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van der Waals equation of state for a fluid in a nanopore
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A generalization of the van der Waals equation of state is presented for a confined fluid in a nanopore. The
pressure in the fluid, confined in a narrow pore of infinite length, has tensorial character. From this hypothesis,
the Helmholtz free energy is constructed and expressions for the axial and transversal components of the
pressure tensor are obtained. The equations predict liquid-vapor equilibria, and a shift of the critical point with
respect to that obtained from the van der Waals bulk equation. The results are in good agreement with recent
experiments.
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[. INTRODUCTION [11]. All these analyses tacitly show that a fluid in a nanop-
ore has tensorial character.

There is a vast knowledge about phase transitions in bulk Equilibrium and nonequilibrium experiments show that a
fluids. When in a given thermodynamic system the volume isgonfined fluid behaves differently from the corresponding
reduced to microscopic levels, the equ“ibrium betweerbU”( fluid. The relaxation rate of ethylene g'yCOl versus tem-
phases is no longer size independent. Confinement changggrature is different in a zeolite host system from the bulk
the thermodynamic character of the fliid. The pressure is fluid [12]. In pure liquid (sulfur hexafluoridg the experi-

a diagonal tensor, and should be used in the description dfhents of Thommes and Findened@] determined the criti-
fluids at the microscopic and mesoscopic scales when equ@al pOInt Sh|ft n three klndS Of Controlled-pore g|aSS. Ad|rect
librium between phases is analyzed. determination of the phase coexistence properties of fluids

The behavior of the fluid within a pore is of fundamental By Monte Carlo simulation predicts the adsorption and cap-
importance in many fields. The determination of mesopordllary condensation of a simple fluihr) in narrow cylindri-
diameters or micropore volumes in a sofg], the pressure cal pores (CQ). The gas-liquid critical temperature de-
in a fluid confined in a cell membrane, and the behavior ofcreases as the pore radius is redudéd]. The same
water in a channel of proteins where solute®rganic iong ~ Phenomenon was observed in liquid-liquid phase equilibria
pass through the cell membrar[@ are prob]ems of practi_ by Sliwinska-Bartkowiaket al. [15] Here the effect of con-
cal and theoretical interest. In this context it is important tofinement produced a lowering of the critical mixing tempera-
mention the Kelvin equation, or some of the modern versiondure and a shift in the critical mixing composition.
of this equation[4—6], which predict the adsorbed layer  In relation to this general presentation, we study the prob-
thickness or the transition from capillary to multilayer ad- Iem of confined fluids in a narrow pore via an extension of
sorbed phase inside the pore. the van der Waals equation. The phase transitions, shift of the

In tribology, the science of friction at the microscopic cfitical point, and critical temperatures predicted by this
scale[7], the phenomenon of dissipation of energy is oftheory are in good agreement with the results of experiments
much concern. In a mechanically confined fluid, the energyand numerical simulations.
dissipated by friction can induce chemical transformations,
liquid-gas phase transitions, or drastic changes of static and ||, vaAN DER WAALS EQUATION FOR A CONFINED
dynamic properties like shear stress, coefficient of friction, FLUID
compressibility, and viscosity. These dynamic and static
properties can no longer be described even qualitatively in We assumed that the pressure in a confined fluid is a
terms of the bulk propertigs8]. diagonal tensoP with componentg;; (i=x,y,z). The in-

Liquids confined between two surfaces or within a narrowternal energy is given bj16]
space with dimensions smaller than 5—10 molecular diam-
eters become ordered into layers, and within each layer they
can also have lateral order. Across molecularly thin films of dE=T ds_zi piide;V, @
simple liquids, there is a structuring of the molecules and an

exponentially decaying oscillatory force, varying between at- - .
traction and repulsion with a periodicity of the order of the where the second term on the right-hand side represents the

solvent molecular dimensid®]. A similar result is found in v_vorkddone} bg/ thellnter\r}aIFtensmrr: u|r_1|d<|ar ﬁ slpefcmc deforma-
polymeric thin films in relation to the density, which exhibits EO—nE Eii‘rg the \E)O umev. From the Helmholtz free energy
gradually decaying oscillationgl0]. A lattice-gas cellular =E-TSwe obtain

automata model of porous media constructed at the pore

scale predicts formation of a microscopic liquid film con- dF=-5S dT—E pide;V )
densed on the solid walls in equilibrium with the gas phase i
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with the components aP given by

1 0F 3
Pi="V ge. " 3
The Helmholtz free energy of a system Nf particles
interacting via a pair potentidl(r4,) (inert wally can be
written as

KTN?

