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Analytic expression for the mean time to absorption for a random walker on the Sierpinski gasket
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The exact analytic expression for the mean time to absortiomean walk lengthfor a particle perform-
ing a random walk on a finite Sierpinski gasket with a trap at one vertex is found B"he[3"5" "1
+4(5")—3"/(3"*1+1) wheren denotes the generation index of the gasket, and the mean is over a set of
starting points of the walk distributed uniformly over all the other sites of the gasket. In terms of the number
N,, of sites on the gasket and the spectral dimensiaf the gasket, the precise asymptotic behavior for large

N, is TMW—1/3(2N,)%4~N*54 This serves as a partial check on our result, as(@jisntermediate between

the known result§ ~N? (d=1) andT~N In N (d=2) for random walks onl-dimensional Euclidean lattices

and (b) consistent with the known result for the asymptotic behavior of the mean number of distinct sites
visited in a random walk on a fractal lattice.

DOI: 10.1103/PhysRevE.65.021105 PACS nunifer05.40—-a

[. INTRODUCTION corresponding to the primary equilateral triangle. There are
N,=3/2(3"+1) sites on thenth generation gasket. These
Random walks and diffusion on fractal structures, bothwill be labeled sequentially from the top to the bottom by the
regul_ar and di_sordered,' occur in a truly (_jiverse variety ofsite indexi. The trap is taken to be located at the apex, i.e., at
physical situations ranging from transport in amorphous andite 1. The left-hand corner site of the bottom row corre-
porous media to heterogeneous catalysis and other chemicghonds tai =N,,— 2", while the right-hand corner site is of
reactions on substrates. The literature is now quite extensiveouyrsei = N,, itself. It is convenient to refer to these special
and includes several revieWs—7]. While asymptotic behav- - hoints as sited. and R, respectively. Figure 1 shows the
iors and scaling relations are known in considerable _detall, Ijasket corresponding to=3, for which N;=42. We note
is always useful to have an exact, closed-form solution on
finite structure in order to understand more quantitatively th , 12, etc., are lacunary regions of the gasket.
approach to asymptopia. We concern ourselves here wit

such a solution on a particular fractal, the Sierpinski gaSkerﬁ}ar\{\ilgecggstlggr Z';klgt]bgz(:‘t?n Mz(r)kmov;n rse?tr; dg?rq]evrv?rl]l;r?ftr?e
[8]. Though deterministic, this structure possesses releva 9 ’ g y

fractal characteristics such as ramification and lacunarity to g‘f"p: at each time .s'tg(maken to be l.m'ty’ the partu_:le Jumps
with equal probabilities to any of its nearest-neighbor sites.

degree that makes it a very useful model for physical appli- his probability is therefore 1/4 for all sites=2, except for

cations. It therefore appears to be worthwhile to analyze th . . . ST
random walk problem on the gask&-12] in closer detail. Tk? b,?/lttc;r \\//er::c?: ran(:R, f?]:i‘r’]Vh'Ch tL"S prror?c?brlrlllt)\//vlslljliz ;
In particular, we focus on an unbiased random walk on the € Markov chain representing such a rando al 1S er-

fractal in the presence of a tra@ perfect absorbgrat a g_odic ".‘ the absef‘.ce of the trap, i.e., t_he parti(_:le will visit all
vertex, and ask for the mean walk length before absorptiorci“tes. with probability 1, no matter which site it starts from;
(equivalently, the mean survival timeThis involves a and in the presence of the trap, it is sure to be absorbed there.
double average: the mean length of the walk from a given

origin must first be computed, and then averaged over a uni- O

form distribution of the origin over all the sites of the gasket (e—(3)

other than the trap site. It turns out that a remarkably simple (5—6)

(4]
analytic expression can be obtained for this quantity, by us- /
ing the exact scaling of random walks on the gasket and a @\ 8) / (19
resummation procedure akin to real-space renormalization. _\@ (af—5)
®

Il. FORMULATION OF THE PROBLEM (18—(17) &‘ (19
———\
G—G)  (2——(m)
_ . _ —. @—@)
*Permanent address: Department of Physics, Indian Institute of

/
@G —
Technology—Madras, Chennai 600 036, India. FIG. 1. The generation=3 Sierpinski gasketN,=42).

