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Non-Gaussian equilibrium distributions arising from the Langevin equation
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We study the Langevin equation of a point particle driven by random noise, modeled as a two-state Markov
process. The corresponding master equation differs from the Fokker-Planck equation. In equilibrium, the
velocity of the particle is distributed according to a binomial power law. We discuss traifiseennonequi-
librium) behavior, and the consequences of non-Markovian noise statistics.
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[. INTRODUCTION sents, in the interval of timAt, the total Gaussian displace-
ment due to an infinite number of collisiof&7]. When this
The manifestation of non-Gaussian distributions in physi-number is large, then the Wiener noise is a good approxima-
cal systems is becoming an interesting subject of researckion of the physical reality; if not, that sort of modelization
Clear evidences of such violations have been found in mangnight fail (see alsd4,7]). From another point of view, that
phenomena related to diffusion proces$gs3]. Recently, assumption could be physically unplausible, becaise
investigations are focusing on dynamical systems that relagould be of arbitrarily large intensity, although with a very
to an equilibrium{4-9]. small probability. On this basis, and following the framework
From a microscopic point of view, the success of Gaussef Refs.[4], [5], in this paper will be shown some results
ian statistics rests on the possibility of modeling the totalconcerning the application of a more realistic noise to the
action of complex dynamics, in terms of a large sum of in-Langevin equation.
dependent random variables. The central limit theorem en-
sures that the statistics of this sum converge to the Gaussian
law, provided that their variances are defif&€]. In order to
overcome this statistical hypothesis, some authors pursue a
methodological approach based on the description of macro- | et us imagine that random and independent evepts
scopic quantities starting from microscopic dynamiesy.,  affecting the motion of/(t), happen according to a temporal
see[7,11-13), hence attempting to provide a dynamical sequencd... ty,ty.1,...}. A simple choice for the resulting
foundation of statistical phySiCS. This meth0d0|ogy has dif'random force would be a tWO'Statel’ dichotomous noise,
ficulties due to taking into account many degrees of freedomgefined byé(t) =3 & (tite,tes1), Where x(tit, tes1) =1
but the increasing power of computer machines encouragggt e [t,,t,. ;], zero otherwise. Herg, is a random variable
investigations in this directiofe.g., sed6,13,14). assuming the values W or +W, with equal probability,

_ The one-dimensional Langevin equation provides us &orresponding to the two states of the noise. Its modulus
simple example of this kind of descriptid7,12,15,16 A represents the strength of a fluctuating force. The dynamics
point particle, of velocityV(t), is immersed in a thermal of the random force(t) appears like an alternation of values
bath, and the exchange action between the particle and theyy: g(t) waits in a state, determined by the valuetpf for
thermal bath is summarized by a viscous frictieyV and g time intervalz=t,,,—t,; at the end of which a change
random collisionsdw, can occur, according to 2the vz;lue 6. 1. This noise has

zero mean and variangg“) =W-.
dv(t) = —yV(Ddt+dw(t). @) The momentum chsngg(t)dt is going to substitute for
the Wiener noiselw(t) of Eqg. (1), so that it becomes

II. LANGEVIN EQUATION WITH DICHOTOMOUS
MARKOQOV NOISE

Usually one assumes thdtv(t) be an infinitesimal incre-
ment of a Wieneor Browniar) process, having zero mean
and variance per unit of time equal t®2 With this assump- dV(t)=—yV()dt+£(Hdt. ©)
tion, Eq.(1) defines a so-called Ornstein-Uhlenbeck process.
The equilibrium distribution solution to the related Fokker- Indeed, [&(t)dt represents a random walk with varying
Planck equation is Gaussian, with zero mean and variancgeps. Hence, in order to distinguish it from the dichotomous
af/ determined by &(t) (i.e., its temporal derivative £(t)dt will be namedran-
dom walk noiseThe replacement of the Wiener noise is in
o§= D/y. (20  agreement with what has been discussed at the end of the
Introduction(see[4,5] for detailg. In fact, fluctuations of the
Hence the Gaussian statistics have been recovered from tNgiener process are “fast,” i.e., of ordefﬂ, whereas those
dynamical equatiortl). of the random walk are “slow,” i.e., of ordekt.
However the Gaussian noisev(t) is a mathematical ab- This model is complete when the statistics of the stochas-
straction. In fact, the finite incrementw= [5'dw(t) repre- tic series of eventg... ty,txr1,...} is given. The Poisson
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process is the simplest choice, where the waiting time inter-g [ (W?— y?y2)3,p]— g§p+ 2yv3,0p— vd,[(2y—N)vp]
val 7is a random variable exponentially distributed,
~ +(y=N)dp=0. )
y(1)=Ne "7, (4)
This is a linear hyperbolic equation of the second order, de-

