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Shape profile of compactlike discrete breathers in nonlinear dispersive lattice systems
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We study the spatial decay profile of compactlike discrete breathers in nonlinear dispersive lattices. We show
that the core region of such nonlinear localized excitations can be described by a cosinelike spatial shape while
the tail region decays with a faster than exponential law, such as a superexponential one. We discuss the
relation of the tail decay to properties of space-time separability.
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Since the publication of the paper by Rosenau and Hymathe amplitudes decay according to thigperexponentidiaw
[1] showing that solitary wave solutions supported by non-e~2®®b" \wherea andb are positive numbers that depend on
linear wave equations may compactify under nonlinear disthe parameters of the model Hamiltonian. On the other hand,
persion, the idea of compact localized solutions of nonlineamore recently, Dinda and Remoissef@tdemonstrated that
systems has gained considerable interest. They showed thahalass of exact continuous compacton solutjmighe form
Korteweg—de Vries—type equation with nonlinear dispersiorgs in Eq.(1)] of a low-order continuum approximation of the
supports exact compacton solutions of the form discrete equations survives on finite times when substituted
_ in the corresponding lattice equations of motion. They also
u(¢)=Acos(Be) D studied the ability of the compactlike kink to propagate and

for |B&|<m/2, u(£)=0 otherwise, wheré=x—uvt and the obtained the parameter region in which a compactlike kink

parametew depends on the order of the nonlinear dispersiorfan show up with stable ballistic propagatipfi. Since all
in the equations. these methods for obtaining compactons in discrete nonlinear
It is well known that nonlinear equations with linear dis- 1attices are approximate ones, Eleftheradal. [8] generated
persion admit solitary waves, called solitons, that are infiniteumerically exact discrete compactlike breathers of nonlin-
in extent. On the other hand, Rosenau and Hyman's studiegar dispersive lattices starting from the anticontinuous limit
showed that nonlinear dispersion can cause qualitativand by using the Newton scherf@10]. They observed that
changes to the nature of genuinely nonlinear phenomenaompactlike breathers exist in the whole range from strong to
The interaction of nonlinear dispersion with nonlinear con-intermediate to small coupling constants provided the inter-
vection generates exact compact structuf@smpactons  action between the nonlinear oscillators is purely nonlinear,
free of exponential tails. The stability analysis has showrie., that there exists nonlinear dispersion. However, while in
that compactons are stable structy2s Numerical simula-  the continuous limit compact breathers are exact compacton
tions of the nonlinear dispersive equations have also revealegh|utions with strict compact support, in the other extreme,
the existence of compact traveling breathdks o i.e., when close to the anticontinuous limit, breathers become
It is known that many nonlinear lattice models with linear compactlike by acquiring a very small tail. The latter was

dispersion give rise to energy localization effects and suppodhown to decay in a faster than exponential fashion and was
stable soliton/kink structures. Kivshar first conjectured thatfitted in Ref.[8] to a stretched exponential lagr ™™ with

intrinsic localized modes in a nonlinear dispersive lattice 5> 4
may exhibit compactlike propertidgd]. As a model of non- exponens=> 4. . . I .
) All previously mentioned investigations clearly point to

Iinear dispersion, he c_onsidered a pne-dimgnsiona}l Iatticﬁwe existence of discrete compdot compactlike breathers
W't.h purely anharmonlc _nearest-nelghbor_ mt_eractlon forin nonlinear dispersive lattices whose main feature is the
which the equation of motion of theth atom is given by

faster than exponential tail decay. Nevertheless, there is some
5 lingering ambiguity regarding the overall shape profile and

d un:[(u —U)3+ (U1~ uy)?] 2) in particular the spatial configuration of the core and tail

dt? ntlo T n-toon regions of the breather. On one side, Kivshar’s soluf#tris

an approximation in the tails, since breather amplitudes do

and obtained a solution of this equation similar to EL. not exactly vanish there. On the other side, cosinelike dis-
Later Flach argued that even for such a nonlinear dispersiverete breathers were shown to have finite-time persistence in
model(2), the nonlinear localized excitations cannot have anattices[6], and although they describe proper bounded solu-
exact compact structuf®]. Analysing the result in the tail of tions in the regime close to the continuum limit, they do not
the nonlinear localized excitations , it was shown that thehave the feature of long-term stabilitg], even though for a
amplitudes of the lattice displacements are not exactly zereelatively short time they seem to be quite stable. The super-
outside a finite volume of the solution, and in leading orderexponential decay law obtained [B] for localized excita-
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tions in similar nonlinear dispersive lattices is valid only in 10

the tail region of the solutions provided space-time separa- ol pasnang
bility holds. Finally, the issue of the spatial variation in the = _5! !i'
core region of compactlike discrete breathers has not beer 8| =
fully addressed. =