at the triangles with vertices at sit€ 3, 9, (4, 6, 13, (7,

We index the stages of the hierarchical construction of the
Sierpinski gasket by the generation numlmgrwith n=0
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These statements remain true even whe¥re (as discussed TABLE I. Mean walk lengthT® from the sitei on then=3
briefly in the final sectio)) though the mean time to absorp- Sierpinski gasket with a trap at the apex sitel.
tion diverges in the infinite system.
The probability of survival(without absorption of the i 23 46 5 710 89 1115 1214
partce st tme steps sarg fom &y I Shest TP 80 1 w6 e w2 a0
equation. As a consequence of the linearity of this eql?ation @ 13 16-19 20,25 21,24 22,23 26-33 34-42
the moments of the survival time until absorption satisfy alri 170 226 240 234 240 248 250
system of inhomogeneous, linear, simultaneous equations.
Let T (whereq=0,1, . .. ) denote thegth moment of the
survival time(the time to trappingfor a walk originating at
sitei on thenth generation gasket. Thug("} is also thegth
moment of the walk length for a random walk startingi.at
By definition, T{")=0. For 2<i<N, we have, recalling that
the time step has been set equal to unity,

for T(™ exists, for generah. As mentioned earlier, the cir-
cumstance that makes this possible is the scaling of random
walks together with a resummation proced(enounting to

an exact real-space renormalizadidhat is enabled by the
regular hierarchical structure of the gasket.

AT, = (a+ DT, (1) IIl. NUMERICAL RESULTS
where a summation over the repeated inflaximplied, and Before proceeding to the derivation of the general formula
Aj; stands for the discrete Laplacian for T(", it is instructive to note the numerical values ob-

tained by direct calculation for the first few generations
Wherever possible, we drop the superscripﬂ'iﬁ), to keep
the notation uncluttered.

The casen=0 is trivial: we haveNy=3, and it is easy to
Here, »; is the coordination number of site 5;; is the Kro-  see thafl,=T3=2, so thafT(®)=2. The first generation that
necker delta, andj) indicates thaf is a nearest neighbor of is representative of the structurens=1, for whichN,;=6.

i. The set of equations satisfied by the first moments or meamaking advantage of the obvious symmetries, we find
walk lengthsT(? is obtained by setting=0 in Eq.(1). The ~ =T;=8, T,=T¢=10 andTs=10, so thaff¥=46/5. Simi-
quantityTi(f‘()’ is the zeroth moment of the distribution of the larly, for n=2, the solutions ard,=T3=26, T,=T=40,
time of first passage to the trap from the origiand is equal Ts=34, T;=:--=T,,=48 andTy;=---=T,5="50, yielding
to unity since absorption at the trap is a sure event for every§f?)=608/14. The values of®) and T{*) for the third- and
starting pointi. As we shall be concerned throughout with fourth-generation gasketdNg=42,N,=123) are given in
just the set of first momenfﬁi(?l), we drop the index corre- Tables | and Il. The values dfi(S) (N5=366) andTi(G) (Ng
sponding toq henceforth and writai(“) for this quantity. We  =1095) have also been computed explic[th8]. The mean
therefore have walk lengthsT(" for every generation froon=0-6 are
listed in Table IIl. These explicit numerical values serve as
—ATM=1. (3)  direct checks on the analytical formula to be derived below.

1
Bij =28~ G- 2)

We seek the mean walk lengTi™, which is the average of

. e . . . IV. CALCULATION OF THE MEAN WALK LENGTH
T(™ over starting sites distributed uniformly over all sites

of the gasket other than the trap site1. This is given by We first establish certain scaling and symmetry relations
N N satisfied by the quantitieE(™ , and then use these to derive
1 3 1 T < the general formula fof ("
T(n):— T(n):— _A71 i g .
MmN R (T
(4) A. Time scaling on the gasket
where use has been made of E8). in writing the second The numerical values presented in the preceding section

equality. We note tha\ is a nonsingular matrix: each row show that T{V=10=5T{), T{Z=50=5T{H =527,

sum is zero from the third row onwards, but the row sum isSimilarly, T{?=40=5T", T{¥=50=5T"), and so on.
—1/4 for the first two rows, owing to the presence of the trapDoubling the chemical distance systematically increases the
at site 1. Although Eq(4) appears to be a rather compact mean time to reach a given point for the first time by a factor
expression, it must be borne in mind thit* is a matrix of  of five: on a given structurén a given generationthe mean
order N,—1)X(N,—1), and thatN, increases exponen- time to hit any of the four points two lattice constants away
tially with n. Moreover, asT™ involves the sum over all the from any site, and along the same directions as its four
elements ofA "%, and these are not preserved under a siminearest-neighbor sites, is equal to five time steps. Exactly the
larity transformation, we cannot, on the face of it, expect tosame scale factor occurs in the case of the two cornerlsites
re-express the required quantity in terms of invariants suclandR with coordination number two. This scaling is exact on
as the trace of the matrix and its powers. This is why it isthe Sierpinski gasket, and is essentially the statement that the
remarkable that a relatively simple closed form expressiomandom walk dimension of the gasKé&i] is d,=In5/In 2. It
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TABLE Il. Mean walk IengthTi(“) from the sitei on then=4 Sierpinski gasket with a trap at the apex sitel.