1/\ being the mean waiting time. An alternative description arting from the Fokker-Planck equation in the presence of

is given in terms of a process of single independent event e second-order derivativeZp and d,4,p. In the absence

that can occur, with a ratg, in small time steps of fixed f friction (i.e., y=0), it becomes a telegrapher’s equation
length. This represents a Markov process, which allows us tﬁ . O ' grap q

write the corresponding master equation in a simple form. | rl\éennbg/ fggti?,lvoiﬁteat; rrr]r?éssvi?rllo?r?es].tem oral derivative in
the waiting time intervalr is not exponentially distributed, y Neg 9 oo poral derivative
then the process will not be Markovian, and another variablgq' (7), the equation for the equilibrium density distribution

between the temporal steps, representing a memory stat%?q(v) reads
will be needed. ,

(W?=7202)pedv) = ¥* (2= M y)vPedv), ®
1. MASTER EQUATION AND EQUILIBRIUM SOLUTION

the explicit solution of which is
We are interested in finding the density distribution func-

tion related to the procedé(t) defined by Eq(3). For that /N

purpose two density distribution functions have to be defined y r 5(; +1 ¥ M(2y)-1
[4,5], one for each state of the system;(v,t)dv=P{v Pedv) = / ( __zvz) , (9
<V(t)<v+dv,s=+W} represents the probability that wym T(\(2y)) W

V(t)e(v,v+dv] and the state bes=+W; p,(v,t)dv ) ) o
=P{v<V(t)<v+dv,s=—W} has the same probabilistic WhereI'(-) is Euler's gamma functiofil9]. The distribution
meaning, but it refers to the stases —W. is confined tof —W/vy,W/y], because outside this interval,
With these definitions the master equation for the proces#e damping—yV becomes so large that it overcomes the
established by Eq(3), with Poissonian events according to acceleration provided by the dichotomous force.

Eqg. (4), is (see[4,5] for more general casgs The exponent/(2y)—1 determines three kinds of be-
havior,
p1(v,t)+d,[(W=yv)p1(v,1)] (i) N(2y)>1: the convexity is negative and the density
N distribution vanishes on the boundaries of the definition in-
=— —[ps(v,t)—po(v,1)], 5 terval.
2P =P2v )] ® (i) M(2y)<1: the convexity is positivéU shaped and
the density distribution diverges when approaching the end
P2(v,t) = 9, [(W+ yv)pa(v,t) ] points of the support, but its integrability is always satisfied.
N (iii) N (2y)=1: the function is constant, i.e., the distri-
=+§[p1(u,t)—p2(v,t)]. bution is uniform.

The three characteristic behaviors can be recognized in

This equation states the balance between the two states of tE%g 1. In order to compare shapes, the rescal_ed version
noise.the left-hand side represents the operator of the dy- z)=(Wiy) peq_(zVV/y) of_Eq. ) IS plotted for different
namical evolution. The right-hand side specifies, e.g., in th alues Of7{ provided tham is kept_ fixed. o

first equation, the amount of state change per unit time., The' vgrlar!ce(or mean quadratic velociof the equilib-
Events occur with a ratk; therefore,— (\/2)p; is the leak- rium distribution(9) is

age of processes escaping from the stat® and going into

—W; whereas+ (\/2)p, is the gain due to the processes ; 2\ _ 2 _
coming from the state-W. The second equation descends tIm(V(t) ) f v Pedv)dv
from the first, by replacing- W with —W, andp; with p,.

The partial differential equatioit5) has to be taken in \yhen the viscosityy is much larger than the rate of events
conjunction with the initial and the normalizing condition, e have(V2)=W?/y2. This corresponds to what intuition
suggests, namely, the distribution collects at the endpoint
values =W/y. When y<\, the variance becomegv?)

