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Frenet algorithm for simulations of fluctuating continuous elastic filaments
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~Received 2 August 2001; published 15 January 2002!

We present an algorithm for generating the equilibrium configurations of fluctuating continuous elastic
filaments, based on a combination of statistical mechanics and differential geometry. We use this to calculate
the distribution function of the end-to-end distance of filaments with nonvanishing spontaneous curvature and
show that for small twist and large bending rigidities there is an intermediate temperature range in which the
filament becomes nearly completely stretched. We show that volume interactions can be incorporated into our
algorithm, demonstrating this through the calculation of the effect of excluded volume on the end-to-end
distance of the filament.
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Theories and computer simulations of polymers are ba
on the notion that a macromolecule can be modeled a
collection of points with positions$r i% that represent eithe
‘‘real’’ chemically bonded monomers interacting throug
semiempirical potentials~e.g., in molecular dynamics simu
lations @1#!, or statistically independent segments connec
by elastic springs or subject to constraints~in Monte Carlo
simulations@2#!. In the latter case, the elastic energy is us
ally assumed to be of entropic origin@3# Eel5(K/2)( i(r i

2r i 21)2, whereK5kBT/aL is the spring constant,kB the
Boltzmann constant,T the temperature,L the polymer
length, anda the monomer size. In polymer physics on
often employs the continuum version of this theory, the
called Gaussian chain~GC! model, in which the monome
label is replaced by a continuous contour parameters, r i

→r (s) and EGC5(K8/2)*0
Lds(dr /ds)2 (K8 is a constant!.

Alternatively, one can use the wormlike chain~WLC! model
in which the energy penalty for stretching of elas
springs is replaced by bending elasticity,EWLC

5(kBTlp/2)*0
Lds(d2r /ds2)2 where l p is the bending persis

tence length. At first sight it appears that in taking the co
tinuum limit we pass from a description of a polymer as
collection of points to one in which it is described as a lin
However, any geometrical line in three-dimensional~3D!
space must obey the Pythagorean theoremudr (s)/dsu51, a
condition that cannot be imposed in the framework of
GC model~it would makeEGC a conformation-independen
constant!. This is consistent with the observation that t
statistical properties of the GC model are identical to th
of a random walk and therefore the conformation of a po
mer in this model is a fractal, with fractal dimension 2~recall
that the fractal dimension of a line is the same as its geom
ric dimension, 1!. Although the above constraint is consiste
with EWLC , the resulting nonlinear theory appears to be
tractable. Nevertheless, it was shown that the statistical
chanics of this model can be worked out using the anal
between the WLC and a quantum top, and the results w
successfully applied to model the stretching of DNA m
ecules@4#.

Recently, we analyzed the statistical mechanics of
generalized WLC model that describes the linear elasticity
ribbons, with elastic energy@5#
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ds~vk2vk0!2, ~1!

where the coefficientsb1 and b2 are associated with the
bending rigidities with respect to the two principal axes
inertia of the cross section~they differ if the cross section is
not circular!, and b3 represents twist rigidity. In this pape
we will treat $bi% as given material parameters of the fil
ment. The functions$vk(s)% and$vk0(s)% are related to the
generalized curvatures and torsions in the deformed and
stress-free states of the filament, respectively. These pa
eters completely determine the three-dimensional confor
tion of the centerline and the twist of the cross section ab
this centerline, through the generalized Frenet equations

dt i~s!

ds
52(

j ,k
« i jkv j~s!tk~s!. ~2!

Here t3 is the unit tangent to the centerline and the u
vectorst1 and t2 are oriented along the principal axes of th
cross section (« i jk is the antisymmetric tensor!. Note that,
since these equations describe a pure rotation of the t
$t i(s)% as one moves along the contour of the filament,
constraint ut3u5udr (s)/dsu51 is automatically satisfied in
this intrinsic coordinate description.

Since the energy is a quadratic form in the deviatio
dvk5vk2vk0 of the curvature and torsion parameters fro
their values in the stress-free state@Eq. ~1! is valid as long as
the characteristic length scale of the deformation is lar
than the diameter of the filament@6##, the distribution ofdvk
is Gaussian, with zero mean and second moments give
@5#

^dv i~s!dv j~s8!&5
kBT

bi
d i j d~s2s8!. ~3!

