PHYSICAL REVIEW E, VOLUME 65, 021103

Generalized Taylor-Aris dispersion in discrete spatially periodic networks:
Microfluidic applications

Kevin D. Dorfman and Howard Brenrfer
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
(Received 22 August 2001; published 14 January 2002

A theory is presented for the lumped parameter, convective-diffusive transport of individual, noninteracting
Brownian solute particle§'macromolecules’) moving within spatially periodic, solvent-filled networks—the
latter representing models of chip-based microfluidic chromatographic separation devices, as well as porous
media. Using graph-theoretical techniques, the composite medium is conceptually decomposed into a network
of channelsthe edgesthrough which the solute is transported by a combination of molecular diffusion and
either “piggyback” entrainment within a flowing solvent or an externally applied force field acting upon the
solute molecules. A probabilistic choice of egress channel for a solute particle exiting the intersentiex
of the channels is furnished by an imperfect mixing model. A spatially periodic, Taylor-Aris-like “method-of-
moments” scheme is applied to this transport model, leading to discrete matrix equations for computing the
network-scale particle velocity vectt* and dispersivity dyadiﬁ* in terms of the prescribed microscale
transport parameters and network geometry characterizing the basic unit cell of which the spatially periodic
device is comprised. The ensuing algebraic equations governing the vertex-based, discrete unit-cell “fields”
P5(i) andB(i) (i=1,2,...n), whose paradigmatic summations yi&l andD*, constitutediscreteanalogs of
classicalcontinuousmacrotransport phenomenological parametBgqr) andB(r), with r a continuouspo-
sition vector defined within the unit cell. The ease with which these discrete calculations can be performed for
complex networks renders feasible parametric studies of potential microfluidic chip designs, particularly those
pertinent to biomolecular separation schemes. Application of this discrete theory to the dispersion analysis of
pressure-driven flow in spatially periodic serpentine microchannels is shown to accord with existing results
previously derived using classical continuous macrotransport theory.
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I. INTRODUCTION into a discrete network theory, rendering the latter analyti-
cally and computationally tractable when compared with the
Engineering design and analysis of spatially periodic mi-more rigorous continuous descriptiofis| of such spatially
crofluidic separation devices requires characterizing theeriodic networks.
functional dependence of chip-scale-scale¢ mean solute The analysis which follows is focused primarily upon
transit rates across the device upon the prescribed interstitiathodeling microfluidic chromatographic separation devices
scale (I-scale; | <L) parameters quantifying the repetitive embossed on chips. In the context of chromatographic sepa-
unit-cell configuration and local transport properties of therations, such micropatterned media find ready application as
several distinc{macromoleculgrsolutes to be separated as vector chromatographic separation devi¢®k wherein the
these molecules traverse the fluid-filled interstitial space. Aglistinct species undergo simultaneous directional and tempo-
is often the case in such modeling schemes, a rigorousal separation. By “directional” is meant that, on thescale,
pointwise(“continuous”) description of thd-scale transport different species move in different directions in response to
within the network tends to be exceedingly diffic(ftat all ~ the animating force. In contrast, “temporal” separation refers
possible, owing in large measure to incomplete knowledgeto the fact that even if the several species move, on average,
of the detailed mechanisms quantifying the transport of flexin the same direction, they generally do so at different
ible polymeric or biological molecules within constraining speeds thereby effecting their separation in time, such as
geometries. Consequently, the rigor implicit in any continu-occurs in conventional scalgor unidirectional chromatog-
ous model for predicting the-scale solute transport across raphy. Experiments performed on such micropatterned de-
the chip as a whole, such as is embodied in classical genevices have demonstrated the efficient separation of variable-
alized Taylor dispersion theoifl], is often negated by the length DNA strand$3,4].
need to invoke coarsead hoc assumptions regarding the Previous attempts to model such directional separation
physical nature of the local solute transport processes, sugshenomena include our application of rigorous continuous
as employing dscalaj mean electrophoretic solute mobility Taylor-Aris dispersion theory2] and a preliminary version
in lieu of the exact pointwise mobility dyadic. The present[5] of the present theory, as well as more intuitive models
paper aims to incorporate, priori, all of our ignorance of [6,7] developed by others. In addition to being directly ap-
the detailed phenomenology underlying these local issueglicable to the phenomenon of vector chromatography, the
generic theory to be developed herein lends itself to applica-
tions involving other classes of microfluidic separation de-
*Email address: hbrenner@mit.edu. vices, such as magneto-sensitive arraj® and en-
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tropic trapping devicef9], as well as furnishing an elemen- existing generalized Taylor-Aris dispersion theory analyses
tary model for transport in porous media. Applications of the[1], which are predicated upon a precise, pointwise, continu-
present theory to these specific devices is deferred to futureus description of théscale transport phenomena occurring
installments. in spatially periodic media. Accordingly, the generalized
To the extent that Taylor-Aris dispersion thedty] pro-  Taylor-Aris dispersion paradigm developed herein represents
vides an adequate description of the global aspects of the complete discretization of the comparable classical con-
solute transport processes occurring within the network, onlyinuous paradigni36]—the present graph-theoretical frame-
two parameters are required to quantify the averag®r  work being motivated by the creation of classes of perfectly
chip-scale solute transport rat€B:the mean solute velocity periodic chromatographic devicé8,4,8,9. Moreover, the
vector U*, representing the coefficient of the asymptoticconcomitant difficulties posed by the geometric complexities
L-scale linear temporal growth in time of the mean vectorof such microfluidic device$2] motivates the subsequent
displacement of the solute particle from the point of its initial use of experimentally measurable, albeit averaged, discrete
introduction into the network; angi) the solute dispersivity |-scale transport parameters in place of classical continuous

dyadic D*, comparably representing the corresponding-Scalé transport data.

growth in time of the solute’s mean-squared dyadic deviation Al network models, including ours, proceed in a similar
from its current mean position. The vector velocity differ- [2shion, initially requiring thre¢-scale data inputs pertaining

U*—U* bet wo distinct solute “molecules” to: (i) the I-scale description of the entraining solvent flow
enceth 2 detween two distinct solute “molecules” or field, such as that determined by an electrical resistance ana-
species 1 and 2, introduced simultaneously, quantifies th

. | . ﬁ)g [12,13,21,23for fluid motion animated by a Darcy-scale
relative separation occurring betwgen them as_they t.r"’.“.'erst?ressure gradientii) thel-scale solute transport parameters,
the rEtwork._SlmllarIy, the respectlvg particle dISperSIV't'es'namely, the mean, interstitial-level particle velocity vector
say,D] and D3, serve to characterize the extent of bandand diffusivity (dispersivity dyadic prevailing within the in-
broadening of these solutes, arising from the stochastic natividual channels of the network: arfiii ) the selection of a
ture of the solute transport processes occurring within th&o-called “mixing” rule characterizing the choice of solute
network. intersectional exiting protocol from the channel junctions

Network models, albeit typically devoid of rigorous wherein thel-scale channel contents coalesce.
Taylor-Aris foundations, have been applied previously to a Disagreement exists in the network modeling literature
vast array of practical problems, including transport in po-concerning delineation of thiescale(effective) intrachannel
rous media[10-2Q and fractal models thered21-23,  transport processes, with existing models employing either
deep-bed filtratiorj24,25, soil sciencg 26,27, and various  molecular propertief16,27,34 or effective Taylor-Aris dis-
chromatographic separation scherf@8—30. Early work in  persion propertief17,18,20,28,29,33As such, it behooves
these fields is reviewed by van Brakgdl]. To date, the s to amplify, during the course of the subsequent analysis,
majority of these network analyses have focused primarilfthe relationship existing between the effective intrachannel
upon dispersion in random porous medifl2,16—  solute velocity and diffusivity(dispersivity and the compa-
20,27,32,33 or upon the inherent disorder prevailing in raple pointwise particle velocity vector and molecular diffu-
packed bed chromatographic separation devi@-30, sjvity dyadic appearing in the continuous scheme. The latter
with much attention focused upon the solute dispersivity inpair of microtransport parametersl(r) and D(r), are, in
such  networks near the percolation  thresholdprinciple, exactly expressible functionally in terms of the
[17,20,25,27,3)4 Moreover, network modelsl0-17,19,21—~  continuousl-scale local particle position vectorwithin the
23,25,27,30,32,33nave heretofore dealt mostly with unidi- repetitive unit cell. In contrast, because of their coarser dis-
rectional, pressure-driven, piggyback solute transportrete|-scale nature, the effective channel transport param-
thrOUgh the network. In such circumstances, the mean paé'terslu(j) and D(J), cannot be known exacﬂy owing to
ticle motion has invariably been regarded as being colineafincertainty existing in the instantaneous local positioof
with the Darcy-scalglL-scalg solvent pressure gradient, a the particle within channgl arising from the stochastic na-
phenomenon which is not generally true of vector chromatoyre of the molecular diffusive transport processes. For ex-
graphic separations. ample, the transport of an entraingmbint-size particle by a

