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Analytic expression for the mean time to absorption for a random walker on the Sierpinski gasket
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The exact analytic expression for the mean time to absorption~or mean walk length! for a particle perform-
ing a random walk on a finite Sierpinski gasket with a trap at one vertex is found to beT(n)5@3n5n11

14(5n)23n#/(3n1111) wheren denotes the generation index of the gasket, and the mean is over a set of
starting points of the walk distributed uniformly over all the other sites of the gasket. In terms of the number

Nn of sites on the gasket and the spectral dimensiond̃ of the gasket, the precise asymptotic behavior for large

Nn is T(n)→1/3(2Nn)2/d̃;N1.464. This serves as a partial check on our result, as it is~a! intermediate between
the known resultsT;N2 (d51) andT;N ln N (d52) for random walks ond-dimensional Euclidean lattices
and ~b! consistent with the known result for the asymptotic behavior of the mean number of distinct sites
visited in a random walk on a fractal lattice.
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I. INTRODUCTION

Random walks and diffusion on fractal structures, bo
regular and disordered, occur in a truly diverse variety
physical situations ranging from transport in amorphous
porous media to heterogeneous catalysis and other chem
reactions on substrates. The literature is now quite extens
and includes several reviews@1–7#. While asymptotic behav-
iors and scaling relations are known in considerable deta
is always useful to have an exact, closed-form solution o
finite structure in order to understand more quantitatively
approach to asymptopia. We concern ourselves here
such a solution on a particular fractal, the Sierpinski gas
@8#. Though deterministic, this structure possesses rele
fractal characteristics such as ramification and lacunarity
degree that makes it a very useful model for physical ap
cations. It therefore appears to be worthwhile to analyze
random walk problem on the gasket@9–12# in closer detail.
In particular, we focus on an unbiased random walk on
fractal in the presence of a trap~a perfect absorber! at a
vertex, and ask for the mean walk length before absorp
~equivalently, the mean survival time!. This involves a
double average: the mean length of the walk from a giv
origin must first be computed, and then averaged over a
form distribution of the origin over all the sites of the gask
other than the trap site. It turns out that a remarkably sim
analytic expression can be obtained for this quantity, by
ing the exact scaling of random walks on the gasket an
resummation procedure akin to real-space renormalizatio

II. FORMULATION OF THE PROBLEM

We index the stages of the hierarchical construction of
Sierpinski gasket by the generation numbern, with n50
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1063-651X/2002/65~2!/021105~5!/$20.00 65 0211
h
f
d
cal
e,

it
a
e
ith
et
nt
a
i-
e

e

n

n
i-

t
le
s-
a
.

e

corresponding to the primary equilateral triangle. There
Nn53/2(3n11) sites on thenth generation gasket. Thes
will be labeled sequentially from the top to the bottom by t
site indexi. The trap is taken to be located at the apex, i.e.
site 1. The left-hand corner site of the bottom row cor
sponds toi 5Nn22n, while the right-hand corner site is o
coursei 5Nn itself. It is convenient to refer to these speci
points as sitesL and R, respectively. Figure 1 shows th
gasket corresponding ton53, for which N3542. We note
that the triangles with vertices at sites~2, 3, 5!, ~4, 6, 13!, ~7,
8, 12!, etc., are lacunary regions of the gasket.

We consider an unbiased Markovian random walk o
particle on the gasket, starting from any site other than
trap: at each time step~taken to be unity!, the particle jumps
with equal probabilities to any of its nearest-neighbor sit
This probability is therefore 1/4 for all sitesi>2, except for
the bottom verticesL andR, for which this probability is 1/2.
The Markov chain representing such a random walk is
godic in the absence of the trap, i.e., the particle will visit
sites with probability 1, no matter which site it starts from
and in the presence of the trap, it is sure to be absorbed th

of
FIG. 1. The generationn53 Sierpinski gasket (Nn542).
©2002 The American Physical Society05-1
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These statements remain true even whenn→` ~as discussed
briefly in the final section!, though the mean time to absorp
tion diverges in the infinite system.