=W?/(\v), belonging to a Gaussian distribution. In fact, in
f [p1(v,t)+py(v,t)]dv=1. (6)  the weak viscosity limiff4,5], by neglecting the terms of
ordery? in Eq. (8) and preserving all those of the first, that
Hence the solution of Eq5) gives us the complete descrip- 'S
tion of the process of E(3). We are seeking for the distri-

2

y(N+y) (0

pl(v,0)=p01(v), pZ(U!O):pOZ(U);

bution function regardless of the state of the system: f'(v)~—(AyIW?)vf(v), (13)
p(v,t)=pi(v,t)+po(v,t). From Eq.(5), by addition and
subtraction, and removing; — p,, we obtain the Gaussian density distribution results,
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B(z) P(2) IV. NONEQUILIBRIUM TIME SCALE
10 y=10"* 10 y=1073 This section is devoted to estimating the time required
1_1 1_1 for the establishment of the equilibrium. The variance
10_2 10_2 (V3(t)) and the correlation function ®(t—t’)
10_3 10_3 =<V(t)V(t’))eq/<V2> allows us this kind of analysis without
10 10 solving the time-dependent master equatién They can be
-1-05 0 05 1 z -1-05 0 05 1 z directly calculated from the solution of E¢3), with the
#(2) #(2) initial ~ conditions  V(tp)=0 and t;=0: V(1)
10 s3] 1 = =[te” 7(“T?g(r)dr. By multiplying it for two distinct times
1 1 t andt’, taking the averagé) over many realizations of the
10-1 7 ) 10-1 process, and inserting the correlation function, the covari-
10-2 10-2 ance results to be
1073 1073 ¢ ro
—T-05 0 05 1z “1-05 0 05 1z <V(t)V(t’)>=efwﬂl)(fzﬁodeo dr'erri !
#(z) #(2) ,
10 y=0025] 10 v =005 XPgr=1'). (19
I N 1 k_’) . : . - .
10-1 10-1 This is a general expression having validity for any kind of
10-2 10-2 noise. By using the explicit expression of Ed.3) in Eq.
10-3 10-3 (15), the covariance results,
“1-05 0 05 1 z “1-05 0 05 1 z (€2

(VOV())= — 7 {ye Mt —ne 70
FIG. 1. Plots of Eq(9) for different values ofy. The abscissa vy )
refers to the rescaled velocity the ordinate to the rescaled distri- —(t+t)) (=Mt Ayt
butionP(2) in logarithmic scale. Parametei/= 1, A =0.02. +e [y(1-¢€ € )+ N1}
(16)

~ 2\—1/2 _ .2 2 2 _\A\2
fv)~(2may) "“exd —vl(207)], o, =W /()‘7)(’12) The first line contains the stationary addend:; the second rep-
resents the transient, corresponding to the nonequilibrium

at least for values af not too close to the end points. Simi- propert.ies of the covariance. The duration of this transignt is
lar considerations are valid for the high-rate limit> of ~ @pproximately of the order of i/and 1/y. Note that this
the Poisson process. expression is weII_ defined on_Iy N d|ffe_rs_from v. The case

As a rule, pev) departs from the Gaussian that one M= Y can be obtained by taking t’he limit—y. _
would obtain if a Wiener noise were used; although the ran- _For large values of both andt’, the transient is negli-
dom walk noise is an approximation to the Wiener noise,_g'l?le and one finds the covariance function when the process
which is valid for times greater than the correlation time!S in the steady-state,
scaleT ; [16], with diffusion coefficien1D=<§2)T§. The cor-
relation time is defined as the integral of the correlation func- (VOV(E))eq=
tion, T,=[5®(t)dt, provided that the integral converges ed
[20]. SometimesT, is referred to as the characteristic time =~ ) ,
scale, i.e., the time needed for the establishment of the stj¢hich is a function _Oﬂt_t_ . _ _ o
tistical equilibrium. In the case of the two-state statistics with "€ other quantity of interest is the variance, which is
Poissonian intervals, the correlation function is exponentiaPtf[t?'“ed by using Eq(16) supplied with the conditiort
[21], —t