In contrast with all but twd 14,22 of the preceding net- parabolic Poiseuille flow field may take place entirely along
work analyses, we here apply a rigorous Taylor-Aris-likethe channel center, resulting thereby in a mean channel ve-
“method-of-momentsL-scale scheme to the lumped param-|qcity significantly greater than that for a particle moving
eter,|-scale transport processes occurring within the spatiallyyroximate to the channel walls. Such effects become more
periodic network[35]—ultimately deriving a generic para- pronounced in the context of finite-size particles, wherein
digm for calculating the physically relevant macroscopic pa+ydrodynamic wall effects induced by the finite size of the
rameters, namely* andD*, from knowledge of the pre- particles relative to the channel widtB7] must be incorpo-
scribedl-scale data. Building upon the discrete framework ofrated into the analys{88]. This is especially true in the case
Adler and Brennef14], the present contribution relaxes their of force-driven particle animation or electro-osmotic flow
assumption of perfect mixing at the intersections of the indi{41], where wall effects constitute thenly mechanism en-
vidual channels, in addition to incorporating molecular dif- abling particle vector separation. The possibility that a par-
fusion within the channels into the analysis. With the excep+icle will statistically sample the entire cross-sectional area of
tions [14,22 cited above, our discretization contrasts with a given channel before exiting that channel, as required for

021103-2



GENERALIZED TAYLOR-ARIS DISPERSION IN . .. PHYSICAL REVIEW BB5 021103

Taylor-Aris theory to be applicable, necessarily decreasemore physically accurate results within this discrete theory.
monotonically with the channel’s longitudinal dimension— However, given the computational resources required to
increasing thereby the likelihood of the particle spending amore precisely quantify the detailed intersectional transport
statistically inordinate time resident on a given streamline, oprocesses, it is only incrementally more difficult to solve the
too long in a region of unchanging mobility in the finite-size original, classical continuous Taylor-Aris dispersion problem
particle case. Even more tenuous than in the preceding cag] itself. Consequently, practical applications of our discrete
of modeling the solute velocity in a channel is the issue ofTaylor-Aris dispersion theory suggest choosing an appropri-
properly defining the channel dispersivity, given that theate vertex mixing rule in order to approximate the true physi-
presence of convection gives rise to a Taylor contribution tacal processes prevailing therein—rather than attempting to
that effective diffusivity[42], which formula, however, is solve the exactly formulated microscale problem posed at the
strictly valid only for relatively long tubes, or, more pre- channel intersections.
cisely, for large aspect ratio channels. Having established a particular physical model for the
A comprehensive stud80] incorporating various effec- unit cell-level transport processes, a detailed picture of the
tive transport models, both theoretical and Semiempiricalgloba| partic|e transport process iS generated from SUCh mod_
found the ensuind -scale macrotransport parameters to beg|g typically either by: (i) a Monte Carlo scenario
only weakly dependent upon the choice of transport mOdelﬁzo,27,30,32,3]3\Nhereby single-particléor “plume”) trans-

but strongly dependent upon the connectivity of the network o through the network is statistically simulated numerous

In spite of this potentially weak dependence in certain Cirmes: or (i) a Laplace transform techniqud16—

cumstances, it nevertheless behooves us to formulate rationgs 50 g 29 wherein a unidirectional, unsteady convection-
definitions for the effective channel transport parameters, esjifysion equation is solved for the continuous solute con-
pecially in the asymptotic limitcf. Sec. VAD. centration distribution prevailing in each discrete channel or

Numerous models also exist for quantifying the solute,qre within the entire network. Continuity of these concen-

“mixing” processes occurring at the channel junctions. Un-ya4igns at all channel intersections in the network, together
like the mean intrachannel transport parameters, the mixingisy an (arbitrary choice of initial solute injection point

rule, serving to quantify the probability of the particle exiting \yithin the network as a whole, jointly with conditions at the

the intersection through a specified channel among ,thozginite) boundariegif any) of the network, provide sufficient
available, is less equivocal, being governed by the physics fggitions in such models for uniquely specifying the overall

thethdeyiﬁh '\l/lgsag"iéjgely:agz%dgij tf;]e “perfect bmixing" hy- solute transport problem. The macroscale transport param-
POINESISL 1A, 10=139,20-3U,23,97 WhErein no bias 1s as- tersU* and D*, globally characterizing the process, are

sumed to exist regarding the choice of intersectional egres lculated. either f ts of the simulati ¢
channel, owing either to purely convective solute transpor{. en calcuiated, either from moments of the simulation sta-
(mixing-tank model in the absence of molecular diffusion istics or from the convective-diffusive solute concentration
or extremely vigorous molecular diffusion—in probabilistic prolillte; (gf' Seig['llg Di8 20 of the Laplace t f tech
terms, effectively a Markov proced82]. At large Peclet . roponen s apiac rarls orm” ech-
numbers(convection dominated solute transpothe choice nique argue that their scheme constitutes an “exact” method

of intersection solute egress channel is typically assumed tch)r ascertaining these macrotransport parameters, having pre-

be simply proportional to the flow rate prevailing within that sumably solved for the complete unsteady microscale con-

channel[24,25.32,33 At small Pelet numbers, where the centration field extant within each pore of the network fol-

transport process is diffusion dominated, steric argument@Wlng solute injection. As discussed above, some degree of

[33] have been invoked to argue that the choice of intersec‘:%_‘;b'tra”neSS invariably exists as to the applicability of

tion egress channel is proportional to that channel’s Cross_ﬁylcg\-/ArlsI;;C;sllevdllspi?rsnalgygli;?u?\w/(iatntsrfo\: c;lailrllcula\tlnrgﬂt]he
sectional area, while for very small intersections it has als ective particie velocity a usivity prevailing over the

been assumefR7] that no streamwise molecular diffusion ength of a single chr_;mnel, a parameter strictly valid_ only in
oceurs an L-scale asymptotic sendd,17,45. For asymptotically

Each of the preceding mixing rules represent approximal-ong times, our discrete Taylor-Aris dispersion theory, to be

tions, albeit pragmatically useful ones, of the exact soluteder'ved’ represents. a much more compact compu_tatlonal
transport processes occurring at the channel intersections. $¢heme for calculating the-scale parameters™ and D*
more precise determination of egress channel probabilitie4nen compared with such Laplace transform techniques,
may be obtained from the exact solution of the prevailingSince its use d(_)es not necessitate |n|t|all_y obtaining the ex-
continuous convective-diffusive transport problem, includinghaustively detailed time-dependent solution of the underly-
proper accountings of the detailed fluid flow field and par-ing unsteady convection-diffusion equations for each pore of
ticle dynamics, e.g., hydrodynamic wall effects. The latterthe network prerequisite to calculating these parameters.
scheme has been employed elsewhere for the analysis bforeover, our scheme providester alia, rigorous criteria
blood hematocrit flow through microvasculat(i#d], as well ~ governing use of the single channekcale Taylor-Aris pa-
as for the Stokesian dynamics of fluid-particle-bed interacf@meters entering into the subsequkrdcale calculation of
tions in model porous media4]. U* andD*. Indeed, the ability to quantitatively obtain the
No doubt exists that a continuous description of the vertexnacroscopid_-scale transport properties of a solute molecule
transport process, when compared with any of the proposeidaversing the medium, without the preliminary necessity for
ad hocprobabilistic vertex mixing schemes, would furnish solving for the entire exact, time-and initial condition-
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N

1 superficial volumer, of the cell[13].
_1 s
cell

7% W% W/% / with (15, 1,,13) a triplet of positive or negative integers,

_ including zero. The location of thigh cell can also be iden-
particle animation effected by the application of an externally ap-
unit cell regions indicated by the trio of shaded regions labejdg ~ (discrete, continuoysvector pair ®,r)=R, where the
dependent solute concentration field, constitutesrétigon centroid. This corresponds to the standard decomposition
mechanism for converting the fundamental continuoug€duently defined ®L-scale continuous fieldgvelocity
vation of a detailed conservation equation for the conditionai= (Ri ,f)-space encompassing the entire interstitial fluid re-
analysis for the graphical representation of the periodic meSUbPSéquent graph-theoretical network treatmgne “dis-
dyadic parametersT* and D* from the prescribed-scale I=(1,i) space, wher¢=(1,2,...n) identifies one of then
fluidic channels and “simple” networks are examined in Sec.
including recommendations for applications of the latter.  jng the classicdl1,36] continuouskR-space decomposition of

Il. GEOMETRICAL DESCRIPTION . L . ;
consists of a finite number of intersecting channels, some of

ing channels embedded within a three-dimensional space, &ing intersected by the unit-cell boundarigsich as the
molecule from every other point in the medium. Transportdination of the channels and their intersections, withrife
considering the individual Taylor-Aris dispersion processesvertex setj e VI'y. By virtue of the periodicity of the net-
ite medium[14] as a whole. The spatial periodicity of the say, one edge with initial vertex atin cell I with terminal
nitely in all directions. The entire composite medium may bewe retain only those edges which are directed into the unit

