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Frenet algorithm for simulations of fluctuating continuous elastic filaments
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We present an algorithm for generating the equilibrium configurations of fluctuating continuous elastic
filaments, based on a combination of statistical mechanics and differential geometry. We use this to calculate
the distribution function of the end-to-end distance of filaments with nonvanishing spontaneous curvature and
show that for small twist and large bending rigidities there is an intermediate temperature range in which the
filament becomes nearly completely stretched. We show that volume interactions can be incorporated into our
algorithm, demonstrating this through the calculation of the effect of excluded volume on the end-to-end
distance of the filament.
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Theories and computer simulations of polymers are based 138 L
on the notion that a macromolecule can be modeled as a Ee|=§ Z bkf ds(wk—wko)z, (1)
collection of points with position$r;} that represent either k=1 0
real_ chfa_mlcally bo_nded monomers mteractlng thr_ough where the coefficientd,; and b, are associated with the
sermempmcal pm?”?'a'ée-g-' in molecular dynamics simu- ending rigidities with respect to the two principal axes of
lations[1]), or statistically independent segments connecte&%

. . i >~ ertia of the cross sectiofthey differ if the cross section is
by elastic springs or subject to constraifits Monte Carlo not circulay, andb; represents twist rigidity. In this paper

simulationg[2]). In the latter case, the elastic energy is usu-a will treat {b;} as given material parameters of the fila-
ally assumed to be of entropic orig{8] Ee;=(K/2)Zi(ri  ment. The functiongw(s)} and{wy(s)} are related to the
—ri_1)?, whereK=KkgT/aL is the spring constankg the  generalized curvatures and torsions in the deformed and the
Boltzmann constantT the temperaturel the polymer stress-free states of the filament, respectively. These param-
length, anda the monomer size. In polymer physics one eters completely determine the three-dimensional conforma-
often employs the continuum version of this theory, the sotion of the centerline and the twist of the cross section about
called Gaussian chaifGC) model, in which the monomer this centerline, through the generalized Frenet equations
label is replaced by a continuous contour parameter,
—r1(s) and Egc=(K'/2)[ds(dr/ds)? (K’ is a constant dti(s) -y . 5
Alternatively, one can use the wormlike ch&WLC) model ds % Zijk@j(S)LS)- )
in which the energy penalty for stretching of elastic
springs is replaced by bending elasticityEy, c  Herets; is the unit tangent to the centerline and the unit
=(kBTIp/2)f5ds(d2r/dsz)2 wherel,, is the bending persis- vectorst; andt, are oriented along the principal axes of the
tence length. At first sight it appears that in taking the conLross section gj;, is the antisymmetric tensprNote that,
tinuum limit we pass from a description of a po]ymer as aSince these equations describe a pure rotation of the triad
collection of points to one in which it is described as a line.{ti(S)} as one moves along the contour of the filament, the
However, any geometrical line in three-dimensiorf@D)  constraint|ts|=[dr(s)/ds|=1 is automatically satisfied in
space must obey the Pythagorean theoféngs)/ds|=1, a this intrinsic coordinate description.
condition that cannot be imposed in the framework of the Since the energy is a quadratic form in the deviations
GC model(it would makeEg¢ a conformation-independent dwyx= @y~ wyo Of the curvature and torsion parameters from
constant This is consistent with the observation that thetheir values in the stress-free stéi. (1) is valid as long as
statistical properties of the GC model are identical to thosdhe characteristic length scale of the deformation is larger
of a random walk and therefore the conformation of a poly-than the diameter of the filameli]], the distribution ofswy
mer in this model is a fractal, with fractal dimensiorirécall IS Gaussian, with zero mean and second moments given by
that the fractal dimension of a line is the same as its geome£5]
ric dimension, 1 Although the above constraint is consistent T
with E , the resulting nonlinear theory appears to be in- B ,
tractabvlveL.CNevertheless:q it was shown th)E/lt tﬂz statistical me- (Swi(s)dw;(s))= b_ig” o(s=s"). ©
chanics of this model can be worked out using the analogy
between the WLC and a quantum top, and the results werdsing the above expression we showed that all the two-point
successfully applied to model the stretching of DNA mol- correlation functions(t;(s)-t;j(s’)) can be calculated by
ecules[4]. solving a simple linear differential equation wiskdependent
Recently, we analyzed the statistical mechanics of theoefficients, for arbitrary parameters of the stress-free state
generalized WLC model that describes the linear elasticity of w,o} and rigidity parametergb,}. However, since the dis-
ribbons, with elastic energhb] tribution functions of the various fluctuating quantitiesg.,
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the end-to-end distand®) are non-Gaussian, knowledge of
the second moments does not determine the distributions and
therefore the complete determination of the statistical prop-
erties of fluctuating ribbons requires more powerful analyti-
cal or numerical methods. In this paper we present an effi-
cient algorithm for the simulation of fluctuating elastic
ribbons and use it to study the effects of spontaneous curva-
ture and twist rigidity on the spatial conformations of fluc-
tuating ribbons. To the best of our knowledge this is the first
direct simulation of continuous line®ther simulations of

the WLC model and its extensions represent the filament as a
collection of point7-9]).

