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Non-Gaussian equilibrium distributions arising from the Langevin equation
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We study the Langevin equation of a point particle driven by random noise, modeled as a two-state Markov
process. The corresponding master equation differs from the Fokker-Planck equation. In equilibrium, the
velocity of the particle is distributed according to a binomial power law. We discuss transient~i.e., nonequi-
librium! behavior, and the consequences of non-Markovian noise statistics.
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I. INTRODUCTION

The manifestation of non-Gaussian distributions in phy
cal systems is becoming an interesting subject of resea
Clear evidences of such violations have been found in m
phenomena related to diffusion processes@1–3#. Recently,
investigations are focusing on dynamical systems that re
to an equilibrium@4–9#.

From a microscopic point of view, the success of Gau
ian statistics rests on the possibility of modeling the to
action of complex dynamics, in terms of a large sum of
dependent random variables. The central limit theorem
sures that the statistics of this sum converge to the Gaus
law, provided that their variances are defined@10#. In order to
overcome this statistical hypothesis, some authors purs
methodological approach based on the description of ma
scopic quantities starting from microscopic dynamics~e.g.,
see @7,11–13#!, hence attempting to provide a dynamic
foundation of statistical physics. This methodology has d
ficulties due to taking into account many degrees of freed
but the increasing power of computer machines encoura
investigations in this direction~e.g., see@6,13,14#!.

The one-dimensional Langevin equation provides u
simple example of this kind of description@7,12,15,16#. A
point particle, of velocityV(t), is immersed in a therma
bath, and the exchange action between the particle and
thermal bath is summarized by a viscous friction2gV and
random collisionsdw,

dV~ t !52gV~ t !dt1dw~ t !. ~1!

Usually one assumes thatdw(t) be an infinitesimal incre-
ment of a Wiener~or Brownian! process, having zero mea
and variance per unit of time equal to 2D. With this assump-
tion, Eq.~1! defines a so-called Ornstein-Uhlenbeck proce
The equilibrium distribution solution to the related Fokke
Planck equation is Gaussian, with zero mean and varia
sg

2 determined by

sg
25D/g. ~2!

Hence the Gaussian statistics have been recovered from
dynamical equation~1!.

However the Gaussian noisedw(t) is a mathematical ab
straction. In fact, the finite incrementDw5*0

Dtdw(t) repre-
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sents, in the interval of timeDt, the total Gaussian displace
ment due to an infinite number of collisions@17#. When this
number is large, then the Wiener noise is a good approxi
tion of the physical reality; if not, that sort of modelizatio
might fail ~see also@4,7#!. From another point of view, tha
assumption could be physically unplausible, becauseDw
could be of arbitrarily large intensity, although with a ve
small probability. On this basis, and following the framewo
of Refs. @4#, @5#, in this paper will be shown some resul
concerning the application of a more realistic noise to
Langevin equation.

II. LANGEVIN EQUATION WITH DICHOTOMOUS
MARKOV NOISE

Let us imagine that random and independent eventsjk
affecting the motion ofV(t), happen according to a tempor
sequence$...,tk ,tk11 ,...%. A simple choice for the resulting
random force would be a two-state~or dichotomous! noise,
defined byj(t)5Skjkx(t;tk ,tk11), wherex(t;tk ,tk11)51
if tP@ tk ,tk11#, zero otherwise. Herejk is a random variable
assuming the values2W or 1W, with equal probability,
corresponding to the two states of the noise. Its modu
represents the strength of a fluctuating force. The dynam
of the random forcej(t) appears like an alternation of value
6W: j(t) waits in a state, determined by the value ofjk , for
a time intervalt5tk112tk ; at the end of which a chang
can occur, according to the value ofjk11 . This noise has
zero mean and variance^j2&5W2.

The momentum changej(t)dt is going to substitute for
the Wiener noisedw(t) of Eq. ~1!, so that it becomes

dV~ t !52gV~ t !dt1j~ t !dt. ~3!