<F basic lattice vectorsl{,|,,13) satisfying the requirement
3 \ W ' W W that their scalar triple product; - 1, X 13= 74, is equal to the
> / The position of a given cell, say, tHéh cell, within the
. % / three-dimensional space can be identified by specifying the
e ' discretel-scale position vectdr, of, say, the centroid of the
i cell relative to an originR|o= 0, at the centroid of the zeroth
v |
% % % Ri=11l1+ 15l +15l3, (2.9)
FIG. 1. Schematic of a spatially periodic medium, with solute tified by this triplet qf integers=(1,, |2.' |3), itself regarded
as a vector or matrix. The exact continuoulsd L-scale po-
plied vector forceF. The repetitive unit cell is enclosed in the Sition vectorR, specifying the location of a point within the
dashed box, with the subsequent discretization of the continuou§lree-dimensional space, may be represented by the mixed
andc. Lattice vectord; andl, are indicated. I-scale continuous vectar is the local position vector of a
point within any unit cell with respect to that particular cell’s
d'étre underlying macrotransport theofg]. employed in classical generalized Taylor dispersion theory
In this light, we proceed in Sec. Il to outline a formal fOr Spatially periodic medigl,36], in the sense that the sub-
theory for such devices into a more tractable graphical neti€!d, solute concentration field, elare regarded as being
work of the phenomena, continuing in Sec. Il with the deri- €xactly defined at each and every fluid poRtof the R
solute positional and temporal probability density on thedion (at each instant in timeThis detailed description quan-
graph. Sections IV and V furnish a method-of-momentstifies the exact, or “continuous,” case, in contrast with the
dium, whereby formulas are derived enabling computation of'€té” case, where fields will be defined only at the discrete
the respectivé.-scale mean velocity vector and dispersivity POINts in the subsequently definedsL-scale discrete
data. As illustrative examples, transport in serpentine miCrog:hannel intersectional subvolume elements within a unit cell.
VI. We conclude in Sec. VIl with a comparison between the A. The basic graph
reSpeCtive continuous and discrete macrotransport theories, S|gn|f|cant Computationa| advantages accrue to convert-
the spatially periodic medium into a discréfespace graphi-
cal representation. The internal configuration of each cell
The devices encompassed by our analysis consist ofhich are wholly contained within the unit céBuch as the
strongly connected, spatially periodic networks of intersectchannel connecting to b in the x direction of Fig. 3, others
depicted in Fig. 146]. By “strongly connected” is meant qhgnnel gonnecting to a’_ in the x direction of Fig. 1. The
that each fluid point in the medium is accessible to a solutdinite basic graph13] I'y, is then constructed from the coor-
through networks that are not strongly connected may behannels in the unit cell comprising the edge $etEl',,
characterized within the framework of the present scheme bwhereas the, intersections of the latter edges comprise the
occurring within each of the separately strongly connectedvork, there exists within the unit cell two equivalefito-
networks which, together, collectively comprise the composimologous channels intersected by the unit-cell boundary,
network is reflected in the existence of a primitiyarallel-  vertex ati’ in celll’, and a second edge with initial vertex at
epipedal or, if need be, curvilingaunit cell repeated indefi- i in cell1” and terminal vertex at' in cell I. By convention,
imagined as constructed by translating this primitive unit cellcell (with the direction specified forthwijh assigning them
(together with its contenkgarallel to itself through a trio of the “macroscopic” jump vector
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def. N F X
R(j))=R—Ry. (2.2 y

The edge set is characterized completely by each edge’s R@)l,
respective orientation and geometry. The orientation of the
edge set, which provides an unambiguous definition of the 4
incidence matrix{cf. Eq. (2.6)], as well as classifying the 2 /\ . ol TN
basic graph as a directed grajptv], is chosen such that the @ \aj —@ {oa
scalar convective transport coefficier(tj) is non-negative ks g
[cf. Eq.(3.5][48]. The latter criterion is satisfied by consid- 3
ering the mearn-scale convective veIocitX(UC>]- in edgej
imparted to the particle by the entraining fluid flow in the @ 5 ﬁ
channel, together with the medrnscale particle velocity
(UF>J-=<M>J- -F imparted by the action of an externally ap-
plied force F acting on the particle in edge Here, (M), RQ)=RO),
denotes the mednscale solute mobility dyadic in channel s
As in classical macrotransport theofy], the meanl-scale &)
particle velocity(U);=(U®);+(UF); within the edge must e
be unidirectional, either proceeding spatially from the region  F|G. 2. Basic graph for the spatially periodic medium of Fig. 1,
represented by vertéxoi’, or vice versa. Consequently, the with the unit cell enclosed within the box. The five different types
edge is directed such that the edge unit vee{p), defined of channels appearing in Fig. 1 are indicated by edge numbers 1 to
so0 as to point from the initial to the terminal vertex, is colin- 5. Homologous vertices existing outside the unit cell are denoted
ear with the mean velocity vect<z§tJ>j in that edge. with a prime affix. Edges exiting the unit céknd their associated
While many problems of interest involve channels of uni-homologous verticgsnot otherwise included in the basic graph, are
form cross-sectional configuration, the generic formulationindicated by the dashed lines. A representative edge orientation vec-
presented herein is not similarly restricted. Regardless dPr &1), as well as the acroscopic jump vectors, are depicted.
channel tortuosity, it is possible to unequivocally define bothMacroscopic jump vectors for edges wholly contained within the
a channel volume.(j), and channel length(j), the latter ~ unit cell are zero, i.eR(1)=R(3)=0.

being equal to the distance between the adjacent intersegse of the basic graph proves cumbersome in applications,
tions corresponding to the initial and terminal vertices ofgwing to superfluous information implicitly embedded in the

edgej. For subsequent calculations requiring a flux per unithomologous vertices. Combining homologous vertices and
area, we define the effective cross-sectional &g of a  contracting the additional edges between them furnishes the

channel as the ratio of its volume to length local graph{13] T, which will be utilized for all subsequent
asymptotic calculations.
ety e(j) Upon contraction, the local graph contaims:n, vertices
A()) = G (2.3 and m=m, directed edges. Edges connecting homologous

vertices, sayj andi’, result in a loop, rendering the local
So as to render explicit the preceding discretizationgraph nonsimple. In exchange for this nonsimplicity, the lo-
scheme, Fig. 2 depicts the basic graph derived from the corfal graph is independent of the particular configuration in-
tinuous medium depicted in Fig. 1, with homologous verticesvoked for the basic unit ce[ll3], as well as requiring mini-
(i.e., identical vertices present on the basic graph in an adjdh@l computational effort in the subsequent dispersion
cent unit cel) denoted by affixing a prime, e.ga,anda’. calculatlon_[49]. For e_ach (Bf _then verticesi on the Iocal
The spatially periodic structure of the composite medium@'@Ph, assign to the spe 17 (i) the subset of those edges

is reflected in the global gragii3] I'y, which is defined by with terminal vertex, and to the set of edggs= Q) (i) the

basic verticedv;=1<i=<n,} together with the transforma- subset of those edgg¢swith initial vertexi. From the basic
tion : graph of Fig. 2, the latter homologous contraction process

furnishes the local graph of Fig. 3, where, for example,
L={A+v;; 1<i=n.}, (2.4 Q7(c)={j=35 andQ (c)={j=4,5, with the loop ob-
viously a member of both sets.
whereA is the simple lattice corresponding to the base vec- The unit-cell volume is subdivided in a discrete manner
tors (14, 15, 13) and £ is the derived lattice. Analogous to the on the local graph to its vertices so as to facilitate exposition
continuoud & L-scaleR-space descriptiof2.1), the discrete  of the subsequent “exactly” posed description of the solute
| & L-scale Z-space global graph is formed by translation transport procesgcf. Eq. (3.4)] [50]. The volumev (i) of a
through the simple lattice. vertex on the local graph is then defined as being equal to the
volumev;(i) of its channel intersection plus half the volume
B. The local graph of all channels incident to that intersection

Although the union of the basic gragh, and the trans- def.
formation of Eq.(2.4) constitutes a complete geometrical v(i)=vi(i)+3 E ve(j)+3 E ve(j). (2.5
discretization of the continuous spatially periodic network, jeQ ™) jeQ (i)
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In what follows, matrix equations for the node-based ma-
crotransport “fields” will be formulated in the cocycle space.
Briefly, the cocycle space is constructed by partitioning the
vertex space into two connected subgraph$T
=V, I'UV,I'. A cocycle H consists of those edgdgsuty
with one vertex in subgrap¥, and a second vertex in sub-
graphV,. The vectoré,(e;) associated with cocycld may
be defined as being positive for, say, edges terminating in
[52]

ger.[ 1 If €eH and its terminal vertex is vy,

En(e)) = —1 if egeH and its initial vertex is inVy,
0 otherwise.

(2.9

The n—1 cocycles forming the basis of the cocycle space

FIG. 3. Local graph constructed from the basic graph of Fig. 2may then be collected into theXx (n—1) cocycle matrixK.
by combining all homologous vertices and contracting the edgeg\n alternative, more convenient method for constructihg

between them. The connectivity betwestype vertices results in a
loop in the local graph, rendering it nonsimple. The logal) co-
ordinate system is no longer necessary, having been embedded
the macroscopic jump vectoR(j) and the orientations of the
edges.

In addition to assigning the physical volume to a given
vertex, we assign the particle’s local continuous positiéo
the discrete location of vertexsituated, say, at the centroid
of the subvolume element(i), whenever the particle resides
within v(i). Consequently, the continuol&space particle
location vector pair R,r) finds its discrete, coarse-grained
Z-space counterpart in the discrete pdii), the latter cor-
responding to the particle being located within the volum
assigned to verteiin the unit cell whose centroid is situated
at the discrete positioh. To complete this discretization,
define thel-scale discrete position vector so as to point
from the centroid of cell to the centroid of the unit-cell
subvolume elemeni(i) identified by the index.

C. Pertinent elements of graph theory

In graph-theoretical term&l7] the local graph is a finite-
directed graph, composed of themn member edge set
j e ET'; and then member vertex sete VI';, thereby per-
mitting the introduction of thenxm incidence matrixDj;
[51]

1 if vertex i is the terminal vertex of edge,
—1 if vertex i is the initial vertex of edgej,
0 otherwise.

def.