F=Fo=%vz

f f (e VKT 1)ydv,dV,, (4

Fo being the free energy of the ideal gas. We consider the

particles interacting via a Lennard-Jones potentidl ;,)

=4¢[(0/r1) = (0lr5)®]. The standard van der Waals

(vdW) equation can be obtained from Ed) by integrating

over an infinite volume. By following the same procedure for

a finite volume, we split the integral into two regions,
<o andr,>o:

KTN?
F:FO_Z_ J J (e_u(rIZ)/kT 1)dV1dV2
ro<o
+ff(e’u(f12)/kT—l)dV1dV2 . (5)
rio>o
In the first integral we approximate Y("12’kT=0, and in

the second integraé™ Y("12’kKT=1—U(r,,)/kT. With these
assumptions Eq5) becomes

KTN? U(rqy)
b+ Sz JJ ZdvidV,  (6)

r1o=>0

|<TN2
F:F0+

with b=%m703 and the volumev=L,L,L,, whereL,=L,
=L andL,=L,. In the thermodynamic limit, wheh,— o
andN—oo, lim(L,L,L,
By solving numerically the integral far,,> o it is found, by
fitting the results, that it can be approximated by

1l

ro>o

de
dVv,dV,= T a31(A) (7)

with 1(A)=co+ci/VA+cy/A. A=L,L,/d? is the re-
duced area of the square section of the pore, egd
—2.7925,c,=4.6571,c,= —2.1185. The value o, (bulk
valug was obtained by solving the integral fédr=« ana-

lytically, and the values of; andc, resulted from nonlinear

fitting. The numerical values of the integral in Ed@) and the

fitting curvel (A) are represented in Fig. 1. Introducing the

ideal free energy in Eq6) and writing c,= —a/2eo, we
have

=f(T)—NKTIn(V—Nb)

+2N2 3 s S 8
Vol 2T 3t @

IN)=uv, the finite specific volume.

PHYSICAL REVIEW E65 021110

T T T T T T T
0 100 200 300 400
A

FIG. 1. Numerical values of the integral in Eq) (filled circles
and the fitting curvd (A) (solid line).

where we have taken into account the limited compressibility
of matter by the substitution M—(N/V)b=In(V—Nb). Equa-
tion (8) represents the Helmholtz free energy of a fluid con-
fined in an axially infinite pore of cross sectidy by using

Eq. (3), we obtain the components of the pressure teksor

NkT N2 c, G
Pyx= pyy:V——Nb_ VT a— 60’ \/—_ 4— (9)
NkT N2 ) c; C 10
pZZ V—N b VZ a-— 60— \/— +5 A ( )

Equations(9) and (10) represent the transverse and axial
fluid pressures in the pore, respectively. When the cross sec-
tion goes to infinityp,,= pyy=p,,, and the bulk vdW equa-
tion is recovered. In reduced coordinates, E§s.and (10)

can be written as

T a* —[3(01/\/—)+4(02/A)]

p:x: p;yzv* “b* %2
(13)
T* a* —2(cy/JA+cy/A)
pzz:v* —b* v*2 ’ (12)
with p* —p0'3/6 T*=kT/e, v*=(VIN)o 3, b*=bo 3,

anda*=aleo*
From Eq.(12), the critical parameters are given by

c, G
2—=-22/,

8
* _ *
Tz 27b*<a \/K

. a*—2(cy/VA)—2(cy/A)
pc 27b*2 ’

v*=3b*. (13)
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FIG. 2. Volume dependence of the pressure tensor components
Pxx: Pyy, Pz (full line). The bulk pressure corresponding to the
same temperature is represented as a dashed line.

sure with respect to those of the bulk equation.