W2[ ,ye—)\\t—t’\_ Ne~ y\t—t’\]
y(y+N)(y—N) ’

17

(I)f(t):<§(t)§(0)>/<§2>:ei)\|t|, (13) <V2(t)>= 2\—'/—\/)2\ 1—2e—27t+ e_(7+)i\)t_e_27t s
Y Y -y

so thatT,=\"* and the diffusion coefficient is found to be
valid for y# X\, and

D=W?/\. (14 2

W
2 - _ a2yt
Nevertheless the presence of viscosity, in the Langevin equa- (VD) 2y° [1=e ™ (1+20)],

tion, breaks this similarity, leading to different equilibrium

distributions. Only in the limit of weak viscositgor in the ~ when\=y. DefineT{,=max1/(2y),1/(\ + )], so that for
high-rate Poisson procesdoes the distribution of EqQ)  t>4T* the equilibrium is reached and the expression of Eq.
approximate the Gaussian of the Ornstein-Uhlenbeck protl0) is recovered. For smallthe variance grows aa/t2.

cess, with the variance of E¢L2) retrieved by Eqs(2) and As mentioned above, the characteristic time scale for the
(14). relaxation of the proces¥(t) to equilibrium may be esti-
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FIG. 2. Plots ofp(v,t) resulting from a numerical integration.
Parametersy= 1073, A=0.02,W=1, 4T\’} =2000,T,=1050. End
points are ab=—1000 andv =+ 1000.

FIG. 3. Plots ofp(v,t) resulting from a numerical integration.
Parameters;y=0.01, A=0.02, W=1, 4Ty =200, Ty=150. End
points are ab =—100 andv = +100.

at the end points represent the characteristishaped dis-
tribution of the large friction case, and have no correspon-
dence with the initial peaks.

We should comment on the limit of vanishingin which
all the paths ofV(t) are not subject to transitions and the

mated by using the correlation functidn,(t—t"). Dividing
Eq. (17) by Eq. (10) one obtains,

ye”‘lt*t’l—)\ef yt—t']

Dy(t=t")= Y=\ it y#X, (19 final distribution is singular. The characteristic time schle
diverges according to the fact that the process is strongly
and correlated, nevertheless the singular equilibrium is almost
reached after a time®; . Indeed,Ty, is a correlation time
Dy(t—t')=e~ " VI(1+t—t']) if y=r. and it lacks an interpretation as a statistical time scale due to

the deterministic dynamics.

The characteristic time scalB, is established by the inte- V. NON-MARKOVIAN PROCESSES
gral, '

The Poisson statistics is used in the definition of the two-
state process as a hypothesis that simplifies the writing of the
master equatiol5). For a non-Markovian dichotomous pro-
cess, i.e., when the waiting time densifyt) departs from
. * exponential(4), it is required that one solve a master equa-
All this means that. t?Otﬁ_V and Ty d.epend. on the WO pa- yinn for a density distribution function with a memory state,
rameters characterizing the process: the viscosity and the 13l 54 cterized by integrals of a memory kernel. However, it is
of random events. Whereas in the Ornstelln-UhI.enbeck prof)ossible to write, at least in principle, the equilibrium equa-
cess the time scale depends only on the viscosity tion in the following form:

T—fx<b()d—1+l—T+l (20)
V—O viT ’T—)\ y—g y

. . v,t v,t
Numerical solution p(v,) 14 p(v,?) P
In Figs. 2, 3, and 4 are plotted the results of a numerical 15 15
integration of Eq. (5 with initial conditions P4(v,0) 1 1
= 6(v)/2 andP,(v,0)= 6(v)/2. Each shows four samples of g5 0.5
the distributionp(v,t) at increasing times. The two Dira® 0 0 A A
peaks, not shown at the initial time, cause two peaks travel-  Z20 —10 0 10 20w 20 —10 0 10 20w
ing towards the end points of the definition interval. These
correspond to the density of the process that has not bee?®? T 2(v9) i
subject to any transitions from the beginning. In the mean- 1.5 - 15 B
time their amplitudes decrease and the distribution takes it 1
final equilibrium form in the middle. The middle of the dis- I i
tribution represents the paths that have been subject to trar 05 05
sitions. Fort>4T* or t>T, the equilibrium is almost 0 0

