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Nonequilibrium steady states of phonon-fermion systems
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Model kinetic equations are used to investigate a nonequilibrium steady state of a phonon-fermion system in
the presence of external scatterers. The general relation between the thermodynamic values ensuring a steady
state of a fermion gas in the prepense of macroscopic scatterers is found. The effect due to phonon drag is
investigated.
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A recently proposed approa¢h] based on the extention degenerate Fermi gas. To date, the influence of phonon drag
of the Bhatnagar-Gross-Krodkereafter, BGK approxima-  on the size effect in a gas of quasiparticles was not studied in
tion can be effectively used for the investigation of non-the intermediate temperature region. However, this investiga-
equilibrium states of quasiparticle mixtures. In this paper, weiion is actual for the Fermi gas ofHe quasiparticles dis-
apply this method to study the effect of phonon dfagjon  solved in“He because of comparatively low Fermi tempera-
the formation of a nonequilibrium steady state of a fermionture Te~0.3 K of the former.
system in the presence of macroscopic scatterers. The prob- In spite of its importance for the above-mentioned appli-
lem under consideration concerns a variety of physical applications, a systematic analysis of the phonon contribution to
cations such as the phondite quasiparticle system the size effect in a fermion gas is still absent. The presence of
of 3He-*He mixtures[3—7] and the phonon-electron system external scatterers makes the quasiparticle system unclosed.
of metals[6,8,9. Another problem of central interest to the If the distance between scatterers is of the order of the qua-
present paper is the effects due to the limitation of the quasiparticle mean free path, the gas dynamics methods are in-
siparticle mean free paths caused by external scattggers applicable. The same holds true for the more precise
rous media, Wcor glass, aerogel, impurities, )etdhis ~ Chapman-Enskog and Hilbert expansip26], at least for its
arises, in particular, from recently discovered nonlinearitiedowest orders used in practice. Violation of the momentum
in the transport coefficients of some superconducf@fs-  conservation law in the quasiparticle-scatterer collisions pro-
13] and unconventional behavior of quantum fluids in aero-duces the additional difficulties in the formulation of an ap-
gel [14—17. Both effects can be explained by the above-propriate kinetic model. This point was discussedif in
mentioned limitations due to the quasiparticle-scatteredetail.
collisions[18]. In the present paper, we calculate the phonon contribution

The existing studies of the nonequilibrium steady states ofo the steady-state formation in a fermion system. In order to
phonon-fermion systems are mainly based on the methods ¢fke into account the nonequilibrium of the phonon system,
nonequilibrium thermodynamicgsee [8] and references Wwe find the solution of the coupled-Boltzmann equations in
therein. The variational approach of Kohlgt9] constitutes  the spirit of the exact BGK approach. First of all, we focus
the main tool of these methods. The calculations performe@n the effects that are due to the normal phonon scattering.
in a variational scheme show results which are, however, of his problem is considered in the most general form. We do
qualitative character. Besides, the output of this method igiot restrict ourselves to any particular system. For definite-
restricted to the input: a choice of so-called trial functions.ness, we consider that the acoustic phonons are responsible
This choice is the matter of physical intuition rather than thefor the main contribution to the kinetic coefficients. We also
subject of the exact analysis. restrict ourselves to the consideration of tkgrocesses in

Some qualitative evaluations of the phonon contributionquasiparticle collisions. The above two conditions are typical
to the kinetic coefficient of metals were done using the gador a variety of physical realizatior|2,6].
dynamic method$2,20,21. Gurevich[21] and Sondheimer ~ The model kinetic equation derived fii] reads
[22] both pointed out the necessity of the consideration of
the coupled-Boltzmann equations for electrons and phonons.

However, these authors did not present the exact treatment of 2 -
the problem. Hanna and Sondheinj@B] obtained the ap- E_Z'l lendeil | vi
proximate solution of the above-mentioned coupled-kinetic

equations in the framework of the variational scheme. Baylin R R
[24,25 treated the same problem with the inclusion of  +(E—|ey){ei])viE—|e){es])+ v,
U-processes.