Indeed, *j(t)dt represents a random walk with varyin
steps. Hence, in order to distinguish it from the dichotomo
j(t) ~i.e., its temporal derivative!, j(t)dt will be namedran-
dom walk noise. The replacement of the Wiener noise is
agreement with what has been discussed at the end o
Introduction~see@4,5# for details!. In fact, fluctuations of the
Wiener process are ‘‘fast,’’ i.e., of orderADt, whereas those
of the random walk are ‘‘slow,’’ i.e., of orderDt.

This model is complete when the statistics of the stoch
tic series of events$...,tk ,tk11 ,...% is given. The Poisson
©2002 The American Physical Society13-1
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process is the simplest choice, where the waiting time in
val t is a random variable exponentially distributed,

c~t!5le2lt, ~4!

1/l being the mean waiting time. An alternative descripti
is given in terms of a process of single independent eve
that can occur, with a ratel, in small time steps of fixed
length. This represents a Markov process, which allows u
write the corresponding master equation in a simple form
the waiting time intervalt is not exponentially distributed
then the process will not be Markovian, and another varia
between the temporal steps, representing a memory s
will be needed.

III. MASTER EQUATION AND EQUILIBRIUM SOLUTION

We are interested in finding the density distribution fun
tion related to the processV(t) defined by Eq.~3!. For that
purpose two density distribution functions have to be defin
@4,5#, one for each state of the system:p1(v,t)dv5P$v
,V(t)<v1dv,s51W% represents the probability tha
V(t)P(v,v1dv# and the state bes51W; p2(v,t)dv
5P$v,V(t)<v1dv,s52W% has the same probabilisti
meaning, but it refers to the states52W.

With these definitions the master equation for the proc
established by Eq.~3!, with Poissonian events according
Eq. ~4!, is ~see@4,5# for more general cases!

] tp1~v,t !1]v@~W2gv !p1~v,t !#

52
l

2
@p1~v,t !2p2~v,t !#, ~5!

] tp2~v,t !2]v@~W1gv !p2~v,t !#

51
l

2
@p1~v,t !2p2~v,t !#.

This equation states the balance between the two states o
noise. The left-hand side represents the operator of the
namical evolution. The right-hand side specifies, e.g., in
first equation, the amount of state change per unit tim
Events occur with a ratel; therefore,2(l/2)p1 is the leak-
age of processes escaping from the state1W and going into
2W; whereas1(l/2)p2 is the gain due to the process
coming from the state2W. The second equation descen
from the first, by replacing1W with 2W, andp1 with p2 .

The partial differential equation~5! has to be taken in
conjunction with the initial and the normalizing condition,

p1~v,0!5p01~v !, p2~v,0!5p02~v !,

E @p1~v,t !1p2~v,t !#dv51. ~6!

Hence the solution of Eq.~5! gives us the complete descrip
tion of the process of Eq.~3!. We are seeking for the distri
bution function regardless of the state of the syste
p(v,t)5p1(v,t)1p2(v,t). From Eq. ~5!, by addition and
subtraction, and removingp12p2 , we obtain
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]v@~W22g2v2!]vp#2] t
2p12gv]v] tp2g]v@~2g2l!vp#

1~g2l!] tp50. ~7!

This is a linear hyperbolic equation of the second order,
parting from the Fokker-Planck equation in the presence
the second-order derivatives] t

2p and ]v] tp. In the absence
of friction ~i.e., g50!, it becomes a telegrapher’s equatio
driven by the two-state noise alone@18#.

By neglecting the terms with the temporal derivative
Eq. ~7!, the equation for the equilibrium density distributio
peq(v) reads

~W22g2v2!peq8 ~v !5g2~22l/g!vpeq~v !, ~8!

the explicit solution of which is

peq~v !5
g

WAp

GF1

2S l

g
11D G

G„l/~2g!… S 12
g2

W2 v2D l/~2g!21

, ~9!

whereG(•) is Euler’s gamma function@19#. The distribution
is confined to@2W/g,W/g#, because outside this interva
the damping2gV becomes so large that it overcomes t
acceleration provided by the dichotomous force.

The exponentl/(2g)21 determines three kinds of be
havior,

~i! l/(2g).1: the convexity is negative and the dens
distribution vanishes on the boundaries of the definition
terval.