Using the above expression we showed that all the two-p
correlation functions^t i(s)•t j (s8)& can be calculated by
solving a simple linear differential equation withs-dependent
coefficients, for arbitrary parameters of the stress-free s
$vk0% and rigidity parameters$bk%. However, since the dis
tribution functions of the various fluctuating quantities~e.g.,
©2002 The American Physical Society01-1
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the end-to-end distanceR) are non-Gaussian, knowledge
the second moments does not determine the distributions
therefore the complete determination of the statistical pr
erties of fluctuating ribbons requires more powerful analy
cal or numerical methods. In this paper we present an e
cient algorithm for the simulation of fluctuating elast
ribbons and use it to study the effects of spontaneous cu
ture and twist rigidity on the spatial conformations of flu
tuating ribbons. To the best of our knowledge this is the fi
direct simulation of continuous lines~other simulations of
the WLC model and its extensions represent the filament
collection of points@7–9#!.

Examination of Eq.~3! shows that the decoupling of th
‘‘noises’’ $dvk% in the intrinsic coordinate representatio
permits an efficient numerical generation of independ
samples drawn from the exact canonical distribution. T
Gaussian distribution of thedvk means that eachdvk(s) can
be directly generated as a string of independent random n
bers drawn from a distribution symmetric about the orig
with width AkBT/bkds, whereds is the discretization step
length. Note that the discretization of the continuous filam
~choice ofds) is a computational tool only, and is very di
ferent from the case of a chain consisting of discrete m
points. We always chooseds sufficiently small so that the
results are insensitive to its precise value.

The remaining task is to construct the curve using
Frenet equations withvk(s)5vk0(s)1dvk(s). The Frenet
equations are best integrated by stepping the basic triad$tk%
forward in s through a suitable small rotation. In this wa
the orthonormality of the triad is guaranteed to be preser
up to machine accuracy. To construct this rotation matrix,
begin with Eq. ~2! and, defining the three vectorsvx

5(t1
x ,t2

x ,t3
x), and so forth, we can write this equation as

dv i

ds
5Av i , ~4!

where A is an antisymmetric matrix with elementsAi j
5(k« i jkvk . We now discretize Eq.~4! as

v i~s1ds!5Ov i~s!, ~5!

where the orthogonal matrixO is

O5S 11
ds

2
AD S 12

ds

2
AD 21

. ~6!

In the following we present the results of simulations
distribution of the end-to-end distance for a filament of co
tour lengthL51 and study its dependence on the stress-
configuration$vk0%, rigidity parameters$bk%, and tempera-
ture.

We first consider a straight filament, withv105v20
5v3050. In the limit T→0, the distributionP(R) of the
end-to-end distanceR approaches ad function peaked atR
51. With increasingT, the peak of the distribution shifts t
smaller values ofR, consistent with the fact that the effectiv
persistence length scales asl p;b/kBT (b is a characteristic
bending rigidity parameter!. The behavior of the width of the
02080
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distribution is more interesting. Initially~in the rangel p
@1) the distribution broadens withT and then narrows down
again as the Gaussian chain limit^R2&5 l pL}1/T is ap-
proached forl p!1. This behavior is universal and take
place for arbitrary values of the rigidity parameters; furth
more, the form of the distribution depends only on the be
ing rigiditiesb1 ,b2 and is unaffected by the twist rigidityb3.

Now consider a ring, broken at a point so that the ends
free to fluctuate. Herev1052p, v205v3050. In Fig. 1~a!
we present the distribution functionP(R) for the caseb1
5b25b351. As dictated by the geometry of the stress-fr
state,P(R) approaches ad function peaked atR50 in the
limit T→0. At higher temperatures, fluctuations increaseR,
the distribution broadens, and its peak moves out to hig
values ofR of the order of the diameter of the ring (1/p). At
yet higherT the decrease of the persistence length with
creasing temperature takes over, the distribution narro
and its peak moves to smaller values ofR.

In Fig. 1~b! we present the case of the broken ring now
small twist rigidity (b3!b1 ,b2). While the low temperature
behavior is similar to that in Fig. 1~a!, nearly full stretching
accompanied by a dramatic narrowing of the distribution
the end-to-end distance is observed at intermediate temp
tures for whicha1 /L5a2 /L.1, a3 /L!1 ~we define the
bare persistence lengths$ai%5$bi /kBT%). This striking
observation is supported by analytical results
the mean square end-to-end distance@5# ^R2&
52*0

Lds*0
sds8@e2L(s2s8)#33, where the elements of the ma

trix L are L ik5(kBT/2)@( j1/bj21/bi #d ik1( l« iklv l0. An

FIG. 1. Plot of the distribution functionP(R) vs the end-to-end
distanceR for an open ring.~a! b15b25b351, and temperatures
T50.1 ~circles!, 1 ~squares!, 10 ~crosses!, and 100~triangles!. ~b!
b15b251, b351024, and temperaturesT51025 ~triangles!, 1023