Examination of Eq(3) shows that the decoupling of the
“noises” {Sdwy} in the intrinsic coordinate representation
permits an efficient numerical generation of independent
samples drawn from the exact canonical distribution. The
Gaussian distribution of théw, means that eacbw,(s) can
be directly generated as a string of independent random num-
bers drawn from a distribution symmetric about the origin
with width \kgT/b,ds, whereds is the discretization step
length. Note that the discretization of the continuous filament
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(choice ofds) is a computational tool only, and is very dif-

ferent from the case of a chain consisting of discrete mass FIG. 1. Plot of the distribution functioR(R) vs the end-to-end
points. We always choosas sufficiently small so that the distanceR for an open ring(a) b;=b,=b;=1, and temperatures
results are insensitive to its precise value. T=0.1 (circles, 1 (squarey 10 (crossel and 100(triangles. (b)

The remaining task is to construct the curve using theb;=b,=1, b;=10"*, and temperatureE=10"° (triangles, 10 3
Frenet equations witlw(S) = w,o(S) + dw,(S). The Frenet (crossep 0.1 (pluses, and 10(squares Snapshots of typical con-
equations are best integrated by stepping the basic {ttjad figurations corresponding to each of these temperatures are shown
forward in s through a suitable small rotation. In this way, as insets.
the orthonormality of the triad is guaranteed to be preserved. =~ = ) ] o
up to machine accuracy. To construct this rotation matrix, welistribution is more interesting. Initiallyin the rangel,
begin with Eq. (2) and, defining the three vectors® >1) the distribution b.roadens', wﬂ"ﬁgng then narrows down
= (t,t,t%), and so forth, we can write this equation as ~ 29ain as the Gaussian chain lin{iR%)=1,Lo<1/T is ap-

proached forl,<1. This behavior is universal and takes
place for arbitrary values of the rigidity parameters; further-
more, the form of the distribution depends only on the bend-
ing rigiditiesb,,b, and is unaffected by the twist rigidity;.

Now consider a ring, broken at a point so that the ends are
free to fluctuate. Her@p=2m, w,yp=w3,=0. In Fig. 1(a)
we present the distribution functioR(R) for the caseb;

do' i
s ~Av 4

where A is an antisymmetric matrix with element4;;
=3ejjwy. We now discretize Eq4) as

vi(s+ds)=0vi(s), (5 =bpy=bz=1. As dictated by the geometry of the stress-free
state,P(R) approaches @ function peaked aR=0 in the
where the orthogonal matri® is limit T—0. At higher temperatures, fluctuations incre&se
the distribution broadens, and its peak moves out to higher
ds ds |71 values ofR of the order of the diameter of the ring ¢dy. At
O=|1+ 7A) ( 1- 7A) : (6) yet higherT the decrease of the persistence length with in-

creasing temperature takes over, the distribution narrows,

In the following we present the results of simulations of@nd its peak moves to smaller valuesrof .
distribution of the end-to-end distance for a filament of con- In Fig. 1(b) we present the case of the broken ring now at
tour lengthL =1 and study its dependence on the stress-freémall twist rigidity (b3<b,,b,). While the low temperature

ture. accompanied by a dramatic narrowing of the distribution of

We first consider a straight filament, with;o=wo the end-to-er_ld distance is observed at intermediate tempera-
=w3=0. In the limit T—0, the distributionP(R) of the  tures for whicha,/L=a,/L>1, a;/L<1 (we define the
end-to-end distancR approaches @ function peaked aR ~ bare persistence lengthga;}={b;/kgT}). This striking
= 1. With increasingT, the peak of the distribution shifts to Observation is supported by analytical results
smaller values oR, consistent with the fact that the effective the  mean Square end-to-end  distancks]  (R?)
persistence length scaleslas-b/kgT (b is a characteristic =2[gdsfgds'[e”*(75)]3;, where the elements of the ma-
bending rigidity parametgrThe behavior of the width of the trix A are Ay =(kgT/2)[Z;1/b;—1/b;] i+ 2 eiwio. AN

for
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0 FIG. 3. Simulation results for the mean-square end-to-end dis-

tance (R?) vs the contour lengtiL for a linear filament, with
(circles and without(squarep excluded volume. The solid lines

