integrating E¢l) over the solved analytically in the high- and low-density limi§].
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FIG. 1. Marginal stability curve&, (f) for different values of FIG. 2. Critical values of the aspect ratig(f ), needed for the
L. The values ok, are divided by£1’2. For a fixed( the ECS is  instability to develop, for different values af. The values ofA
unstable below the corresponding marginal stability curve. are multiplied by£'?.

These solutions clearly show that the criterid®)] for the  values ofz, the marginal stability curvek, =k, (f) found
validity of hydrodynamics is equivalent to a strong inequal-numerically. For a fixedZ the ECS is unstable for anky
ity 1-r?<1. <k, (f), that is, below the corresponding marginal stability
Most interesting among the 1D states is the state with @urve. Interestingly, thi, () curves have compact support:
dense clustefan ECS located at the elastic wall=0, and a  the ECS remains linearly stable fany k beyond a finite
low-density region elsewhere. In this case E(<) should interval of the area function,(£)<f<f,(£) such thatf,
be solved numerically. Examples are presented in F&f. >0 and f,<1. As £ increases, the instability interval
and a similar clustering stat€S) has been observed experi- (f1,f,) shrinks, while the maximum value df, (f) in-
mentally[9]. The main objective of this work is to show that creases. This increase can be approximately described as
this laterally uniform state can give way, via a spontaneoug™ma—(/140).2 We used this approximate scaling in Fig.
symmetry breaking, to CSs periodic in the latefl direc- 1'tg show, on a single graph, the marginal stability curves in
tion. First, a marginal stability analysis will show loss of 5 proad range of.
stability of the ECS in a certain region of parameters. Then, \whenf<min(1,£~Y?, the asymptotics ok, (f) can be
solving Egs.(5—(8) numerically, we will find that, well  ¢5nqg analytically. In this case the whole granulate is in the
within the instability region, the density of the periodic CSs y;,te limit, z>1 (still, it is necessary to account for the
becomes strongly peaked in the lateral direction. Fi”a"ysubleading terms In addition, Z(1)—Z(0)<Z(0) in this
time-dependent granular hydrodynamic simulations Wi”case, so Taylor expansion Bx) and(x) up tox* suffices.
show that strongly peaked CSs are dynamically stable ander some algebra, Eq$12)—(14) yield
can develop from small-amplitude single-mode density per-
turbations in boxes of a finite size.
L34 (1+a)Lf3]2
Il. SYMMETRY-BREAKING INSTABILITY AND Ke= 3a? - a? '
STRONGLY PEAKED PERIODIC STATES

(15

We start with a marginal stability analysis of the ECS. t follows from Eq. (15) that f,(£)=3a?(1+a)L£ . Our
Linearizing Eqs(5)—(8) around the EC&=Z(x) and look-  numerical results shown in Fig. 1 are in excellent agreement
ing for a small correction in the form afy(x)cosky), where  ith these predictions.
kis the lateral wave number, we obtain Therefore, marginal stability analysis predicts a

. 5 _ symmetry-breaking instability of the ECS. For the infinite
F¢"—(LQz+kF)$=0. (13 strip, the instability occurs on a finite interval of the wave
numbers. In a system with finite lateral dimension the lateral
wave numbel is discrete because of the boundary condi-
tions: k=a7m/A, wherem=1,2,.... Let us fixZ andf and
¢'|4_0=0, [FG¢'+Z'(FG,~GF;)]|y_,=0. find the critical values of the aspect ratlg,, such that at
(14) A> A, the ECS loses stability with respect to timh mode.
Obviously,A(£,f)=mA,(L,f). For the moden=1 (this
The functionsF and G that enter Eqs(13) and (14) are  mode can also be called2, that is, one-half of the wave-
evaluated az=2Z(x). length across the system in the lateral diredtithe critical

For fixed values of andf, Egs.(13) and(14) represent a aspect ratidd; is the lowest. Figure 2 shows, for different
linear eigenvalue problem for the lateral wave numbdret  values of £, the critical aspect ratios\=A,(f). The
us first consider an infinite strih —o, when these eigen- symmetry-breaking instability develops in the parameter re-
valuesk=k, are continuous. Figure 1 shows, for different gion abovethese curvegwithin instability tongues Note