~ii ! l/(2g),1: the convexity is positive~ø shaped! and
the density distribution diverges when approaching the
points of the support, but its integrability is always satisfie

~iii ! l/(2g)51: the function is constant, i.e., the distr
bution is uniform.

The three characteristic behaviors can be recognize
Fig. 1. In order to compare shapes, the rescaled ver
p̃(z)5(W/g) peq(zW/g) of Eq. ~9! is plotted for different
values ofg, provided thatl is kept fixed.

The variance~or mean quadratic velocity! of the equilib-
rium distribution~9! is

lim
t→`

^V~ t !2&5E v2peq~v !dv5
W2

g~l1g!
. ~10!

When the viscosityg is much larger than the rate of eventsl,
we have^V2&5W2/g2. This corresponds to what intuition
suggests, namely, the distribution collects at the endp
values 6W/g. When g!l, the variance becomeŝV2&
5W2/(lg), belonging to a Gaussian distribution. In fact,
the weak viscosity limit@4,5#, by neglecting the terms o
orderg2 in Eq. ~8! and preserving all those of the first, th
is,

f 8~v !'2~lg/W2!v f ~v !, ~11!

the Gaussian density distribution results,
3-2
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f ~v !'~2psg
2!21/2exp@2v2/~2sg

2!#, sg
25W2/~lg!,

~12!

at least for values ofv not too close to the end points. Sim
lar considerations are valid for the high-rate limitl→` of
the Poisson process.

As a rule, peq(v) departs from the Gaussian that o
would obtain if a Wiener noise were used; although the r
dom walk noise is an approximation to the Wiener noi
which is valid for times greater than the correlation tim
scaleTj @16#, with diffusion coefficientD5^j2&Tj . The cor-
relation time is defined as the integral of the correlation fu
tion, Tj5*0

`Fj(t)dt, provided that the integral converge
@20#. SometimesTj is referred to as the characteristic tim
scale, i.e., the time needed for the establishment of the
tistical equilibrium. In the case of the two-state statistics w
Poissonian intervals, the correlation function is exponen
@21#,

Fj~ t !5^j~ t !j~0!&/^j2&5e2lutu, ~13!

so thatTj5l21 and the diffusion coefficient is found to b

D5W2/l. ~14!

Nevertheless the presence of viscosity, in the Langevin eq
tion, breaks this similarity, leading to different equilibriu
distributions. Only in the limit of weak viscosity~or in the
high-rate Poisson process! does the distribution of Eq.~9!
approximate the Gaussian of the Ornstein-Uhlenbeck p
cess, with the variance of Eq.~12! retrieved by Eqs.~2! and
~14!.

FIG. 1. Plots of Eq.~9! for different values ofg. The abscissa
refers to the rescaled velocityz, the ordinate to the rescaled distr
bution p̃(z) in logarithmic scale. Parameters:W51, l50.02.
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IV. NONEQUILIBRIUM TIME SCALE

This section is devoted to estimating the time requir
for the establishment of the equilibrium. The varian
^V2(t)& and the correlation function FV(t2t8)
5^V(t)V(t8)&eq/^V2& allows us this kind of analysis withou
solving the time-dependent master equation~7!. They can be
directly calculated from the solution of Eq.~3!, with the
initial conditions V(t0)50 and t050: V(t)
5*0

t e2g(t2t)j(t)dt. By multiplying it for two distinct times
t andt8, taking the averagê•& over many realizations of the
process, and inserting the correlation function, the cov
ance results to be

^V~ t !V~ t8!&5e2g~ t1t8!^j2&E
0

t

dtE
0

t8
dt8eg~t1t8!

3Fj~t2t8!. ~15!

This is a general expression having validity for any kind
noise. By using the explicit expression of Eq.~13! in Eq.
~15!, the covariance results,

^V~ t !V~ t8!&5
^j2&

g~g22l2!
$ge2lut2t8u2le2gut2t8u

1e2g~ t1t8!@g~12e~g2l!t2e~g2l!t8!1l#%.

~16!

The first line contains the stationary addend; the second
resents the transient, corresponding to the nonequilibr
properties of the covariance. The duration of this transien
approximately of the order of 1/l and 1/g. Note that this
expression is well defined only ifl differs from g. The case
l5g can be obtained by taking the limitl→g.