~crosses!, 0.1 ~pluses!, and 10~squares!. Snapshots of typical con
figurations corresponding to each of these temperatures are sh
as insets.
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exact expression for̂R2& in terms of the parameters$bk%
was derived by diagonalizing the matrixL and is compared
against our simulation results in Fig. 2. We would like
emphasize that the nearly complete stretching of the filam
is a finite L effect and that the renormalized persisten
length defined byl p5 lim

L→`
^R2&/L does not diverge in the

limit of vanishing twist rigidity.
The observation of nearly complete stretching of the fi

ment is at first sight counterintuitive, given that at these te
peratures its bending persistence length is larger than its
tour length, and so thermal fluctuations cannot significan
change the curvature from its finite spontaneous value (v10
52p), let alone cause it to vanish. The resolution of th
paradox is that our intuition that a circle cannot be contin
ously deformed into a line, at fixed curvature, is wrong. A
3D curve can be described by its curvaturev1 and torsion
v3 ~if we replace the filament by a geometrical line, w
should set@5# v250). Keeping the curvature fixed and in
creasing the torsion~assumed to be constant along the fi
ment!, one goes from a circle of radiusv1

21 to an increas-
ingly stretched helix, with radiusv1 /(v1

21v3
2)→0 and end-

to-end separation approaching that of a straight line. T
indeed takes place in our case since Eq.~3! gives ^v3

2&
5kBT/(b3ds) so that thermal fluctuations of the torsionv3
are large in the limit of small twist rigidity. Since, unde
conditions of nearly complete stretching, the distribution
the end-to-end distance is extremely narrow@see Fig. 1~b!#,
mean field considerations apply and we can describe the
ment as an object with lengthL51, curvaturev152p, and
torsion ^v3

2&1/256AkBT/(b3ds). For high temperature an
small twist rigidity, u^v3

2&1/2u@v10, this object is a nearly
straight helix that oscillates between left-hand and right-h
forms as one moves along its axis~in this limit the change of
sign of torsion changes the sense of helical rotation but d
not affect the direction of the axis about which the he
rotates!, with typical radius of helical turn 2pb3ds/(kBT)
that is much smaller than its pitch 2pAb3ds/(kBT). Since in
this limit the pitch approaches the period of the helix, w
conclude that the helical filament is nearly complete

FIG. 2. Simulation results for the mean-square end-to-end
tance^R2& vs temperatureT for an open ring, withb15b251 and
b351 ~circles!, b351022 ~squares!, andb351025 ~triangles!. The
results of the analytical calculations are shown as solid lines.
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stretched. At yet higher temperatures, the bending per
tence length becomes shorter than the length of the filam
the helical structure ‘‘melts,’’ and one recovers the Gauss
chain behavior characteristic of flexible polymers.

In order to demonstrate that volume interactions betw
parts of the filament can be readily incorporated into o
algorithm, we calculated the Flory exponentn defined by the
relation ^R2&;L2n. We inserted 50 equally spaced intera
tion sites per unit length into the filament (50L sites in total!
and allowed only configurations in which the spatial distan
between any two of these sites exceeded 0.01. For each v
of L we generated 1000 allowed configurations and cal
lated the average value ofR2. We first checked that when a
configurations are allowed~no excluded volume!, we obtain
the Gaussian random walk resultn0'0.51. In the presence
of excluded volume, the best fit to the simulation~Fig. 3!,
yields nSAW'0.59, in excellent agreement with the Flo
exponent of 3/5 for self-avoiding polymers in 3D@3#.

In closing, we would like to comment on possible rami
cations of this work. The methods presented in this work
ideally suited to investigate polymers with spontaneous c
vature such as double stranded DNA@10#, and synthetic mol-
ecules with bent cores@11#. As far as equilibrium properties
are concerned, our algorithm is computationally far supe
to standard Monte Carlo methods in that each realization
the filament is completely independent. Because seque
dependence can be readily incorporated into the pre
theory through the dependence of the spontaneous curva
and torsion parameters$vk0(s)% on the contour positions,
and because the method is easily extendable to incorpo
excluded volume, electrostatic, and other self-interaction
fects, the Frenet algorithm has the potential of becoming
important tool for computer simulations of equilibrium pro
erties of complex biopolymers such as DNA, RNA, and p
teins.

The assistance of Merav Eshed in the numerical com
tations is gratefully acknowledged. D.A.K. and Y.R. a
knowledge the support of the Israel Science Foundation. Y
thanks K. Binder for useful comments on a previous vers
of the manuscript. D.A.K. thanks J. Schiff for a useful di
cussion on the integration procedure.

s-

FIG. 3. Simulation results for the mean-square end-to-end
tance ^R2& vs the contour lengthL for a linear filament, with
~circles! and without ~squares! excluded volume. The solid lines
give the least-squares fit to the data. The parameters areb15b2

5b350.02, andT51.
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