(2.6

The rank of the incidence matrix is— 1, owing to the con-
nectivity of the graph. It will also prove convenient to de-

€

involves removing the row of the incidence matiix that
corresponds to the vertex not appearing as a cut set in the
filndamental basis of the cocycle space, and then transposing
the result. The latter technique, which preserves the structure
of the incidence matrix, will be employed in what follows.
The cocycle matrix, being of rank— 1, furnishes an alter-
native method to that of the incidence matrix for incorporat-
ing the graph connectivity.

Ill. “EXACTLY” POSED (DISCRETE) PROBLEM

The present section furnishes the conservation equation
governing the phenomenological, lumped-parameter descrip-
tion of the solute transport processes occurring at each node
of the global graph. We refer to this node-based conservation
equation as constituting an “exactly” posed network prob-
lem, in the sense that no finer-scale model is contemplated of
the unsteady-state transport process undergone by the
Brownian solute particle, except, perhaps, for estimating the
effective edge transport coefficients in certain limiting cir-
cumstances. The subsequent conservation equation repre-
sents the discrete counterpart of the continubes-scale
convective-diffusive equatiofcf. Eq. (3.7)] [1], the latter of
which serves as the starting point for the method-of-
moments homogenization scheme in classical generalized
Taylor-Aris dispersion analyses of macrotransport phenom-
ena.

A. Conditional probability density on the global graph

Consider the  conditional  probability  density
P(l,i,t|lg,iq, to) of the Brownian particle being located in
cell I within the unit-cell subvolume element represented by
vertexi at timet, given its initial introduction at time, into

compose the incidence matrix into its positive and negativgne network in cell, at the vertex,, [53]. Given this impul-

components,

Dy =11§" - 11}, 2.7
where the nonzero entries lﬂii(j” are the positive elements
of D;j, and the nonzero entries i) are the absolute
values of the negative elements Df; .

sive introduction of the particle, and choosityg=0 without
any loss of generality, conservation of probability density
requires thaP satisfy the normalization condition

0

1

(t<0),

FE v(DP(, i, tllg, ig)= (t>0),

9

(3.
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reflecting the fact that the probability is unity of the particle graph-theoretical techniques of Adler and Brenf3] may
being located somewhere within the infinitely extended netbe applied directly to the present graphical framework. Al-
work at any time following its initial introduction. ternatively, other network resistance modelg,21,23 may
Since the spatially periodic network is assumed to be genbe adopted. Such techniques furnish a coarse-grained ap-
erated by translational displacements of the base lattice ve@roach for calculating the mean fluid velocity prevailing in
tors, or equivalently of the simple lattiga3], it is assumed €ach of the edges, without requiring detailed knowledge of
that the attenuation oP with distance from the point of the finer-scaler-dependent velocity field existing therein.

introduction of the particle into the network is sufficiently Although the mearsolventvelocity may thereby be deter-
rapid to insure thaP—0 as|l—Io|—. Indeed, in order mined unambiguously, establishing the mesatute particle

that the summations involved in forming the local momentsV€lo¢ity U(j) and diffusivity D(j) is considerably more

of P [cf. Eq.(4.1)] converge, as in the continuous cAse it equivocal, as addressed in the Introduction. Within the con-
is further assumed that all moments of the probability densit ext of an "exact” microscale description of the solute trans-

. o ort procesqcf. Eq. (3.4)], the edge transport parameters
decay faster than algebraically with distance, such that must then be classified as stochastic variabid. It is im-

(R—R,)™P—0 as || —Io|—» (Mm=0,1,2,.), portant, nevertheless, to recognize that despite its stochastic
0 nature, the edge transport process is rendered amenable to

3.2 rational analysis in the asymptotic Taylor-Aris dispersion

where, generically, for any vecto, the polyadic limit. Consequently, we will proceed in our “exact” analysis
i ' ’ using the equivocal, stochastic quantitiggj) and D(j),

Mo . . .
VI=VV---V (mtimes is anm-adic. reserving their unambiguoussymptoticdefinitions for a
Of course, real systems are of bounded extent. Consgsa, stage of the analysisf. Sec. VA 1.

quently, the analysis pursued here_in is ex_pected to be valid in The stochastic nature of our “exactly” posed network
the limit where the numbeN of unit cells in the actual de- proplem is augmented by the mixing processes occurring in
vice is |arge:N>l. The latter condition is equivalent to that those regions situated at the channel intersectﬁaﬁ}; Ex-
employed previously in the continuous modeling of micro-plicitly, when the particle is situated in the channel intersec-
patterned devicel2], where the infinite system analysis was tion represented by nodethe role of the mixing rule is to
expected to be valid in the limliL<1, with | a character- furnish the probability of egress chanrietige j for the par-
istic dimension of the unit cell andthe characteristic size of ticle as it exits intersection[and, consequently, exits the unit
the finite macroscopic system as a whole. cell subvolumey (i) via edgej]. So as to formulate a generic
As is true for both continuougl] and discretd14] un-  scheme, applicable to all such network problems, one may
bounded models of spatially periodic systerRsis depen- envision a set of stochastic vertex-edge probability variables,
dent only upon the global displacement |, (or, equiva- 0=<K(i,j)=<1, characterizing the probability of the particle
lently, R, —R, ) of the particle from its initial position, rather entering or exiting the channel represented by edgem
than separately upon both its current and initial positions, h€ channel intersection represented by veitg56]. How-
and |y, respectively. This fact is equivalent in its conse- ever, such a set of vanaples Qverspeufles the problgm, since
guences to translating the arbitrarily positioned origin, situ-thfa graph_lca! network d|scret|;at|on of the real medium en-
ated atR=0, to a origin, situated at the poirrR:R.O. As tailed assigning all of the physical volume to the nodes. Con-

. _ _ sequently, the constraint of zero accumulation of probability
such, we can arbitrarily choodg=0 and Ri,=0 (so thatl density within the volumeless edges is enforced by redefin-

and R, are now measured relative to a different origin lo- ing the mixed vertex-edge parametéras an edge-based
cated within the unit cell into which the particle was origi- parameterK(i,j)=K(j). For definiteness, we choose the
nally introduced into the systemConsequentlyP possesses value ofK(j) to correspond to the probability of the particle

the canonical functional form entering the edge at its initial vertéke., the probability of
. exiting the vertex in edg@, thereby providing internal con-
P=P(l, i, t[ip). 3.3 sistency with the various mixing-rule schemes enumerated in
the Introduction.
B. Microscale transport: Effective properties and mixing rule The edge probability paramet®&(j) possesses an alter-

%nate interpretation as a probabilistic “check valve” for the
: o ‘s » ertex. The extreme valuk(j)=0 corresponds to an edge
through the edges via convectidaither “piggyback” con- that is inaccessible to the Brownian particle—say, a conduit

vection en_tramed In a fIOW'ng fluid or by the act!on_of an ot circular cross section whose radius is less than that of the
externally imposed force field, such as an electric field, or

both), as well as by Brownian motion. In constructing the particle (the latter assumed rigid and spherjcalonversely,

basic graph, the direction of the mean convective trans ortpe extreme valuk(j)=1 corresponds to a channel into
grapn, t . NSPOhom solute entry proceeds without bias. It follows that the

occurring within the channel, which must of necessity be ial valuek (V=1 for all edaes d h i
unidirectional, was embedded in the edge unit vee{g). spefma vai (J)_d | ofr:dl N ge(? éepro uzest € earlier
Consequently, transport within the edge is fully characterize®®" ect mixing model o er and Brenngt4].
by the edge velocity vectoy (j)e(j), together with the edge . .
diffusivity dyadic, D(j)e(j)e(j). C. Nodal conservation equation

For circumstances in which net solvent motion arises Given the preceding identifications of the local transport

from a Darcy-scale(macroscopit pressure gradient, the processes occurring within the edges and vertices, the fol-

A particle navigating the network is assumed to translat
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lowing “exact” discrete | ®L-scale conservation equation ing terms, respectively, account for the mechanisms whereby
governs the conditional probability density that the particlethe particle enters and exits the volume assigned to vertex
instantaneously, at timg resides on the global graph at the (1,i). Explicitly, convection through the edges transports the
location (i) particle from the vertex I(,i") to the vertex [,i), or,
equivalently, removes the particle from vertelxi}. Terms

_ dP(l,i) _ - : ro involving differencesP(l’,i’)—P(l,i), in conditional prob-
v(i) dt = a(1)éliio) 5(t)+15§(i) c(HPAT, 1) ability densities between connected vertices account for an
i={i".i} assumed Fickian-type diffusional process occurring as a con-
d(HIP(Y, iN=P(, D] sequence of a presumed linear probability gradient existing
' ' between the two vertices, the diffusion length scale having

been explicitly incorporated priori into the edge transport
- 2 c()P(, i) parameted(j).

e (D) The intractability of the stochastic difference E8.4) for
= the graphical network points up a striking contrast between
+d()H[P(, H—=P’, i")], (3.4  the present discrete formulation and its continuous analog