-20 =10 0 10 20w —-20 =10 0 10 20w

reached, as the largest time plots show. Figure 2 shows the
densities in the weak viscous case, a bell shaped distribution FIG. 4. Plots ofp(v,t) resulting from a numerical integration.
is obtained at the equilibrium. The uniform distribution caseparameters:y=0.05, A=0.02, W=1, 4T{=57.2, T,=70. End
(N=2v) is shown in Fig. 3. In Fig. 4t= 117) the two peaks points are av = —20 andv = + 20.
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[ (W=y0)P1(v)]=—N1(v)P1(v) + N o(v) Pa(v),

— [ (W y0)Pa(v)]=+N1(v)P1(v) —No(v) P2(v).
(21

The integrals of the memory kernel are represented as pr
uctshy (v)P1(v), so that the non-Markovian character o

the memory state is translated into the dependence of the

transition ratex onv.
The equation for the total equilibrium density distribution

Pedv) =P1(v) +Po(v) is
(W2=720)d, Pedv)
={W[\1(v) = Na(v) ]+ Y2y N1 (v)

—N2(v)Jv}Pedv), (22
the solution of which is
eXp{J’ Ni(v) (W+ yv)dv]
Pedv)=A W+ yv
exp — )\(v)/(W—yv)dv\
X 4 f ’ ) (23

W-—yv '

whereA is a normalization constant. The functioRg 5(v)
are unknown and have a hidden dependence andW, but
they help us to understand that the equilibrium solut@d)
departs from Eq(9). Nevertheless, in a framework different
from that discussed hera,; (v) may be computed or as-
signed, so Eq(23) would furnish an explicit expression.

Of some interesf4], is the behavior op(v) at the end

PHYSICAL REVIEW E 65021113

(i) It exists and diverges afin(&x)| ¥7/8, if N (v
— ox)~k/|In(éx)| and the conditiork/y<1 is satisfied.

(i) 1t diverges as exXp-kK[y(1—a)]In(X)* ), if
No(0— %) ~K|In(8%)| " with 0< a<1.

od- (iv) If No(v—6X)~N\,/2, Pefv— 6X) can be divergent,
¢ convergent or infinitesimal, as has been shown in Sec. lll.

(v) It vanishes as eXp-k[ya+2)]In(X)|* /ox, if
No(v— 6X) ~K|In(X)|* with a>0.

(vi) It vanishes as exXp-k/(ya)(&X) “U(SX), if No(v
—6X)~k(6x) ™ with a>0.

These possible behaviors show that non-Markovian statis-
tics lead to forms of equilibrium more general than Markov-
ian do. On the other hand, it is known that a non-Markovian
dynamics can be turned into a Markovian under a coarse-
graining procedurg16]. But as has been explained above
and with Eq.(23), this correspondence could be not realiz-
able, pointing out that the coarse-graining approximation
should be used with care, when applied to a fluctuation-
dissipation system jointly to a dichotomous noise.

VI. CONCLUSIONS

In the framework of former investigation4,5], when the
Langevin equation is driven by a two-state noise, the equi-
librium velocity distribution departs from the Gaussian that
one would obtain by using a Wiener noise. When the two-
state process has Poisson statistics, an explicit equilibrium
distribution can be calculated. As has been illustrated in the
plots of Fig. 1 there is a variety of equilibrium distributions.

In this way one can understand that only a complete
knowledge of the noise will gives us a complete understand-
ing of the steady-state velocity distribution. As mentioned in

points of the support. As an example, we examine the conSec. Il in a diffusive process the validity of the central limit

sequences of different behaviorsof(v) in the vicinity of
v=W/y. The following behaviors op{v—6x) are pos-
sible:

(i) Pefv) cannot be normalized, K, (v — ox) ~Kk(ox)“;

theorem guarantees that for times greater than of the charac-
teristic time scale, the statistics are Gaussian, regardless of
the microscopic origin of the noise. But in a fluctuation-
dissipation system, in which the noise drives a velocity pro-

i.e., this transition rate does not define a density equilibriuntess, this origin plays an important role and the equilibrium

distribution.

distribution of the velocity may be highly non-Gaussian.
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