Here ¢=F . and the indeXZ means the derivative evalu-
ated atz=Z(x). The boundary conditions are
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0.005 0.015 0.025 0.035 each picturg corresponding to points(d), 2(b), 3(c), and 4d) of
f Fig. 3. The maximunm(minimum) density at the walk=0 is 0.76
(0.036 (@ and (b), 0.48(0.2) (c), and 0.54(0.10 (d). The gas

FIG. 3. Critical values of the aspect ratids,(f) for m=1  density at the vibrating wak=1 is close to 410 for all pro-
(solid line) and 2(dashed lingand £=5x10*. Two-dimensional files.
density profiles corresponding to points 1, 2, 3, and 4 are shown
below in Fig. 4. The dotted line shows the critical vallug(f ) for block” of the corresponding nonlinear periodic solutitsee
the “thermal wall.” below). Note that the weakly modulate@osine-like solu-

tions, considered in our marginal stability analysis, represent
that these curves can be obtained from the curves shown i Small-amplitude limit of these nonlinear periodic solutions.
Fig. 1 by simply calculating\,(f )= w/k, (f ) for the given Figure 4 shows two-dimensional density profiles of four
L. typical steady states wittm=1 and 2. Strongly peaked

For sufficiently largec, A(1min) becomes less than 1, so (highly nonlinea} M2 and\ states are ev?dent in Figs(a} '
one does not need a long strip to observe the symmetry"-‘nd 4b). Figure 5 ShOWS the Qen5|ty profile ann_g th_e elastic
breaking instability. Figure 3 shows the instability tonguesWall x=0, corresponding to Fig.(). Strong localization of
m=1 andm=2 for £L=5x10". For higherm we obtain the .granulat.e.ln the Iate_ral dlrect|on is clearly seen. T_he
modes &/2, 2\, 5\/2,..., which fit in boxes with increasingly Maximum/minimum density ratio along the elastic wall is
larger aspect ratiosy >mA; . about 21 in this example. ,

We also found a similar symmetry-breaking instability A mirror reflection of Fig. 4a) with respect toy=0
when the wallx=1 (in scaled unitsis “thermal.” Solving ~ MakesA=2 and produces a state similar to that shown in
the corresponding eigenvalue probldmhere the second Fig. _4(b). A_nonllnear perloth so_lutlon for_ an |nf|n|j[e strip is
boundary condition in Eq14) is replaced by (x=1)=0], optalned S|m_ply by extending Flg(b!) p(_arlod|ca_lly in they .
we obtained marginal stability curves similar to those for thediréction. This strongly peaked periodic solution looks like

‘islands,” or strongly localized CSs. Ob-

vibrating wall, but more narrow. As an example, the dotteg®” Infinite chain of “islands,” o : oS
line in Fig. 3 shows the instability tongua=1 in the case viously, cluster chains with different periods can fit in the

of a “thermal” wall for £=5x 10". Noticeable is the coin- infinite strip (actually, even in finite boxes with large enough
cidence of them=1 curves at iﬁtermediaté for the two  asPect ratios Therefore, an interesting nonlinear selection
types of driving. This coincidence results from a strong |0_problem arises, as in other patt.ern-fqrmlng sysjé]:ﬁ}s One_ .

calization of the eigenfunctios(x) near the elastic wak can expect that pattern selection will occur via competition

~0 at large£ and intermediatd. The exact form of the between clusters for material and their coarsening.

boundary condition ak=1 becomes irrelevant in this re-
gime. Finally, for the thermal wall the ECS is stable for any 0.8
A if f<min(1,£7Y?), in contrast to the vibrating wall.

In the rest of the paper we will deal with the vibrating
wall. Within the instability region the marginal stability
analysis is no longer valid. In addition, any linear analysis
can miss a subcritical bifurcation outside the instability re-
gion. Therefore, we directly solved the two-dimensional
steady-state equatios)—(8) numerically(using a nonlinear
Poisson solver and Newton’s iterationexploring some 0.2
parts of the parameter plang Q) of Fig. 3. We worked with
systems of finite lateral dimensions. The results of these cal- o o
culations, however, are generalizable to an infinite strip. In- 0 0.5 1 15 2
deed, the nonlinear Poisson equat{Bhhas a rich family of y/L
solutions periodic iry. Therefore, a numerical solution ob- X
tained for O0<y<A, and satisfying the no-flux boundary  FIG. 5. Density profile along the elastic wal& 0, correspond-
conditions aty=0 andy=A, represents a natural “building ing to Fig. 4b).