For large values of botht and t8, the transient is negli-
gible and one finds the covariance function when the proc
is in the steady-state,

^V~ t !V~ t8!&eq5
W2@ge2lut2t8u2le2gut2t8u#

g~g1l!~g2l!
, ~17!

which is a function ofut2t8u.
The other quantity of interest is the variance, which

obtained by using Eq.~16! supplied with the conditiont
5t8,

^V2~ t !&5
2W2

g1l F12e22gt

2g
1

e2~g1l!t2e22gt

l2g G , ~18!

valid for gÞl, and

^V2~ t !&5
W2

2g2 @12e22gt~112gt !#,

whenl5g. DefineTV* 5max@1/(2g),1/(l1g)#, so that for
t@4T* the equilibrium is reached and the expression of E
~10! is recovered. For smallt the variance grows asW2t2.

As mentioned above, the characteristic time scale for
relaxation of the processV(t) to equilibrium may be esti-
3-3



-

-
r
r

ica

f

ve
s
e

an

-
tra

t
ti
se

on-

e

gly
ost

e to

o-
the
-

a-
e,
t is
a-

. .

.

MARIO ANNUNZIATO PHYSICAL REVIEW E 65 021113
mated by using the correlation functionFV(t2t8). Dividing
Eq. ~17! by Eq. ~10! one obtains,

FV~ t2t8!5
ge2lut2t8u2le2gut2t8u

g2l
if gÞl, ~19!

and

FV~ t2t8!5e2gut2t8u~11gut2t8u! if g5l.

The characteristic time scaleTV is established by the inte
gral,

TV5E
0

`

FV~t!dt5
1

l
1

1

g
5Tj1

1

g
. ~20!

All this means that bothTV* and TV depend on the two pa
rameters characterizing the process: the viscosity and the
of random events. Whereas in the Ornstein-Uhlenbeck p
cess the time scale depends only on the viscosity

Numerical solution

In Figs. 2, 3, and 4 are plotted the results of a numer
integration of Eq. ~5! with initial conditions P1(v,0)
5d(v)/2 andP2(v,0)5d(v)/2. Each shows four samples o
the distributionp(v,t) at increasing times. The two Diracd
peaks, not shown at the initial time, cause two peaks tra
ing towards the end points of the definition interval. The
correspond to the density of the process that has not b
subject to any transitions from the beginning. In the me
time their amplitudes decrease and the distribution takes
final equilibrium form in the middle. The middle of the dis
tribution represents the paths that have been subject to
sitions. For t.4T* or t.TV the equilibrium is almost
reached, as the largest time plots show. Figure 2 shows
densities in the weak viscous case, a bell shaped distribu
is obtained at the equilibrium. The uniform distribution ca
(l52g) is shown in Fig. 3. In Fig. 4 (t5117) the two peaks

FIG. 2. Plots ofp(v,t) resulting from a numerical integration
Parameters:g51023, l50.02,W51, 4TV* 52000,TV51050. End
points are atv521000 andv511000.
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at the end points represent the characteristicø shaped dis-
tribution of the large friction case, and have no corresp
dence with the initial peaks.

We should comment on the limit of vanishingl, in which
all the paths ofV(t) are not subject to transitions and th
final distribution is singular. The characteristic time scaleTV
diverges according to the fact that the process is stron
correlated, nevertheless the singular equilibrium is alm
reached after a time 4TV* . Indeed,TV is a correlation time
and it lacks an interpretation as a statistical time scale du
the deterministic dynamics.

V. NON-MARKOVIAN PROCESSES

The Poisson statistics is used in the definition of the tw
state process as a hypothesis that simplifies the writing of
master equation~5!. For a non-Markovian dichotomous pro
cess, i.e., when the waiting time densityc(t) departs from
exponential~4!, it is required that one solve a master equ
tion for a density distribution function with a memory stat
characterized by integrals of a memory kernel. However, i
possible to write, at least in principle, the equilibrium equ
tion in the following form:

FIG. 3. Plots ofp(v,t) resulting from a numerical integration
Parameters:g50.01, l50.02, W51, 4TV* 5200, TV5150. End
points are atv52100 andv51100.