[1]. The comparable exact continuolss L-scale conserva-
with (1) and &(i,ip) Kronecker delta functions, and(t)  tion counterpart of Eq(3.4), governing the conditional prob-
the Dirac delta function. For notational simplicity, the ex- ability density P(R,t|Ro)=P(R,,r,t|r,), possesses the
plicit dependence oP upon both the time and the initial ~ form [1]
vertex locationiy has been suppressed in its argument. The

summation indexj e Q* (i) (j={i’,i}) serves to indicate P
those edges which enter verterom vertexi’. Likewise, — TV LUDP=D(r)- VP]=3(R,) 8(r —ro) 8(1),
jeQ (i) (j={i,i’}) indicates edges exiting vertexand (3.7

proceeding to vertex’. The non-negative edged-based pa-
rametersc(j) and d(j) appearing above correspond to the whereU(r) and D(r) are, respectively, the exactly defined
respective magnitudes of the convective and diffusive “volu-continuoud-scale particle velocity vector and molecular dif-
metric flow rates” prevailing in edgg([57] fusivity dyadic. This latter equation possesses a well-defined
o o mathematical and physical structure, and may be solved, at
| get. ) ) CLK(HD()A()) least in principle, subject to requiring an appropriate spatial
c() =KMUMDAG), d(j)= T (39 rate of attenuation o with increasing distance from the cell
R, =0at which the particle was initially introduced. In con-

The equality, trast, the graph-theoretical framework proposed herein pos-
sesses no exactly solvable discrétel -scale formulation,
D =3 : except for circumstances wherein the respective mean edge
c(i)= e, S t and mixing rul Il defined, i.e., determini
[0t e (i) ransport and mixing rules are well defined, i.e., determinis-

i={i"i} j={i,i"} tic.

while always true for a solute molecule entrained in a flow-
ing fluid with perfect mixing at intersection[13], does not
necessarily obtain for imperfect mixing or purely force-
driven motion. In the former case, the solute mixing bias In spite of the stochastic nature of E§.4), its solution at
embodied in the parametd€(j) may negate the equality every node of the global graph furnishes, in principle, the
(3.6); in the latter case, even for perfect mixing and infini- complete set of probability densiti#(l, i, t|iy) on the glo-
tesimally small particles, wherein bo#k and the(scalaj  bal graph. With the characteristic unit-cell linear dimension
mobility M are invariant to choice of edgethe “volumetric ~ andD,, the characteristic Brownian particle molecular diffu-
flow rate” is not necessarily conserved at an intersectjon sivity, the asymptotic definitions of the macrotransport pa-
say, at which an expansion in channel size occurs, such thadmetersu* and D* become valid in the long-time limit,
A()) then differs between the two collinear edges incident tas12/p  [1]. Explicitly, with R;=R, +r; the location of the
vertexi. centroid of vertex in unit-cell I within which the particle is

~ The preceding exact discrete L-scale vertex conserva- instantaneously located at timethe solution of Eq(3.4) for

tion equation, akln to master equatidias] prevalent Insta- - p permits calculation of the mean particle velocity vedtsr
tistical physics, is considerably moaél hocin nature than is as the average displacement of the Brownian particle with

its continuous counterpatf. Eq. (3.7)], thereby warranting e i e _ .
. ) . X respect to its initial positiofR; =0+r; [1]:
further elaboration of the interpretation ascribed to B¢). P 'S Il posttiomz, 'o (4]

The left-hand side(LHS) represents the accumulation of
probability density within the nodal volume given by Eq.
(2.5). The first term on the right-hand sidRHS) represents

the unit impulse addition at timg =0 of solute into unit-cell ~With angular brackets defined below in E§.10. Similarly
lo=0 within the volume assigned to vertéx. The remain- calculation of the dispersivity dyadi®* follows from

D. Lagrangian definition of the macrotransport parameters
U* and D*

<Rz—fio>:<RI>_rio~U*t’ 3.8
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knowledge of the mean-squared vector displacement of the def. ® % %
Brownian particle from its mean positigiR;) at timet [1]: =D > > . (4.2)

l1=—2 ly=—» lzg=-
_ _ ~OD*
([Rr=(R)I[Rz—(Rp[)~2D"t. (3.9 The differential equation governirfgy, is formed by mul-

The average values appearing in these expressions represgﬁlyirg‘g the node conservation equati@4) by the quantity
the triple summatior{4.2), thereby furnishing the following

ordinary differential equation foP,(i,t|io):

(R)=2 (Ri+1)P(Li,tio). (3.10
T'g 0 dP(it]ig)
Since the decay of the transient solution of E84) is ex- 0 dt
ponential in time[1], the average values defined above be-
come asymptotically independent of (and, equivalently, =8(i,ig)d(t)s(mo)+ > [c(j)+d(j)]
rio). This tendency of the particle to lose “memory” of the jeQ™ ()

positionig of its initial local (verteX introduction into the U

network proves fundamental in the asymptotic theory to fol-

low (cf. Sec. VA. X Z (R)™P(I", 17, t“o)}_ Z d(j)Pm(i,t[io)
jeQ™(i)
j={i"i}

IV. MOMENT-MATCHING SCHEME
Calculation of the macrotransport parameﬂgf‘sandﬁ* _J. egzwi) [e()+d()]Pm(i.tio)

from the present network model derives via a Taylor-Aris- =10’

like moment-matching scheme for the asymptotic global mo-

ments of the_probat_)lllty density, as (_:Ieta|led inSec. .Asa 2 d(j) E (RY)™P(I", i', tig)], 4.3

prelude to this, we invoke the generic scheme employed by e (i) [

Adler and Brennef14] to calculate these moments prior to j={ii"

effecting their asymptotic expansions, including appropriat
modifications allowing for the incorporation of molecular
diffusion effects into the analysis.

Svhere 8(m,0) is the Kronecker delta function. Whereas the
ordinary differential equation governing the evolution Pf
itself on the global graph requires detailed information re-
garding the behavior dP throughout the entire infinite net-
work, the solution of the governing equations fy; is con-
Define themth-local moment (=0, 1, 2,...) of the con- tained wholly within the local graph, .

A. Local moments

ditional probability density as theradic[59], Evaluation of sums involving terms of the type
(R)™P(I",i',t]iy) appearing in Eq(4.3) may be effected
_ def. . by adding and subtracting,., as follows[14]:
Pr(itlte) = 2 (R)™P(I, i, tlig), (4. |
I R|:(R|_R|/)+R|/:R(J)+R|/, (44)
the indicated summation being defined as the triple sum ovewhereupon the first few moments are found to obey the fol-
all unit-cell indices lowing sequence of recurrence relations:
|
dPo(i, tlig) L : . -
U(')T=5(|,|O)5(t)+ 2 C(J)PO(|’1 t||0)+d(J)[PO(I’1 t||0)_PO(I= t||0)]
jeQ™()
j={i.i}
— 2 c()Pq(i, tlig)+d(DIPg(i, tlio)=Poli’, tlig)], (4.5
jeQ ()
i={ii"}
dPy(i, tlig) L L L L
o)== 2 CIRGDPi’, tli+Puli’, tlig]= X c()Puitlio+ > d(DIRGIPo(i’, tlio)
jeQ () jeQ (i) je@™()
i={i".h} j={ii’} j={ii}
+Py(i", tlig)—Pu(i, tlig]= 2 d()IPy(i, tlig)+Py(i’, tlio)+R()Po(i’, tlig)], (4.9
jeQ (i)
i={ii"}
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_dPy(i, tlio) | [R(j)R(j)Po(i'- tlio) +R()P(i’, t“o)} .
=g = 2 O] R, iR+t | 2, CPatio

j={i".i} j={i.i"}

[ RGRGIP(, tli) +R(IP(”, o)
ﬂeﬂg(i)d“)hma'. tlioR()+Po(i”, tio)— Py, t“o)}
=t}
| Po(i, tlio)~R(HR(IP(i", tlig)
‘jeﬂz(i)d“)LR<1>Pl<i', tlig)+Pa(i’, tlig)R(j)—Py(i, tlim} @7
i={ii'}

The appearance of the macroscopic jump vector in the sumn performing summations over the local graph, it is useful to
mations ovelj e ()7 (i) in Egs.(4.6)—(4.7) necessitates using note that for a given nodal quantigy(i) and edge quantity
—R(j), rather tharR(j), owing to the fact that the macro- €(j), the strong connectivity of the graph furnishes the iden-
scopic jump vector was previously defined in Eg.2) for ity

edgesenteringthe unit cell, whereas that ipe Q" (i) in- Deb(i’) = D (i 41
volves edgegxitingthe unit cell. It is trivial to show that the jezErl (1) ¢(i") jezEr, (1) é(h). (410
macroscopic jump vector for an edge exiting the unit cell is jea” jeq~

equal in magnitude and opposite in direction to that for a]

homologous edge entering the unit cell; hence, the change iy EXpressing the latter, we have made use of the compact

algebraic sign. The latter issue, solely a by-product of incorSuUmmation notation,

porating molecular diffusion into our model, did not arise in def. def.
the prior, exclusively convective, solute transport model of Z 2_2 2 , Z 2_2 2
Adler and Brennef14]. VBl deVijeati)  JeBL TeVEje0 ()
With the continued presence of the unit impulse, appear- <" =ity e =iy 4.1
ing in the differential equation for the zeroth-order moment _ _ _ _ _
(4.5), the conservation principle embodied in E8.1) for To arrive at the differential equations governing the global
the global graph adopts the form moments, differentiate Eq4.9) with respect to time and
_ o substitute the resulting expression into the appropriate local
> ()Pl tlig=1 (t>0), (4.8 moment from Eqs(4.5—(4.7), using the identity4.10). For
I EVF| . .
the zeroth-order moment, this procedure yields