The probability of survival~without absorption! of the
particle aftert time steps starting from any initial sitei sat-
isfies the discrete version of the backward Kolmogor
equation. As a consequence of the linearity of this equat
the moments of the survival time until absorption satisfy
system of inhomogeneous, linear, simultaneous equati
Let Ti ,q

(n) ~whereq50,1, . . . ,! denote theqth moment of the
survival time~the time to trapping! for a walk originating at
site i on thenth generation gasket. Thus,Ti ,q

(n) is also theqth
moment of the walk length for a random walk starting ai.
By definition,T1,q

(n) 50. For 2< i<Nn we have, recalling tha
the time step has been set equal to unity,

2D i j Tj ,q11
~n! 5~q11!Ti ,q

~n! , ~1!

where a summation over the repeated indexj is implied, and
D i j stands for the discrete Laplacian

D i j 5
1

n i
d^ i j &2d i j . ~2!

Here,n i is the coordination number of sitei, d i j is the Kro-
necker delta, and̂ij & indicates thatj is a nearest neighbor o
i. The set of equations satisfied by the first moments or m
walk lengthsTi ,1

(n) is obtained by settingq50 in Eq.~1!. The
quantityTi ,0

(n) is the zeroth moment of the distribution of th
time of first passage to the trap from the origini, and is equal
to unity since absorption at the trap is a sure event for ev
starting pointi. As we shall be concerned throughout wi
just the set of first momentsTi ,1

(n) , we drop the index corre
sponding toq henceforth and writeTi

(n) for this quantity. We
therefore have

2D i j Tj
~n!51. ~3!

We seek the mean walk lengthT(n), which is the average o
Ti

(n) over starting sitesi distributed uniformly over all sites
of the gasket other than the trap sitei 51. This is given by

T~n!5
1

~Nn21! (i 52

Nn

Ti
~n!5

1

~Nn21! (i 52

Nn

(
j 52

Nn

~2D21! i j ,

~4!

where use has been made of Eq.~3! in writing the second
equality. We note thatD is a nonsingular matrix: each row
sum is zero from the third row onwards, but the row sum
21/4 for the first two rows, owing to the presence of the tr
at site 1. Although Eq.~4! appears to be a rather compa
expression, it must be borne in mind thatD21 is a matrix of
order (Nn21)3(Nn21), and thatNn increases exponen
tially with n. Moreover, asT(n) involves the sum over all the
elements ofD21, and these are not preserved under a si
larity transformation, we cannot, on the face of it, expect
re-express the required quantity in terms of invariants s
as the trace of the matrix and its powers. This is why it
remarkable that a relatively simple closed form express
02110
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for T(n) exists, for generaln. As mentioned earlier, the cir
cumstance that makes this possible is the scaling of ran
walks together with a resummation procedure~amounting to
an exact real-space renormalization! that is enabled by the
regular hierarchical structure of the gasket.

III. NUMERICAL RESULTS

Before proceeding to the derivation of the general form
for T(n), it is instructive to note the numerical values o
tained by direct calculation for the first few generationsn.
Wherever possible, we drop the superscript inTi

(n) , to keep
the notation uncluttered.

The casen50 is trivial: we haveN053, and it is easy to
see thatT25T352, so thatT(0)52. The first generation tha
is representative of the structure isn51, for which N156.
Taking advantage of the obvious symmetries, we findT2

5T358, T45T6510 andT5510, so thatT(1)546/5. Simi-
larly, for n52, the solutions areT25T3526, T45T6540,
T5534, T75¯5T10548 andT115¯5T15550, yielding
T(2)5608/14. The values ofTi

(3) andTi
(4) for the third- and

fourth-generation gaskets (N3542,N45123) are given in
Tables I and II. The values ofTi

(5) (N55366) andTi
(6) (N6

51095) have also been computed explicitly@13#. The mean
walk lengthsT(n) for every generation fromn50 – 6 are
listed in Table III. These explicit numerical values serve
direct checks on the analytical formula to be derived belo

IV. CALCULATION OF THE MEAN WALK LENGTH

We first establish certain scaling and symmetry relatio
satisfied by the quantitiesTi

(n) , and then use these to deriv
the general formula forT(n).