FIG. 4. Plots ofp(v,t) resulting from a numerical integration
Parameters:g50.05, l50.02, W51, 4TV* 557.2, TV570. End
points are atv5220 andv5120.
3-4
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]v@~W2gv ! p̂1~v !#52l1~v ! p̂1~v !1l2~v ! p̂2~v !,

2]v@~W1gv ! p̂2~v !#51l1~v !p̂1~v !2l2~v !p̂2~v !.
~21!

The integrals of the memory kernel are represented as p
uctsl1,2(v) p̂1,2(v), so that the non-Markovian character
the memory state is translated into the dependence of
transition ratel on v.

The equation for the total equilibrium density distributio
p̂eq(v)5 p̂1(v)1 p̂2(v) is

~W22g2v2!]vp̂eq~v !

5$W@l1~v !2l2~v !#1g@2g2l1~v !

2l2~v !#v% p̂eq~v !, ~22!

the solution of which is

p̂eq~v !5A
expH E l1~v !/~W1gv !dvJ

W1gv

3
expH2E l2~v !/~W2gv !dv D

W2gv
, ~23!

whereA is a normalization constant. The functionsl1,2(v)
are unknown and have a hidden dependence ong andW, but
they help us to understand that the equilibrium solution~23!
departs from Eq.~9!. Nevertheless, in a framework differen
from that discussed here,l1,2(v) may be computed or as
signed, so Eq.~23! would furnish an explicit expression.

Of some interest@4#, is the behavior ofp̂eq(v) at the end
points of the support. As an example, we examine the c
sequences of different behaviors ofl2(v) in the vicinity of
v̄5W/g. The following behaviors ofp̂eq( v̄2dx) are pos-
sible:

~i! p̂eq(v) cannot be normalized, ifl2( v̄2dx);k(dx)a;
i.e., this transition rate does not define a density equilibri
distribution.
. B

.
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~ii ! It exists and diverges asu ln(dx)u2k/g /dx, if l2( v̄
2dx);k/u ln(dx)u and the conditionk/g,1 is satisfied.

~iii ! It diverges as exp$2k/@g(12a)#uln(dx)u12a%/dx, if
l2( v̄2dx);ku ln(dx)u2a with 0,a,1.

~iv! If l2( v̄2dx);l2/2, p̂eq( v̄2dx) can be divergent,
convergent or infinitesimal, as has been shown in Sec. I

~v! It vanishes as exp$2k/@g(a11)#uln(dx)ua11%/dx, if
l2( v̄2dx);ku ln(dx)ua with a.0.

~vi! It vanishes as exp@2k/(ga)(dx)2a#/(dx), if l2( v̄
2dx);k(dx)2a with a.0.

These possible behaviors show that non-Markovian sta
tics lead to forms of equilibrium more general than Marko
ian do. On the other hand, it is known that a non-Markov
dynamics can be turned into a Markovian under a coa
graining procedure@16#. But as has been explained abo
and with Eq.~23!, this correspondence could be not real
able, pointing out that the coarse-graining approximat
should be used with care, when applied to a fluctuati
dissipation system jointly to a dichotomous noise.

VI. CONCLUSIONS

In the framework of former investigations@4,5#, when the
Langevin equation is driven by a two-state noise, the eq
librium velocity distribution departs from the Gaussian th
one would obtain by using a Wiener noise. When the tw
state process has Poisson statistics, an explicit equilibr
distribution can be calculated. As has been illustrated in
plots of Fig. 1 there is a variety of equilibrium distribution

In this way one can understand that only a compl
knowledge of the noise will gives us a complete understa
ing of the steady-state velocity distribution. As mentioned
Sec. III in a diffusive process the validity of the central lim
theorem guarantees that for times greater than of the cha
teristic time scale, the statistics are Gaussian, regardles
the microscopic origin of the noise. But in a fluctuatio
dissipation system, in which the noise drives a velocity p
cess, this origin plays an important role and the equilibriu
distribution of the velocity may be highly non-Gaussian.
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