It should also be noted that most of the above-mentioned

results were obtained either for classical Boltzmann or for . .
Where VL= d|ag{_ Vi, — VZL}, V11— d|ag{_ Vi1, — sz},
and ;12:dia§}{_V12,_V2]}; V11, V22, V12, and Vo1 are
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phonon, and phonon-particle collision frequencies, respecand dI'; is the volume element of the momentum phase
tively. The momentum-dependent frequeney (v, ) de-  space of fermionsi& 1) and phononsiE2).

scribes the particle(phonon collisions with external Coupled integral Egs(l) can be reduced to the set of
scatterers. Note that the frequencigs and v,; are not in-  linear equations. We multiply Eql) by the bra vectors
dependent. The general relation (&f] (1=1,2) and solve a set of the obtained equations in the
moments(e||g). After some straightforward algebra, one
Vlzf fgl),dF1=v21f f(()z),drz, finds
+ - -1
obtained in[1], can be specified for the case of a phonon-  (p|g,);= — (Prnl VL + 1) Vi |pm>m<p|yl‘1|v,>I
fermion system to be written as (Pl Pm)m
-1
— ~ 14
Nyv1=1.3Mppvay, ) —v,—<p<|p:|p||;|>l(pmvm1|vm>m, l#m, (5)
wheren,,, andn, are the number densities of phonons and
fermions, respectively. where = v+ v+ v and
The vectordg), |e,) (k=1,2), andV)=|V4,V,) intro-
duced in EqJ(1) are dléﬁned by b 5 _(p||p|)|(1/12<p2|p2>2+ vox(P1|P1)1)
|_ .
g ((P1lpL)1t(PalP2)2)?
1
9)= gz>* Now we will obtain the condition ensuring the steady
state of a closed phonon-fermion system. Because the par-
o) \/§(<pl|pl>l<p2|p2>2)7(k71)/2 ticle current vanishes in this state, we have
D=
V(p1lp1)1+(p2lp2)2 <@ 91> —0. (6)
Jp1 1

’ (P2 p2>|§_1P1 >

(—(pa|p1)1)* p, Note that the analogous condition for the phonon gas does

not hold because of the presence of temperature gradient

e, [e—um producing the heat flux.
&—m(?z(?) First, we consider conditio(6) for a gas of noninteractive
V)= , _ 3) fermions in an external potential,. The explicit form of
cp, Eq. (6) can be obtained directly from E¢b) written for the
B ?&ZT casel =1,m=2. After a significant simplification, this reads

Here,p; (p») is the projection of the fermiofphonon mo-
mentump, (p,) onto the direction of gradients,; and u
are the fermion energy and chemical potential, respectively,
f, are the distribution functions of fermions=1) and =0, (7
phonons {=2), andg;f{’' =f,— f{ are the small correc-
tions to the equilibrium distribution functions

-1
€1p1v a,T 4 E a,T
n,T 0,)Z<M) (€1p1 1 |pl>l z ph z

_ N +_—_
T <p1V1_l|pl>1 T? 31+®(ny,T) T

whereE = 4m°T/15(T/2m#.c)*® is the energy of the phonon
gas per unit volume, and

1 1 Vo v L
= P = <I>(n1,T)=<Ap2 2LY2 |p2)2.
1 M c|p,| .
exp — +1 exp -1 vi(P2v; 7 P2)2

Relation (7) presents the desired condition ensuring the
The prime denotes differentiation with respect to the argusteady state of a fermion gas in the presence of external
ment, T is the temperatures is the sound velocity, the gra- scatterers. According to E@7), the temperature gradient is
dients are directed along tfzeaxis, and the Boltzmann con- counterbalanced by the gradient of the chemical potential so

stant is set equal to one. that no particle flow occurs. Let us investigate the latter term

Note that{e|e,) = 5L, where the scalar products are de-in Eq. (7) describing the effect of phonon drag. As can be
fined by[1] seen, the gradient of the chemical potential is larger than that
_ _ _ _ observed in the absence of phonons. Thus, in a closed sys-

(#1(p1), 1(P2)| b2(P1), P2(P2)) tem, phonon drag leads to an effective increase in the gradi-

. _ _ - ent of particle-number density, compensating the phonon

=(¢1(P1), P2(P1)) 1+ (®1(P2),¢2(P2))2, contribution to thermal diffusion of a fermion gas.
Let us note that the phonon-scatterer collisions reduce the

)k A VAT above-described effect. This follows the fact that the value
T)h (P)g(pi)dl,  (4) ®(n4,T) in Eq. (7) is positive forv, #0 and goes to zero

<h<5i>,g<5i>>i=—f £§)'
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for v, =0. Therefore, the second term in Ed) exhibits the w  xd/2+m

competition between the two processes. As the temperature Fm= —ﬂdx

increases, the cross phonon-fermion scattering gives rise to 0 1+ex;{x— —)

the above described effect due to phonon drag. The intensity T

of the phonon-scatterer collisions increases simultaneously.