A. Time scaling on the gasket

The numerical values presented in the preceding sec
show that T4

(1)51055T2
(0) , T11

(2)55055T4
(1)552T2

(0) .
Similarly, T4

(2)54055T2
(1) , T13

(2)55055T5
(1) , and so on.

Doubling the chemical distance systematically increases
mean time to reach a given point for the first time by a fac
of five: on a given structure~in a given generation!, the mean
time to hit any of the four points two lattice constants aw
from any site, and along the same directions as its f
nearest-neighbor sites, is equal to five time steps. Exactly
same scale factor occurs in the case of the two corner sitL
andR with coordination number two. This scaling is exact o
the Sierpinski gasket, and is essentially the statement tha
random walk dimension of the gasket@5# is dw5 ln 5/ln 2. It

TABLE I. Mean walk lengthTi
(3) from the sitei on then53

Sierpinski gasket with a trap at the apex sitei 51.

i 2,3 4,6 5 7,10 8,9 11,15 12,14

Ti
(3) 80 130 106 168 162 200 176
i 13 16–19 20, 25 21, 24 22, 23 26–33 34–4

Ti
(3) 170 226 240 234 240 248 250
5-2
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TABLE II. Mean walk lengthTi
(4) from the sitei on then54 Sierpinski gasket with a trap at the apex sitei 51.

i 2, 3 4, 6 5 7, 10 8, 9 11, 15
Ti

(4) 242 400 322 528 504 650

i 12, 14 13 16–19 17, 18 20, 25 21, 24
Ti

(4) 554 530 760 754 840 792

i 22, 23 26, 33 27, 32 28, 31 29, 30 34, 42
Ti

(4) 810 914 890 848 842 1000

i 35, 41 36, 40 37, 39 38 43, 44 47, 49, 50, 5
Ti

(4) 922 880 856 850 1080 1130

i 48, 51 53, 56, 57–60 54, 55, 58, 59 61, 65, 66, 70 62, 64, 67, 69 63, 68
Ti

(4) 1106 1168 1162 1200 1176 1170

i 71–78 79, 81, 82, 84, 85, 87, 88, 90 80, 83, 86, 89 91–106 107–123
Ti

(4) 1226 1240 1234 1248 1250
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is in fact a special case of, and follows rigorously from
more general scaling relation for the Laplace transforms
first passage time densities on the Sierpinski gasket that
be established using renormalization arguments@12#. In the
present context, it has two consequences:~i! a direct scaling
of mean walk lengths from specific sites that are related
symmetry in gaskets of different generations; and~ii ! any
relationship among the$Ti

(n)% that preserves a symmetry a
one goes from one generation to another can also be sh
to obey a scaling rule.

B. Decimation procedure

The scaling referred to above enables us to re-exp
partial sums of theTi

(n) in a manner that helps ‘‘decimate
sets of sites level by level in the complete sum.

Consider first the two bottom corner sitesL and R.
Clearly, TL

(n)5TR
(n) , by an obvious symmetry. The distanc

from L or R to the trap doubles in each generation wh
preserving the symmetry of the site. Therefore, one m
have TL

(n)55TL
(n21)55nTL

(0) . This is indeed borne out by
direct calculation, which yields the valuesT2

(0)52, T4
(1)

510, T11
(2)550, T34

(3)5250,T107
(4)51250, . . . .

The next, crucial, step is based on the ‘‘triangular symm
try’’ of the gasket~and the symmetry of the trap’s location!.
Consider the gasket in any given generationn. Let (i 1 , j 1 ,k1)

TABLE III. Mean walk lengthT(n) on the Sierpinski gasket a
generationn, in the presence of a trap at the apex site.

n Nn T(n)

0 3 2
1 6 46/5
2 15 608/14
3 42 8674/41
4 123 127 772/122
5 366 1 904 566/365
6 1095 28 507 448/1094
02110
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label the three sites demarcating any one of thesmallest~or
‘‘size 1’’ ! lacunary triangles in the gasket, and (I 1 ,J1 ,K1)
the three vertices of the triangle containing (i 1 , j 1 ,k1) as its
central lacunary region: for example, referring to Fig. 1, t
sites~2, 3, 5! and ~1, 4, 6!, respectively; or~16, 17, 21! and
~11, 20, 22!, respectively; and so on. Writing down Eq.~3!
for the sites (i 1 , j 1 ,k1), it is easy to see that the sum of th
mean times for this set is directly related to the correspo
ing sum for the set (I 1 ,J1 ,K1) according to

Ti 1
~n!1Tj 1

~n!1Tk1

~n!5TI 1

~n!1TJ1

~n!1TK1

~n!16. ~5!