reflecting the unitary probability that the particle is located dMg — (1) 412
for all times after its introduction into the network within dt ’ '

some unit-cell subvolume element. In contrast, higher-order ) )
local moments are not similarly “conserved,” but rather The latter relation expresses the conservation of total prob-

grow in time. ability principle (3.1, which is directly verified by integrat-
ing Eq. (4.12 to obtain
0 (t=<0),
B. Global moments o= L 0 .13
Define the mth-global moment 1©h=0,1,2,...) as the ( ),
m-adic, de. independently of .
Mm(t|i0):A2 v(i)Py(i, tlig). (4.9 As regards higher-order moments, the first- apd second-
eVl order global moments obey the respective equations
|
dM(tfio) : : o L
—= 2 [e(D+d()IRGIP(, tlig)— 2 d(DRG)Po(i, tlig), (4.14
dt j EEr j EEDI
jeQ™ jeQ”
dM(t]io) . . {R(J')R(J')Po(i', tlig) +R(j)Pa(i’, tlio)}
- = + . . .
at o, o)) +Py(i", tigR())
jeQ™
C[ROIR(GIP(i’, tlig) =R()Py(i", t“o)}
+ d S ' 4.1
> “)[ —Py(i", tigR()) @19

jeQ”

021103-10



GENERALIZED TAYLOR-ARIS DISPERSION IN . .. PHYSICAL REVIEW BB5 021103

V. ASYMPTOTIC LONG-TIME LIMITS times. Consequently, achieving the asymptotic long-time
limit necessitates that>H?/D,,, whereby the edge velocity
U(j) and diffusivity D(j) representmean iscale solute
Asymptotic integration of the zeroth-order local momenttransport properties, arising from numerous samplings of the
Eq. (4.5 furnishes the long-time solution individual channels within a cell. The latter parameters may
- o be obtained either(i) experimentally, using a single long
Po(i,tfio) ~ Py (i) +exp. (59 channel so as to satisfy the inequaltty H%/D,, (wheret
=1/U is the nominal holdup time of the particle traversing
%he channel of length with mean velocityU) before the
particle exits the experimental channel; (@ via classical
macrotransport theoryl], in circumstances where hydrody-

A. Zeroth-order moments

Here and hereafter, the generic symbol “exp” denotes term
that are exponentially attenuated in timetas>~. As was
true of the continuous paradigm counterpBg(r) of Eq.

(5.1) [1], the time-independent probability dens® (i) is  amic fluid-particle data exists.

unconditional, whereby the probability of locating the  ag g further consequence of attaining this asymptotic
Brownian particle at vertex becomes independent of the limit, the exit channel parametd€(j) constitutes theequi-

initial local vertexio of its introduction into the network. |iprium distribution of edge choices. For diffusion dominated
Substitution of Eq(5.1) into both Eqs.(4.5 and (4.8) fur-  {ransport processes, it is our contention that the hindered-
mghes the following steady-state conservation equation fogitsjon partition coefficienf60] governs the probability of
Po(i): the particle choosing differing intersectional egress channels,
inasmuch as the partition coefficient is an equilibrium prop-
E c()P(i")+d(DIPLI") —Pg(i)] erty. This c.oefficient.may be derived rigorously, gnabli_ng
jeQ (i) systematic incorporation of a vast array of effects, including
j={i".i} steric and electrostatic hindrande].
This ability to furnish formal definitions for the requisite
— > c(j)Pg(i)+d(j)[Pg(i)—Pg(i")]=0, transport parameters in a rigorous, well-defined, and experi-
jeQ (i) mentally realizable long-time limit renders the present dis-
i={ii’} crete generalized Taylor-Aris dispersion scheme markedly
(5.2 less equivocal than previous network modél6—18,20,27—
30,33,34 of periodically configured systems.
supplemented by the requisite normalization condition,

2. Solution for P (i) in the cocycle space

> w(i)Pg(i)=1. (5.3 In order to facilitate a formal matrix solution for the prob-
T
e ability density, define th@ <1 vectorP whose rows are the

The latter pair of equations governirg(i) constitute prqbability deqsitie?ﬁj(i). I_n addition., Qefine the foII.owing
the discrete analogs of the comparable continuous corfair ofmxm diagonal matrices containing the effective edge
servation equation and normalization condition governingf@nSPort parametef§1]:
the continuous intracellular fiel@J(r) arising in classical
continuous macrotransport theoffl]. Moreover, in the c=c(j)é(i,j), d=d(j)é(i,j), (5.4
presence of vanishing molecular diffusivity and conserved
convective transport(3.6), the probability density tends whered(i,j) is the Kronecker delta function. These defini-
towards the asymptotic valuég(i)=V~* for all i, where tions permit the conservation E¢5.2) to be represented in

def. .
V= EieErlv(i) is the volume of the unit cell, in accord with the compact matrix form

the results of Adler and Brenngt4] for that case. D-[(c+d)- (1)) T —d- (1) 1] P=0, 5.5
1. Edge transport properties in the long-time limit

. . with T the transposition operator. Clearly, E§.5) is satis-
The gquwocal nature_o_f fche edge transport prope“rt|esﬁed by the trivial solutionP=0 for the n vector elements

which hindered a deterministic solution of the discrete “ex- ...\ . L .
Py (i), since the incidence matri is of rankn—1. Indeed,

act’ | & L-scale governing Eq(3.4), vanishes in the long- this rank-deficient property of the incidence matrix necessi-

time Taylor-Aris dispersion limit/>1%/D, . Explicitly, sat tates retaining the probability density normalization condi-

isfa(;tion of the latter inequality assures that the .Brovyniar}ion (3.1) in the asymptotic limit. To incorporate this normal-
particle has had the opportunity to samjit locationsi ization condition into the formal solution, define the

within the unit cell numerous times, effectively achieving an ;" 1)% ficient matrixA
equilibrium distributionP (i) with respect to its local posi- (n=1)Xn coefficient matrixA,
tion. Since the characteristic transverse linear dimenkion
of a channel is assumed to be less than the lehgtithe unit def. (ot (it

cell (oftenH<I), the Brownian particle will, concomitantly, A=K [(ctd)-(IT7) " =d-(IT) ], (5.6
have had the opportunity to sample all channel locations

within each subvolume element(i) of the cell numerous as well as the X n vector of the nodal volumes,
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def.
v=u(i).

(5.7

These permit the linearly independent, ramknatrix equa-

tion for the probability density to be expressed in the parti-

tioned matrix form,

(5.9

B. First-order moments

1. Mean velocity vector &

PHYSICAL REVIEW E65 021103

a(i)= >
je™()
j={i".i}

- >
jeQ (i)
j={ii"}
It is readily confirmed from Eqg5.2) and(5.12), as was
true for both continuou$l] and nondiffusive discretgl4]
generalized Taylor-Aris modeling, that thB vector is
uniquely defined only to within an arbitrary additive constant
vector. Moreover, as in those earlier cases, the forcing func-

[c(j)+d(})IR(G)PG(i")

d(j)R(j)Pq(i"). (5.13

As in classical generalized Taylor-Aris dispersion theorytion appearing on the RHS of E(ﬁlZ) represents the dif-
[1], the mean particle velocity vector may be calculated fromference between the mean and “local” vertex velocities. This

the following asymptotic expression derived from E(&9),
(3.10, (4.1), and(4.9):

M,
dt -

U* = lim

t—oo

(5.9

Substitution of Eq(4.14) into the latter, together with use of

Egs. (4.10 and (5.1, enablesU* to be calculated from
knowledge ofPg (i) via the following generic paradigmatic
relation:

U= > c(HRG)IPG(IN+d(HRGIPG(i")—P(i)].

jeEl,
jeQ™

(5.10

Upon settingd(j)=0 and P‘E)O(i’):V‘l, the latter agrees
with the expression previously derived elsewhdr for the
case of purely convective solute transport.

2. Derivation of the B-equation

Assume, subject toa posteriori verification, an
asymptotic trial solution of the form
P.(i, tlig)=~Pg()[U*t+B(i)]+exp, (5.1

velocity disparity furnishes the physical mechanism underly-
ing the origin of dispersion within the network. The time-
and ig-independence of the equation governiBgi) ob-
served in Eq(5.12 furnishesa posterioriverification of the
assumed trial solutiof5.11) for P,;. This “transport equa-
tion” for the B field plays a fundamental role in subsequent
dispersion calculations. Its solution within the cocycle space
is discussed forthwith.