According to Eq.(7), this latter process reduces the dragis the Fermi function.

effect. Because the two above processes are governed by oy g classical Boltzmann gas, the Fermi function goes
different temperature dependences, it can cause nonmoNngyer into the gamma functioR, =e*/TT'(m+3/2) and Eq.

tonic behavior of the phonon contribution to E@) versus  (10) reduces to the result generalizing the relation obtained
temperature. A more detailed analysis of this effect is to bg, [1]

applied to the specific systems and will be reported else-
where.
In the casev, =0, the contribution of phonons to the
steady-state formation is maximal. In order to analyze this 4 Epn d,T  niX
most interesting case in detail, we put =0, e;=¢€ ﬁz(nlﬁ)+§ﬁ7+ﬁ=0- (11)
+ €qy, and rewrite Eq(7) in the form

Note that in the absence of the external field, resifjs

-1
9P+n (ep1vi7lpD)1 (epalpa)s 9T 4 d. T and (10) just yield the relation between temperature and the
z ! (pivitp):  (Palpp)a) T 3 phoT fermion number density gradients, ensuring the steady state
in the presence of phonons. The experimental situation ap-
+n;X=0, (8)  propriate to the case is realized in the osmotic pressure mea-

surement setup4,5]. This device consists of two chambers
connected with a superleak filled with the Wcor glass.
The®He-*He mixture placed in the chambers can overflow
through the superleak to ensure the steady state. In this
steady state, the temperature gradient is counterbalanced
deq with the gradient of the’He number density according to
P:J’ fo plrmdrl relation(8) with X=0. Regrettably, the effect of collisions of
guasiparticles with macroparticles of the Wecor gldg3]
was neglected in the analysis of the experimental refbits
is the fermion gas pressure defined conventionally. Moreover, it is supposed that thiHe quasiparticles cannot

According to Eq.(8), the presence of phonons and exter-penetrate through the superleak either. In fact, this condition
nal scatterers makes the particle system unclosed and causggnot be provided even in the smallest pores of Wcor of
nonzero gradient of the fermion gas pressure. Note that in thgbout 5 nm in diametd27]. As can be easily observed from
absence of external scattererg (=0) and field X=0), the  Eq. (8), the presence of macroscatterers changes the relation
second and fourth terms in E(B) vanish and one finds the between gradients ensuring the steady state of the mixture.
condition Therefore, the commonly used hydrodynamic li8it of the

exact result(7) is not appropriate to the case. This limit
rather describes the first stage of the steady-state formation
Ag T _ d he quick overflow of th fluid t en-
9,P+=Epn—=0 (9) ue to the quick overflow of the superfluid component en
3 T countering no friction with a superleak. The true steady state
is formed as a result of the relatively slow diffusion of the
3He quasiparticles to the cold chamber. This process is sub-
ject to both effects of the collisions e quasiparticles with
ore walls and phonon drag. The use of formul@s and
%0), taking into account these effects, can lead to a better
understanding of the experimental situation, described
above.

Let us stress that the above-described method is not re-
stricted to the consideration of a free fermion gas. It can be
directly applied to the gas of quasiparticles. In order to illus-
trate this point, we write down the low-temperature limit
6F 1Fo—5F _1F; 4 4,7 (T<Tg) of condition (6) for a nonparabolic fermion band

3 IF nlaZT+§ Eph7+n1X=O, described by the energy-momentum relation of the féim
-3 0

where X= —d,€., is the homogeneous external foreejs
the free fermion energy, and

obtained in[3].

In the Knudsen regime ify, > v+ vy,), the fermion-
scatterer collisions contribute the most to the relaxation of
fermion gas to the steady state. Further, we restrict ourselv
to the Lorentz approximatiop2] for the particle-scatterer
collision frequencyr,, considering that it is proportional to

the modulus of the particle momentup=|p;|. In this ap-
proximation, the Knudsen limit of conditiof8) reads

9,P+
=H(e€). For the sake of simplicity, we neglect the phonon-
scatterer collisions and consider thaf, ~p“>v., [28].
Then the relation between gradients of temperature and
where chemical potential ensuring the steady state reads

(10

020201-3



RAPID COMMUNICATIONS

A. |. CHERVANYOV PHYSICAL REVIEW E 65 020201R)
2 ( Te A and the first term in Eq(12) reduces to the well-known
o= — =—| (3—a) — +2Tg— ) result?/2 (T/Tg) of the semiclassical theof29]. Note that
6H. Te Xo . the fermion contribution to Eq12) is sensitive to momen-
5 5 tum dependence of the fermion-scatterer collision frequency.
n T_ ™ (2%o(H"2)? Generally, such a dependence with~3 can cause the in-
Xo 6(H.)* 0\ e version of the sign of the above contribution. However, this
is not the case observed in pract{@s].
—anH) | 2 Sen ;T (12
aHeHo) 3n,T| 2" In conclusion, | would like to thank the Gteprogramm

of Max-Planck-Institut fu Physik komplexer Systeme for
wherex,=H (Tg). For a free fermion gasi=¢, a=0 their support.
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