i 2,3 4,6 5 7,10 8,9 11, 15
T 242 400 322 528 504 650

i 12, 14 13 16-19 17, 18 20, 25 21, 24
T@ 554 530 760 754 840 792

i 22, 23 26, 33 27,32 28, 31 29, 30 34, 42
T 810 914 890 848 842 1000

i 35, 41 36, 40 37, 39 38 43, 44 47, 49, 50, 52
T 922 880 856 850 1080 1130

i 48, 51 53, 56, 57—60 54, 55, 58, 59 61, 65, 66, 70 62, 64, 67, 69 63, 68
T@ 1106 1168 1162 1200 1176 1170

i 71-78 79, 81, 82, 84, 85, 87, 88, 90 80, 83, 86, 89 91-106 107-123
T 1226 1240 1234 1248 1250

is in fact a special case of, and follows rigorously from, alabel the three sites demarcating any one ofdimallest(or

more general scaling relation for the Laplace transforms ofsize 1") lacunary triangles in the gasket, anid (J;,K;)

first passage time densities on the Sierpinski gasket that cahe three vertices of the triangle containing,{,,k;) as its

be established using renormalization argum¢mbgd. In the  central lacunary region: for example, referring to Fig. 1, the

present context, it has two consequencBsa direct scaling  sites(2, 3, 5 and(1, 4, 6, respectively; o(16, 17, 2} and

of mean walk lengths from specific sites that are related by11, 20, 22, respectively; and so on. Writing down E®)

symmetry in gaskets of different generations; aiigl any  for the sites {(;,j1,k;), it is easy to see that the sum of the

relationship among th{aTi(”)} that preserves a symmetry as mean times for this set is directly related to the correspond-

one goes from one generation to another can also be showng sum for the setl(,J;,K;) according to

to obey a scaling rule.

TV+TV+ T =TV + T+ T+ 6. (5)
1 1 1 1 1 1

B. Decimation procedure

The scaling referred to above enables us to re-expred¥ow let (i,,j2,k;) denote the vertices of a lacunary region
partial sums of ther™ in a manner that helps “decimate” Of size 2, such a#4, 6, 13 or (20, 22, 36; and (,J2,Kz)
sets of sites level by level in the complete sum. the corresponding triangle whose central lacunary region is

Consider first the two bottom corner sités and R~ delimited by (5,]2,kz), such ag1, 11, 15 or (11, 34, 38. It
Clearly, T(Ln):T(Rn)’ by an obvious symmetry. The distance then follows from the scaling derived above that
from L or R to the trap doubles in each generation while
preserving the symmetry of the site. Therefore, one must T+ T+ T =T+ T+ T +(6x5), ()
have T"W=5T(""V=5"T(")  This is indeed borne out by

. . . . 0 1
irf(;: tT((:gling“_?g’):W;;%h_rﬁsfizghqe vaIue'E(z =2, TE‘) a relati-on- thgt can also be verifie_d b)_/ direct comp_utation
111 134 » 1107 o after elimination of all the intermediafg involved. Moving
;I'he next, crucial, step is based on the trlangular SYmMMey the hierarchy, if i , j,, k,) are the sites demarcating a
try” of the gasket(and the symmetry of the trap’s location  |5cynary triangle of size in ascending order of size, starting

Consider the gasket in any given generatiohet (i1,j1,k1)  from the smallest at size 1, ant} (J;, K,) the vertex labels

of the triangle with {,, j, , k;) as its central lacunary region,
TABLE Ill. Mean walk lengthT(™ on the Sierpinski gasket at then

generatiom, in the presence of a trap at the apex site.

n N, ™ T+ T+ T =TV + TP+ T+ (651, (7)
0 3 2
L 6 46/5 C. Formula for the mean walk length
2 15 608/14 ,
3 42 8674/41 The foregoing suggests how the mean walk lerijth on
4 123 127 772/122 the Sierpinski gasket may be computed for arbitnarylhis
is done by suitably regrouping the terms in the sum
5 366 1904 566/365 S 1 y y regrouping _
6 1095 28507 448/1094 LT, and systematically and repeatedly using &9as

one moves upwards through triangles of increasing size. It is
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evident that this amounts to the sort of decimation processite9 N,,, and the fractal dimensions associated with random
familiar in applications of real-space renormalization. Somewalks on the gaskdtl—7].

combinatorics, involving the enumeration of the number of

As is well known, the fractal dimension of the gaskiet

lacunary triangles of each size in the gasket, is required. Thé=2) is d;=In 3/In 2~1.584, while its random walk dimen-

final result is that="", T(" can be expressed entirely in

sion (as already mentionedis d,=In5/In2~2.321. The

terms of known numerical factors and the combinationspectral (or “fraction”) dimension of the gasket il

(TP+TW4+T). Since T{M=0, while TW=TM=2
X 5", this leads directly to the desired expression T&P.