Now let (i 2 , j 2 ,k2) denote the vertices of a lacunary regio
of size 2, such as~4, 6, 13! or ~20, 22, 36!; and (I 2 ,J2 ,K2)
the corresponding triangle whose central lacunary regio
delimited by (i 2 , j 2 ,k2), such as~1, 11, 15! or ~11, 34, 38!. It
then follows from the scaling derived above that

Ti 2
~n!1Tj 2

~n!1Tk2

~n!5TI 2

~n!1TJ2

~n!1TK2

~n!1~635!, ~6!

a relation that can also be verified by direct computat
after elimination of all the intermediateTi involved. Moving
up the hierarchy, if (i r , j r , kr) are the sites demarcating
lacunary triangle of sizer in ascending order of size, startin
from the smallest at size 1, and (I r , Jr , Kr) the vertex labels
of the triangle with (i r , j r , kr) as its central lacunary region
then

Ti r
~n!1Tj r

~n!1Tkr

~n!5TI r

~n!1TJr

~n!1TKr

~n!1~635r 21!. ~7!

C. Formula for the mean walk length

The foregoing suggests how the mean walk lengthT(n) on
the Sierpinski gasket may be computed for arbitraryn. This
is done by suitably regrouping the terms in the su
( i 52

Nn Ti
(n) , and systematically and repeatedly using Eq.~7! as

one moves upwards through triangles of increasing size.
5-3
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evident that this amounts to the sort of decimation proc
familiar in applications of real-space renormalization. So
combinatorics, involving the enumeration of the number
lacunary triangles of each size in the gasket, is required.
final result is that( i 52

Nn Ti
(n) can be expressed entirely i

terms of known numerical factors and the combinat
(T1

(n)1TL
(n)1TR

(n)). Since T1
(n)[0, while TL

(n)5TR
(n)52

35n, this leads directly to the desired expression forT(n).
As an illustration of the procedure, consider the gaske
generationn54, with Nn5123. Dropping for a moment the
generation superscript for brevity, and withL5107, R
5123, we obtain~after carrying out the procedure describ
above!

(
i 52

123

Ti52~T11TL1TR!1~3336350!13$~T11TL1TR!

1~3236351!13@~T11TL1TR!1~3136352!

13~~T11TL1TR!1~3036353!!#%. ~8!

Thus, ( iTi has been recast in terms of the sum (T11TL
1TR) of the mean walk lengths from the three primary ve
tex sites. Note that 33 ~the factor multiplying 6350 in the
expression above! is the number of lacunary regions~tri-
angles! of size 1 on then54 gasket, 32 ~the factor multiply-
ing 6351! is the number of lacunary triangles of size 2, a
so on. Using the fact thatTL52354 in this example, we ge
on simplification the numerical valueT(4)5127 772/122.

We may now carry out a similar procedure for the case
generaln. The analog of Eq.~8! yields

(
i 52

Nn

Ti
~n!5S 11 (

m50

n21

3mD ~T1
~n!1TL

~n!1TR
~n!!

1~3n2136! (
m50

n21

5m. ~9!

Carrying out the summations involved, we arrive at the f
lowing result for the mean walk length, or equivalently, t
mean time to absorption at the trap:

T~n!5
3n5n1114~5n!23n

3n1111
. ~10!

The values one obtains from this formula for 0<n<6 are in
complete agreement with the ones listed in Tables I–
which are based on the direct computation of eachTi

(n) , thus
providing detailed numerical checks on our result.