The vdW equationg9) and (10) give the components of
the pressure tensor for a confined fluid in a square sectio
pore of infinite length. At given temperature and density
(Fig. 2 we have a homogeneous fluid with different axial
and transverse pressungs<pj,. On lowering the tempera-
ture, maintaining the transverse section constant, a loop a

Ill. RESULTS
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FIG. 4. As Fig. 3, forT* =0.59.

size; all the states represented by the loop are podsifEle

Thus we still have a phase equilibrium characterized by the

The equations show a shift in critical temperature and presg, component of the pressure, as in the case represented in

Fig. 3. In Fig. 5 the phase diagrams for two pores of different
sizes and for the bulk fluid are shown. Lattice models and
numerical simulation$18,14] show a similar behavior, al-

pears for the axial component of the pressiiig. 3). Here,

as in the bulk, phase equilibrium occurs withaninterface

separating a homogeneous gas from a homogeneous “.quhoneycomb-type latticeMCM-41) [19]. It is worth mention-

ing that Table | was computed without any adjustment of the
parametera*, b*, c;, andc,, whose values were given
above. The results are very good for Ar angl, Mind accept-
able for G, C,H,, and CQ.

(capillary transition. Each region is consistent with the uni-
formity constraint used to obtain the vdW equations. Then
by applying Maxwell's construction on the isotherpf,
—v*, we get for the gas-liquid equilibrium},=pJ,4, v},
vy » andpy, > Pyyg- At @ lower temperature, the transverse

component of the pressupg, also presents a looffig. 4).
This loop does not imply a new phase separation, given that
in the derivation of the vdW equations the fluid was con-

strained to be uniform on the scale of the pore transversgquation for a fluid confined in a nanopore with inert walls.
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N /

p \
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FIG. 3. Capillary condensation far* = 0.62. The Maxwell con-

struction is used to obtain the gas-liquid coexistence line.
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though in these works the wall-fluid interaction was in-
ﬁluded. For a wall-fluid attractive interaction the critical den-
sity is shifted to higher values relative to its bulk value,
whereas for repelling walls it is shifted in the opposite direc-
tion [18]. In our work the fluid-wall interaction is not taken
égto account, so the critical density remains the same as in
e bulk.

In Table I, we compare the values of the critical tempera-

tlgre with experimental results in a mesoporous siliceous

IV. DISCUSSION

In this paper we have generalized the van der Waals bulk
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FIG. 5. Phase diagrams for two pore secti@d lines) and for
the bulk fluid.
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TABLE I. Critical temperature versus the pore radius. The values in parentheses are experimental critical
values[19], and eaclr o is an average pore radius in a mesoporous MCM-41 molecular sieve. The square
section ared in Ty was equated to the area corresponding to the experimental cylindricahpﬁg;g The
values ofT, were calculated using E413) with averaged Lennard-Jones paramefaf.

Te (K)
rpore (nm) Ar N2 OZ C2H4 COZ
1.2 71.7 52.5 64.3<71) 109.8(<142 111.3(<161)
14 74.8(74) 55.0(<61) 67.2(76) 116.3(<142 117.3(173
1.8 79.1(87) 58.5(68) 71.2(91) 125.3(148 125.7(195
2.1 81.3(>86) 60.3(76) 73.3(>92 129.9(163 130.0(>197)

Confinement of a system of interacting particles makes thevere calculated without any adjustment of the equation pa-
components of the force on a given particle different. Thisrameters. The confined van der Waals fluid theory seems to
idea used in the standard derivation of the van der Waalwork better than the bulk one. This may be due to the fact
equation gives the components of the pressure tefisgs.  that the higher virial contributions not considered in either
(11) and (12)] for a square section nanopore of infinite theory are less important in the confined fluid than in the
length. The equations predict capillary transitions and a shifPulk.
of the critical parameters with respect to those of the bulk
equation. These results are in agreement with the behavior
shown by lattice models and numerical simulations. The pre- This work was partially supported by CICPBA, Univer-
dicted critical temperatures, displayed in Table I, are in goodidad Nacional de La Plata and by the Agencia Nacional de
agreement with experimental data, specially for sphericaPromocimmn Cientfica y Tecnolgica (ANPCyT) through
type particles like Ar. It must be pointed out that the valuesGrant No. PICT 03-4517.
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