Substitution of Eq(5.11) into (4.9) (with m=1), together
with use of Eq.(5.3), furnishes the following asymptotic
form for My :

M4 (t)~U*t+B+exp, (5.14

whereinB is the time-independent constant vector

B= >, w(i)Pg(i)B(i). (5.15
eVl

3. Solution of the B-equation in the cocycle space

Since each of tha differentB vectors is determined only
to within a single arbitrary, additive constant, sByj*), the
n—1 dimensional cocycle space furnishes a systematic
method for identifying the basis nod& as that not appear-
ing in the basis set of the cocycle space. Adapting the
method of Adler and Brenndtl4] to the problem at hand,

mined. Introduce Eqg5.1) and(5.1)) into Eqg. (4.6), subse-
guently canceling time-dependent terms with Ex2), so as

to arrive at the following difference equation governing the

vectorB(i) at each node on the local graph:

>
jeQ™ ()
j={i".i}
-
jeQ (i)
j={i,i'}
+d(j)[Po(i)B(i)—Pqu(i")B(i")]

=v(i)Pg(I)U* —ali),

c(j)Pg(i")B(i")+d(j)[Po(i")B(i")—Pg(i)B(i)]

c(j)Po(1)B(i)

(5.12

with «(i) the node-based vector

B~ ())=Ps()[B'()—B'(i*)] [[eQ ()],
(5.16
BT (j))=Ps()[B'()—B(i*)] [jeQ*(i)],
(5.19
as well as therf—1)X 3 matrix,
a*(i)=[v(i)P§'(i)U*—a(i)]T (i #ig). (5.18

With use of the preceding matrix definitions, £§.12 may
be recast into the compact matrix form,
K'.[(c+d)-B~—d- BT ]=a*. (5.19

Eventual computation of the dispersivitgf. Eq. (5.32]
necessitates use of the edge-based vector,
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def.

b(j)=B()—B(i") (j={i".i}), (5.20
where the edge is oriented with its initial vertexi at Define
an mx 3 matrix, B, whose rows are the vectots(j), the
matrix B being computed from the relationshifds4]
B (j))=B"-B, B"(j)=B"-B, (5.2
whereB~ andB* aremx m matrices involving the probabil-
ity density Py (i). Consequently, E5.19 may be rewritten
as

K'.[(c+d)-B~—d-B"]-B=a*. (5.22

Although the f—1)xm coefficient matrix<™-[(c+d)- B~

—d-B*] is not square, it is always possible to augment th
coefficient matrix with additional rows containing the nul

sum ofb(j) vectors along a cycle of the grapb2], with
concomitant rows of zeros in the solution vectd.

C. Second-order moments

Substitute the asymptotic solutiois.1) and (5.11) into

Eqg. (4.15, making use of Eq(5.10, so as to arrive at the

PHYSICAL REVIEW BB5 021103

E=i2vr [a(i)B(i)—v(i)P5()U*B(i)]. (5.26

Notationally, the symmetry operator for a generic max
is defined by the expression

def.
sym XY) = 3(XY +YX). (5.27
Evaluation ofD* via Eq.(5.25 requires knowledge dB(i)
[as well as ofP(i)].

Additional computational simplifications of E¢.25 are
readily effected. Similar to Adler and Brenndr], we iden-
tify the terms appearing in the summati¢h.26) for E as
being the negative of the RHS of E¢.12 multiplied by
B(i). Consequently, the expression fermay be reformu-

dated upon multiplying Eq(5.12 by B(i), summing over
| 1€ VT, and using Eqg4.10 and(5.20, so as to eventually

obtain

E= > d(j)P5(i)B(i)b(j)
]EEF|
jeQ™

—[e(j)+d(j)1Pg(i")B(i")b(]). (5.28

following asymptotic expression for the second-order globakq effect further simplifications, multiply Eq(5.2) by

moment:
dM(t —
22U U S (el +d()IPEY)
jeEl

jeQ™
X[R(J)R(j)+R(j)B(i")+B(i")R(j)]

+szr d(j)Po(i)[R()R(J)—R(j)B(i")
€ |
jeQ™

—B(i")R(j)]+exp. (5.23

The dispersivity dyadic may be computed from the following

expression[1], derived from Eqs(3.9), (3.10, (4.1), and
(4.9

_ 1 1
D*= - lim _(MZ_M]_M]_).

5 5 (5.29

t—oo

The RHS of the latter may be evaluated by use of Egs.

(5.10, (5.14), (5.195, and (5.23, together with use of the
definition of theb(j) vector(5.20 and Eq.(4.10), to even-
tually furnish the formula

5*=symj ZEF {c(})Ps(I")+d()PG(i")+Pg(i)]}
eEl
jeQ™

X[ZR(DR()—R()b(j)]+sym(E), (5.29

with E the tensor

B(i)B(i), and sum overe VI'|, using Eq.(4.10), to obtain

jEEF {le()+d()IPs(i")—d(j)Pg(i)}
€ |
jeQ™

X[B(i)B(i)—B(i")B(i")]=0. (5.29

Writing twice the symmetric part ot using Eq.(5.28), and
adding Eq.(5.29, finally yields

2symE)= > {c(j)Ps(i")
jeEl
jet
+d(j)[P5(i")+Pg (1) 1tb(j)b(j). (5.30

To arrive at a canonical form for ultimately calculating the
dispersivity dyadic, define the edge-based vector,

- def.
b(j)=R(j)—b(j), (5.31
and substitute Eg5.30 into Eq. (5.25, thereby obtaining

5*=%j ZEF {c()Pg(i")+d()IPE(i") +Pg(i)11B()b(j).
eEl
jeQ™

(5.32

The preceding generic dispersivity formula properly reduces
to the prior result of Adler and Brenng¢il4] upon setting
d(j)=0 and P5(i)=V~1. Equation(5.32 represents the
fundamental paradigm wherely* can be calculated from
the prescribed discretescale data.
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FIG. 5. Local graph for the serpentine channel. The convective
transport coefficient for all edges is equal to the volumetric fluid
flow ratec=Q. Edges 1 and 3 are oriented in thelirection with

Ydiffusive transport coefficiend,=DA/Il,, whereas edges 2 and 4
are oriented in the direction with diffusive transport coefficient
d,=DA/l;.

FIG. 4. Rectangular serpentine channel comprised of infinitel
extended parallel plates of constant channel widtkand areaA,
A/HZ>1). Channels oriented locally in theandy direction are,
respectively, of lengthk, andl,. The unit cell of lengthy in the X
direction is indicated by the dashed box, with the periodicity and
net particle transport processes occurring solely in the direction o
the unit vectorx. Alternating shaded/unshaded regions correspon(fna
to the nodes in the local graph of Fig. 5.

fation is captured by the following incidence matrix, cocycle
trix, and macroscopic jump vector for the local graph:

-1 0 0 1
VI. DISCUSSION 1 -1 0 0
A. Dispersion in serpentine microchannels 0 1 -1 0

By way of presenting an “elementary,” independently 0 0 1 -1
confirmable, illustrative example, the present subsection fur-
nishes an explicit network theory calculation of the mean -1 1 0
velocity and dispersivity accompanying pressure-driven flow 0o -1 1 0
occurring in a serpentine microchannel, as depicted in Fig. 4. K= , R= 0
Such devices, currently proposed for compact chromato- |
graphic separations on microchif@2], have been analyzed 1 0 0 X
elsewherd 63] within the framework of classical continuous o
Taylor-Aris dispersion theory for spatially periodic systems. The mean velocity in the channels specifies the edge
The network is chosen to consist of a rectangular collocaconvection parametec(j)=Q=vA for all j, and edge dif-
tion of channels of constant cross-sectional witith(and  fusivities,d(1)=d(3)=d, andd(2)=d(4)=d,, wherein,
areaA, A/H?>1), arranged with periodiy in the globalX
direction (—o<X<®). Channels oriented locally within
the unit cell in thex andy directions possess lengthsand
I,, respectively, with all channel intersections possessing
equal volume. The total volumé of the unit cell accessible with D the channel-scale Taylor-Aris dispersivity prevailing
to the particle is written as the product of the channel @&ea within the pair of channel types. For a bounded, parallel-
and a characteristic linedarc length dimensionl. plate configuration of effectively infinite aspect ratio
Particle transport is animated by imposing a uniform mac{A/H?>1), the channel-scale dispersivity possesses the
roscopic axial pressure gradient upon the interstitial fluidform [64,65
giving rise to a mean solveriand hence entrained solute o
particle velocity v within the individual channels. The dis- D-D 4+ 1 (vH)? f(i>
persed particles, entrained in the solvent flow, are assumed to - "M 210 D, H2/"
be pointsize in comparison with the channel cross-sectional
width, whereupon no hydrodynamic wall effects arise in thewith f(A/H?)=7.951 in the large aspect ratio limit.
subsequent calculations. Consequently, the molecular diffu- The governing matrix equation for th& (i) appearing in
sivity of the particles in the channels is taken to be the congq. (5.8) is of the form
stant scalar valu®,,. Since thenet particle (and fluid
transport is necessarily unidirectional, taking place inXhe -0 dy 0 Q-+d, PZ(a)

6.1

DA DA

de=- A=, (6.2

(6.3

direction, scalar notation will be employed in what follows 0

with the tacit understanding that all vectors and dyadics ap- Q+dy —o d 0 Pg(b) — 0 ,

pearing within the general theory are directed along Xhe 0 Q+dy —o dy Po(c) 0

axis. _ _ via  via  via  vi4 | LPo(d) 1
Figure 5 depicts the local graph derived from the “con- (6.4)

tinuous” portrayal in Fig. 4. Each node consists of one half

the volume of both arx- and y-directed channel, together with ¢ the parameter

with an intersection, so that the nodal volumes are all equal:

v(i)=V/4 for all i. The geometry of the serpentine configu- o=Q+d,+d,. (6.5
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Clearly, Eq.(6.4) possesses the solutidj;(i)=V ! for all
i. Substitution into Eq.(5.10 furnishes thelL-scale mean

PHYSICAL REVIEW BB5 021103

tained previously via classical continuous theories. Thus,
Rush et al. [63] examined the dispersion occurring in

velocity through the serial sequence of serpentine channelgintersection-free serpentine microchannels in the limit of

U* =10, (6.6)
where the dimensionless parametgr=1y /| represents the
“tortuosity” | of the channel projected onto theaxis, the
direction of net solutéand solventtransport. The mean ve-

locity U* given by Eq.(6.6) is identical to that obtained
alternatively via continuous Taylor dispersion thef8g], as

two-dimensional parabolic Poiseuille flow everywhere
within the network, corresponding here to the limits
l1—1x/2,1,—(Is—1%)/2, and Pe—0. The vanishingly small
Peclet number in this limit implies a diffusion dominated
process, where the ensuing rapid diffusive mixing renders
the graph-theoretical description of the transport process es-
sentially indistinguishable from the exact continuous de-
scription. In this limit,

well as from intuitive arguments based upon the nominal

holdup time of the solvenand hence, of the partiglas the
fluid traverses a serpentine unit cell.