The corresponding expressions forT(n) when traps are
present at two vertices of the primary triangle, or at all th
vertices, can readily be obtained by using the techniques
scribed in the foregoing.

V. EXPRESSION IN TERMS OF FRACTAL DIMENSIONS

Further insight into the origin of the specific numbers th
occur in the exact formula of Eq.~10! is obtained by re-
expressing the latter in term of the system size~or number of
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sites! Nn , and the fractal dimensions associated with rand
walks on the gasket@1–7#.

As is well known, the fractal dimension of the gasket~in
d52! is df5 ln 3/ln 2'1.584, while its random walk dimen
sion ~as already mentioned! is dw5 ln 5/ln 2'2.321. The
spectral ~or ‘‘fraction’’ ! dimension of the gasket isd̃
52df /dw5 ln 9/ln 5'1.365. It isd̃ that controls the behavio
of random walks on a fractal at a deep level. For instance
a fractal of infinite extent~and in the absence of traps!, d̃
<2 implies persistence, i.e., sure return to any starting po
while d̃.2 implies transience~or a return probability,1!.
Since d̃,2 for the Sierpinski gasket, a random walk on
remains persistent even whenNn→`. However, such a walk
is null recurrent, i.e., the mean time to return to any site~or
mean first passage time from any site to any other site! is
infinite on the infinite gasket. In the present context, t
means thatT(n), which is just the mean first passage time
reach the trap at site 1~averaged over all possible startin
points of the walk!, becomes unbounded asNn→`. The
interesting question is the precise form of this divergence

Since the total number of sites on thenth generation gake
is Nn53/2(3n11), we have 3n52/3Nn21, while 5n can be

written as (2/3Nn21)2/d̃. Hence, Eq.~10! becomes

T~n!5
~2Nn23!

~Nn21! F1

6
~2Nn23!2/d̃1

2

5
~2Nn23!2/d̃212

1

6G ,
~11!

an expression in which theNn dependence ofT(n) is explicit.
Therefore, asNn→`, we have the leading asymptotic be
havior

T~n!→ 1
3 ~2Nn!2/d̃5 1

3 ~2Nn!dv /df . ~12!

Montroll @14# has obtained rigorous results for the me
walk length of a random walk on regular lattices ofN sites in
the presence of traps. For largeN, the leading behavior of
this quantity is;N2 in d51, while it is ;N ln N in d52.
One may therefore anticipate that on the Sierpinski gas
which has a fractal dimensiondf lying between 1 and 2, and
more pertinently, a spectral dimensiond̃ lying between 1 and
2, the mean walk lengthT(n) would have a dependence o
Nn that is intermediate between these two dependences.
result in Eq.~12!, which shows thatT(n);Nn

1.464, bears this
out.

The result is also consistent with a known relation that
in a sense, complementary to it. LetSt denote the mean
number of distinct sites visited in ant-step random walk on a
trap-free fractal lattice. Then, ast→`, the leading

asymptotic behavior ofSt is given by St;t d̃/2 provided d̃

,2 ~it is ;t when d̃>2!. As d̃,2 on the gasket, we hav

t;St
2/d̃ . In the present context,Nn plays the role ofSt , as

the walker eventually visits all sites with probability on
from any starting point; and the mean walk lengthT(n) is
roughly like the numbert of steps of the walk. One may
5-4
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therefore expect thatT(n);Nn
2/d̃ , as found above. Of cours

our result establishes this relationship rigorously, and a
gives the exact coefficient of proportionality.

Finally, it would be interesting to extend the techniq
developed here to the case of a Sierpinski gasket embe
in an arbitrary numberd.2 of Euclidean dimensions. Th
leading asymptotic behavior ofT(n) as a function ofNn can
be written down right away for such higher-dimensional a
logs of the gasket. The spectral dimension of such a struc
is d̃52 ln(d11)/ln(d13), which tends to 2 from below a
d→`. Therefore a random walk on the gasket in anyd>2
remains persistent and null recurrent. For the problem
hand~the mean walk length or survival time before absor
c.
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tion at the trap!, we have the leading asymptotic behavi
T(n);(Nn) ln(d13)/ln(d11).
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