FIG. 2. Simulation results for the mean-square end-to-end disgive the least-squares fit to the data. The parameterdgrd,
tance(R?) vs temperaturd for an open ring, witth;=b,=1 and = =b3=0.02, andT=1.
bz=1 (circles, b;=10"2 (squarel andby;=10""° (triangles. The
results of the analytical calculations are shown as solid lines. stretched. At yet higher temperatures, the bending persis-

tence length becomes shorter than the length of the filament,

exact expression fofR?) in terms of the parametefd,}  the helical structure “melts,” and one recovers the Gaussian
was derived by diagonalizing the matrx and is compared chain behavior characteristic of flexible polymers.
against our simulation results in Fig. 2. We would like to  In order to demonstrate that volume interactions between
emphasize that the nearly complete stretching of the filamergarts of the filament can be readily incorporated into our
is a finite L effect and that the renormalized persistencealgorithm, we calculated the Flory exponentiefined by the
length defined by,=lim __(R?)/L does not diverge in the relation (R?)~L2". We inserted 50 equally spaced interac-
limit of vanishing twist rigidity. tion sites per unit length into the filament (5@ites in total

The observation of nearly complete stretching of the fila-2nd allowed only configurations in which the spatial distance
ment is at first sight counterintuitive, given that at these tembetween any two of these sites exceeded 0.01. For each value
peratures its bending persistence length is larger than its co®f L we generated 1000 allowed configurations and calcu-
tour length, and so thermal fluctuations cannot significantlyated the average value BF. We first checked that when all
change the curvature from its finite spontaneous valug (  configurations are allowetho excluded volume we obtain
=2), let alone cause it to vanish. The resolution of thisthe Gaussian random walk resw§~0.51. In the presence
paradox is that our intuition that a circle cannot be continu-of excluded volume, the best fit to the simulatitfig. 3),
ously deformed into a line, at fixed curvature, is wrong. AnyYields vsaw~0.59, in excellent agreement with the Flory
3D curve can be described by its curvature and torsion ~ exponent of 3/5 for self-avoiding polymers in 3B].
w3 (if we replace the filament by a geometrical line, we In closing, we would like to comment on possible ramifi-
should sef5] w,=0). Keeping the curvature fixed and in- cations of this work. The methods presented in this work are
creasing the torsioassumed to be constant along the fila-ideally suited to investigate polymers with spontaneous cur-
mend, one goes from a circle of radius; * to an increas- vature such as double stranded DN®J, and synthetic mol-

ingly stretched helix, with radiue, /(w>+ w2)—0 and end- ecules with bent core[il]_. As f_ar as equilibrium properties_
to-end separation approaching that of a straight line. Thi§'® concerned, our algorithm is computationally far_superior
indeed takes place in our case since Eg). gives <w2> to standard Monte Carlo methods in that each realization of
- . ) 3 the filament is completely independent. Because sequence
=kgT/(bsds) so that thermal fluctuations of the torsian - .
. . SO ; dependence can be readily incorporated into the present

are large in the limit of small twist rigidity. Since, under

" . C o theory through the dependence of the spontaneous curvature
conditions of nearly complete stretching, the distribution of . -

and torsion parametefso,o(s)} on the contour positiors,

the enc_j to-end glistan_ce Is extremely narfage Flg.' b)) . and because the method is easily extendable to incorporate
mean field considerations apply and we can describe the fila- . . :

: . i " excluded volume, electrostatic, and other self-interaction ef-
ment as an object with length=1, curvaturew,=2, and

. . fects, the Frenet algorithm has the potential of becoming an
2\1/2__ [
torsion (w3)™*= = JkgT/(b3ds). For high temperature and important tool for computer simulations of equilibrium prop-

small twist rigidity, [(w3)¥4> w1, this object is a nearly gies of complex biopolymers such as DNA, RNA, and pro-
straight helix that oscillates between left-hand and right-hanglsjns.

forms as one moves along its axis this limit the change of

sign of torsion changes the sense of helical rotation but does The assistance of Merav Eshed in the numerical compu-
not affect the direction of the axis about which the helixtations is gratefully acknowledged. D.A.K. and Y.R. ac-
rotates, with typical radius of helical turn 2b;ds/(kgT) knowledge the support of the Israel Science Foundation. Y.R.
that is much smaller than its pitchn2/b;ds/(kgT). Since in  thanks K. Binder for useful comments on a previous version
this limit the pitch approaches the period of the helix, weof the manuscript. D.A.K. thanks J. Schiff for a useful dis-
conclude that the helical filament is nearly completelycussion on the integration procedure.
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