=2d;/d,,=In9/In5~1.365. It isd that controls the behavior
of random walks on a fractal at a deep level. For instance, on

As an illustration of the procedure, consider the gasket of fractal of infinite extentand in the absence of tra)pgj

generatiom=4, with N,=123. Dropping for a moment the
generation superscript for brevity, and with=107, R
=123, we obtainafter carrying out the procedure described
above

123
> Ti=2(Ty+ T +TR)+(33X6X5%)+3{(T,+ T +TR)
i=2

+(32X6X5Y)+3[(T,+ T +Tr)+ (31X 6Xx52)
(8

Thus, 2;T; has been recast in terms of the suy€T.
+Tg) of the mean walk lengths from the three primary ver-
tex sites. Note that B(the factor multiplying 6<5° in the
expression aboyeis the number of lacunary regionri-
angles of size 1 on then=4 gasket, 3 (the factor multiply-
ing 6x 5) is the number of lacunary triangles of size 2, and
so on. Using the fact that, = 2x 5% in this example, we get
on simplification the numerical valug® =127 772/122.

+3((T,+ T +TR) +(3°%6%x5%)]}.

We may now carry out a similar procedure for the case of

generaln. The analog of Eq(8) yields

Np

2, T=

=2

n—-1
1+ >, 3™
m=0

) (T+T+TRY)

n—1

+(3”*1><6)m§=‘,O 5™ 9)

Carrying out the summations involved, we arrive at the fol-

lowing result for the mean walk length, or equivalently, the
mean time to absorption at the trap:

375" 14 4(5") - 3"

™ 3+l

(10

The values one obtains from this formula foc®@<6 are in

complete agreement with the ones listed in Tables I-lll,

which are based on the direct computation of &%, thus
providing detailed numerical checks on our result.
The corresponding expressions f6f” when traps are

<2 implies persistence, i.e., sure return to any starting point;
while d>2 implies transiencéor a return probability<1).

Sinced<2 for the Sierpinski gasket, a random walk on it
remains persistent even whisij—o. However, such a walk
is null recurrent, i.e., the mean time to return to any &ite
mean first passage time from any site to any othen site
infinite on the infinite gasket. In the present context, this
means thaT (", which is just the mean first passage time to
reach the trap at site (averaged over all possible starting
points of the walk becomes unbounded &§,—x. The
interesting question is the precise form of this divergence.

Since the total number of sites on théh generation gaket
is N,=3/2(3"+ 1), we have 3=2/3N,— 1, while 5" can be

written as (2/8l,—1)?4. Hence, Eq(10) becomes

(2N,—3) |1 ~ 2 ~ 1
m_>—" 7| _a\2d — _a\2d-1_ ~
T=TN =T |6 (2Na =3 5 (2N, =3)* =,

(11)

an expression in which the,, dependence of(" is explicit.
Therefore, adN,—>, we have the leading asymptotic be-
havior
T(n)_’%(ZNn)Zld:%(ZNn)d"’/df- (12

Montroll [14] has obtained rigorous results for the mean
walk length of a random walk on regular latticeshbgites in
the presence of traps. For large the leading behavior of
this quantity is~N? in d=1, while it is ~NInN in d=2.
One may therefore anticipate that on the Sierpinski gasket,
which has a fractal dimensiah lying between 1 and 2, and
more pertinently, a spectral dimensidrying between 1 and
2, the mean walk lengtfi(™ would have a dependence on
N, that is intermediate between these two dependences. The
result in Eq.(12), which shows thal (W ~N4%* bears this
out.

The result is also consistent with a known relation that is,
in a sense, complementary to it. L& denote the mean

present at two vertices of the primary triangle, or at all threenumber of distinct sites visited in @rstep random walk on a
vertices, can readily be obtained by using the techniques dérap-free fractal lattice. Then, as—o, the leading

scribed in the foregoing.

V. EXPRESSION IN TERMS OF FRACTAL DIMENSIONS

asymptotic behavior o8, is given by S,~t%? providedd
<2 (itis ~t whend=2). As d<2 on the gasket, we have
t~S? . In the present contex, plays the role ofS;, as

Further insight into the origin of the specific numbers thatthe walker eventually visits all sites with probability one

occur in the exact formula of Eq10) is obtained by re-
expressing the latter in term of the system g@enumber of

from any starting point; and the mean walk lengtf) is
roughly like the numbet of steps of the walk. One may
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therefore expect thzi[(“)~N2’a as found above. Of course tion at the trap, we have the leading asymptotic behavior
. L L ) (n)~(N )In(d+3)lln(d+1)
our result establishes this relationship rigorously, and alsd n :
gives the exact coefficient of proportionality.
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