0.6

0.4

n/nC
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enough, and the area fraction of the granulate belongs to the
interval (f,,f,). The transition is insensitive to the vibration
frequency and amplitude, and depends only weakly on the
type of driving wall(under the conditions delineated abpve
An important selection issu@vhat is the wavelength of the
resulting pattern in an infinite, or long enough, stjip?yet
unresolved. We expect that selection will occur via competi-
tion between clusters for material, and their coarsening.
Overall, our results put this simple system in the list of
pattern-forming systems out of equilibriujl].
a b ¥ d The symmetry-breaking instability predicted in this work

FIG. 6. Density evolution for£=5x10%, A=2, and f does not req_uire very special _constitut?ve rgla_tions. We
=0.0235. Shown are the density profilegay scale, separate for checked that it appears al_ready n t_he dilute !lmu_ﬁ Mo
each picturg at scaled times 1008), 500 (b), 1000(c), and 1290 where the c.on.st|tut|ve relations are directly derlva(miethe
(d). The maximum(minimum) density at the wallx=0 is 0.25 nearly elastic limit from the Chapman-Enskog expansion of

(0.14 (a), 0.46(0.072 (b), 0.66(0.040 (c), and 0.74(0.036 (d).  the kinetic theory{16]. Very recent calculationfl7] show
The gas density at the vibrating walk= 1 is close to 4103 for  that the main features of the instability remain the same if

all profiles. one uses, instead of the constitutive relations of R&f.the
“standard” relations obtained by Jenkins and Richm&h

In general, we found that, when crossing the cutve There are some quantitative differences, however, in the pre-
=A,(f) (see Fig. 3 from the left(along the lineA=2), or ~ cise locations of the marginal stability curvgk?]. There-
from below, one goes continuously from an ECS to afore, the symmetry-breaking instability provides a sensitive
“weakly two-dimensional”\/2 state. This implies a super- test for the accuracy of different constitutive relations. Re-
critical bifurcation. However, when moving from the right to cently, a new “global equation of state” in 2D was proposed
the left along the lineA =2, nonlinear\/2 and\ states ap- [18] that uses a more refined interpolation than in R6f.
pear inside the linear stability regions of the ECS and of thdetween the dilute, intermediate, and dense limits, and agrees
modem=1, respective|y’ and coexist with the ECS and with Very well with particle simulations. We expeCt that when a
the modem= 1, respective|y' These findings give evidenCeSimilar interp0|ati0n for the “glObal heat CondUCtiVity" be-
for bistability and subcritical bifurcations. Examples of sub-comes available, the marginal stability curves will be com-
critical \/2- and\ states are shown in Figs(e} and 4d). We ~ Puted with a higher precision.
also observed super- and subcritical strongly peaked periodic It should be straightforward to observe the symmetry-
CSs forA =3. breaking instability in particle simulations. We hope it will

Are the localized CSs dynamically stable, and can theyalSo be observed in experiment. Note that the aspect ratios
develop from small-amplitude initial perturbations around aused in the previous particle smulaﬂot@?] and experi-
uniform state? We performed a series of time-dependent hynent[9] were always lower than the critical values for the
drodynamic simulations with =1, 2, and 3 that gave posi- instability, A" As a result, the instability was suppressed
tive answers to these questions. We will briefly report here &y granular heat conduction in the lateral direction. In plan-
single simulation withA=2. The full hydrodynamic equa- Ning the experiment, one should try to minimize the role of
tions were solved with the same constitutive relations andhe rolling/sliding friction[9], unaccounted for in our model.
boundary conditions as in the steady-state analysis. Instedthe frictional energy losses are proportionalT?, while
of the shear viscosity in the momentum equation we acthe collisional energy losses are proportionall . There-
counted for a small model friction force-nv/7. An ex-  fore, one should work with high granular temperatutbsit
tended version of the compressible hydro codecan [15] s, largeAw).

was used. When 1-r? is not small, the normal stress difference,
The initial scaled density in this example included anon-Gaussianity in the velocity distribution, and possible
single-mode perturbation(x,y,t=0)=f+0.1f cos@ry) (in-  lack of scale separation all become important. The role of

dependent of). Figure 6 shows the density evolution. A these effects in the symm.etry—breaking instability should be
cluster develops near the elastic wed 0. With time it be-  the subject of further studies.
comes strongly peaked in tlyedirection and approaches the
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