The structure of the cocycle matrix identifieB(i*)
=B(d). Consequently, Eq5.19 possesses the explicit form

-0 dy 0 ]rBa)-B(d)] | iQlx—dux
Q+dy —o dy ||B(b)—-B(d)|= 3Qly ,
0 Q+d, —o)LB(c)=B(d) 1Qly

(6.7

whose solution, in terms of th8™ vector, is

[2DI,+ 3vl41,+ 2D,
D(l,+1,)+0ol4l,
2
l,(v1,+2D)
D(I3 1) +ol4l,
0

I
B ()= gy 6.9

Conversion tdB via Eq.(5.20 is accomplished by means of
the transformation matrix

-1 1 0 O
-1 1 O

B =(P) o 1ol ©9
0 0O O

After transforming tob via Eq. (5.31), application of Eq.
(5.32 furnishes the dispersivity,

D* Ti 4+ 271, 7,Per+ TlTZPé
D E Tl+ 7'2+ 'Tl'szel'

: (6.10

D

wherein the following dimensionless parameters appear:

d(—:‘f.g|S
Per:F, (6.11)
m=1./lg, andr,=15/l4. The latter pair represent the chan-
nel contributions to the tortuosity. The parameter Pas
been referred to elsewhere as the TayR&8] or macroscale-
[17] Peclet number.

The limiting behavior displayed by E@6.10 in the re-
spective cases P&l and Pg>1 accords with results ob-

D*=72D, (6.12
in accord with prior conclusiong3], as well as with exist-
ing formulas for the effective molecular diffusivity occurring
in tortuous porous media in the strict nonconvective limit,
v—0 [31].

In the opposite, infinite Taylor-Ré&et number limit,
Pe— o, Eq.(6.10 reduces to

_ 7xls

‘( 8 )Pe:(
with Pe the Pelet number, based upon the molecular diffu-
sivity,

5*

D

Iy
8_H) Pe,

(6.13

def.?H
Pe=—.
e Dm

(6.19
The dispersivity/molecular diffusivity ratio appearing in Eq.
(6.13 scales linearly with Reet number, with the propor-
tionality coefficient functionally dependent upon the explicit
array configuration. This conclusion accords with prevailing
theories for convection-dominated or hydrodynamically
dominated dispersiolt“mechanical dispersion) occurring

in tortuous porous medig66,67].

B. The “simple” network

Our second and final example illustrates the usefulness of
the present discrete theory in computing mean solute trans-
port rates for a “simple” network. By “simple” is meant that
only one intersectiorfalbeit, perhaps, of multiple channgls
is present within the repetitive unit cell. Figure 6 depicts
such a network, wherein the apparent complexity of the me-
dium serves to underscore potential difficulties that would be
encountered in the application of continuous Taylor-Aris dis-
persion theory. Numerous microfluidic devices exist whose
geometries are adequately captured by this simple network
model, including both micropatterned vector chromatogra-
phy chips[3,4] and entropic trapping devicé8]. Explicitly,
the vector chromatography chips produced by Austin and
co-workers[3,4] are comprised of a rectangular array of
solid (rounded rectangular obstacles, with solute transport
occurring within the solvent-filled interstices between ob-
stacles. In effect, our prior analysj§] of such devices is
equipollent with the present simple network theory, in which
the unit cell consists of but a single intersection connecting a
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/ a contributiond(j)R(j)R(j), representing dispersive pro-
cesses occurring within the channels; dinga contribution
w m c(j)R(j)R(j), representing the mechanical dispersion

caused by the random residence times spent by a particle
within the channel intersection domain before exiting the
/f latter and entering an abutting channel.
These simple network results furnish significant insights
(_/L\/\ into the mean solute transport and dispersion rates arising in

Z such media, as evidenced in our separate contribfipm\s

such, they are likely to prove useful in subsequent applica-

. tions of our theory to the generalized Taylor-Aris dispersion
f/@; / phenomena occurring on chip-based microfluidic devices.

VII. CONCLUDING REMARKS

While the present discrete development is predicated

w upon the same rigorous method-of-moments homogenization
ﬂ ; ; S @g; ; ; ]) { scheme as is employed in continuous generalized Taylor-Aris
dispersion theory when applied to spatially periodic media
FIG. 6. Schematic of a simple network in which the repetitive [1,36], our analysis has demonstrated the greater tractability
unit cell, denoted by the dashed lines, consists of a number off discrete network theory over its continuous counterpart
channels exiting and entering a single intersection. Such networkisl] (the former approach being, albeit, more approximate
result in major simplifications of the discrete Taylor-Aris dispersionthe continuous theory, both the array geometry and intersti-
analysis. tial transport physics are presumed to be knoewactly
thereby rendering the computed macrotransport parameters

narrow channel, oriented in thedirection, to a wider chan- U* andD* physically accurate and mathematically rigorous,
nel, oriented orthogonally in the direction. at least in an asymptotic sense. Such rigor comes, however,
Significant reductions in the computational scheme areit the expense of requiring the solution of two steady-state
immediately effected in the “simple” network limit. Since convection-diffusiofrreaction partial differential equations
the unit cell is comprised of but a single intersection, thefor the continuous macrotransport fiel@(r) andB(r) at
unconditional probability density assumes the fof§  all interstitial unit-cell pointsr [1], as well as demanding
=V~!, whereinV is the total volume of the channels and precise and explicit knowledge of the phenomenological co-
intersections contained within the boundaries of the unit cellefficients quantifying thel-scale interstitial transport pro-
Moreover, calculation of the dispersivity is vastly simplified cesses. With the exception of but a few limiting cases, such
by noting thato=0, owing to the fact that every edge on the phenomenological data are generally unavailable in the lit-
local graph is a loop. Armed with the latter data, the canonierature; even when such data are available, or calculable in
cal expression$5.10 and (5.32 reduce simply to the re- principle for simple bodies such as rigid spheres, an accurate

spective forms quantification of the interstitial transport physics is often
nonexistent for deformable bodiés.g., freely-draining DNA
Ux=Vy-1 2 c()R()), (6.15 or polymer molecules Moreover, the structure of the gov-
jEED erning equations renders such equations insoluble in closed
jeat form for all but the most trivial of array geometries—even

the simple network discussed previou$h]. Furthermore,
— 1 . . . the continuous theory’s requisite unit-cell quadratures cannot
D* = Ej;ﬁl [e()+2d(DIR(IR(). (616 generally be effected in closed forf#l], even for those rare
ot circumstances for which closed-form solutions exist for the
macrotransport field®;(r) andB(r) themselves appearing
The latter pair of formulas render transparent several funin the integrands of the requisite integrals.
damental properties of the simple network. Thspace uni- The comments of the preceding paragraph point out that
formity of the network reduces the mean velocity vector to athe resources required to extract useful macroscale informa-
sum of purely convective contributions. In the network-leveltion from the continuous microscale theory diminish the util-
description of the periodic geometry, diffusive contributionsity of such an approach, owing not only to the unavailability
to the mean velocity arise from nodal differences in probabil-of pertinent transport data, but equally to the computational
ity density, rather than any finer-scadRespace gradients— effort required and concomitant errors introduced via nu-
the former vanishing within the single-node simple network.merical discretization of the local-scale transport parameters.
Rather, the diffusional transport processes occurring in théndeed, in the latter context, similarities existing between
network description are manifested in the dispersivity dy-finite-difference methods for solving partial differential
adic. As is readily identified via Eq6.16), dispersion within  equations and network models have been recognized for at
the simple network arises from two fundamental sour¢igs: least 30 year$68], inasmuch as the desired degree of accu-
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racy inherent in any finite-difference scheme necessitates ertheless, the counterbalance existing between comparable
lumped parameter approach on the scale of the discretizatioapproximations necessary for either a continuous or discrete
Of course, the tractability of the discrete scheme presentechodel render the latter attractive for the characterization of
here arises as a consequence ofah@iori homogenization macromolecular transport in microfluidic devices.

of the exact local-scale transport into the lumped-parameter
edge transport coefficientd(j), D(j), and K(j). While
asymptotic definitions exist for the latter parameters under
certain limiting circumstances, one cannot hope to rigorously We are grateful to Dr. Sangtae Kim of Eli Lilly and Com-
retain the full extent of the true local-scale transportpany for his interest and encouragement in our analysis of
description—in particular, the complex geometry of even amicrofluidic devices, and to James R. Bielenberg of MIT for
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