As has been mentioned above, the question of the overalg 6l

shape of the discrete compactlike breather is very important’s
From the application point of view, it is desirable that the £
discrete compact breather does not have an infinite tail as d&=. , |
solitons. Accordingly, in this Brief Report we study the shape %
profile of the lattice displacement patterns of breather solu-=
tions in nonlinear dispersive lattices. We compare the shape 2 |

of the core region with that of the tail region and check if i
there is an overall shape that fits displacements of all the 2
lattice points in the chain. 0r 2

We start with a model of oscillators in a one-dimensional , . . X . ‘ .
chain with nearest-neighbor anharmonic interaction. In con- 4 6 8 10 12 14 16
trast to[4], each of the oscillators moves in a nonlinear on- n

site potential. This is because, as observed in earlier studies
[6.8], the presencglof the on-site potentlal ',S a major reqUIreélmplitude for different cases versns Note that curves are verti-
ment for the stablhty_ of the compactllke discrete bre_athersca”y shifted to observe a master curve in the tails, circles;V,,,
The equation of motion for the displacement at the Bite  gqyares:v,, triangles. Open symbolk=0.1: filled symbols,k
=0.3. The straight lines have slopedn 3. Inset: Dependence of
d?u, the logarithm of the breather amplitude versusr the same cases.
e =K[(Up+1—Up) 3+ (Up_1—Up)3]—=V'(uy). (3)  Note the scale of thg axis.

FIG. 1. Dependence of the double logarithm of the breather

Here C is an arbitrary non-negative separation constant.
We use three different nonlinear substrate potentials, thgvhile the functionG(t) can be easily found by implicitly

(soft) double-well potentiaV¢(x)=— 3 (x—1)%+ 3 (x—1)%, integrating Eq(4), the existence of a spatially localized pro-
the hardeg* potentialV,(x) = 3x2+ 3x*, and the(soft) Morse  file for the amplitudesp, was proven if11]. As the spatial
potentialV,,(x)=1(1—e %) decay is obviously faster than exponential, we immediately

First we present the numerical results. Compactlike disfind the asymptotic lawto the right of the breather cenger
crete breathers are generated in the anticontinuous limiisingA,= ¢, maxG(t)):
(smallk) with the help of a Newton scheme and are gener-
ally stable. We start withk=0 and excite one oscillator, with kA=A ;. (6)
all others being at rest. The solution is then continued to
finite values ofk. Here we will considek=0.1 andk=0.3.  Herex is a constant which depends &nThis spatial decay
The numerical data clearly show that the decay in the noniS & superexponential one, since
linear dispersive lattice is much faster than the usual expo-
nential decay of the linear dispersive lattice. This is shown in In[In|Ag|[~nin3. (7
the inset of Fig. 1. At the same time, we again confirm that_ ) _ . _
the breather tail amplitudes are nonzero. This also holds fof NS @symptotic law holds provided is bounded. In Fig. 1,
V(x) =0 (cf. [10]). Most importantly, we observe in the main we s_how that Eq(_?)_ indeed holds_ in t_he tails of our breather
body of Fig. 1 that the shifted double logarithms of the SClutions. In addition, we plot in Fig. 2 the values fer
breather amplitudes fall onto a single master curve in th&@mputed with the help of Ed6) at each lattice site inde-

tails. At the same time, the core regi¢zentral site and two Pendently. We observe that for theé,, case indeed the
nearest neighborglearly follows a different shape law. breather tails are characterized by a well-defined value. of

In order to understand the tail behavior, we first consider FOr the cases o¥,, andV;, we cannot separate time and
the V,, case. Similar to the case of homogeneous potentiafPaC€- Thus we cannot obtain a superexponential decay law
functions[5], we may use the ansatz,(t)=(—1)"¢,G(t) in the tails as done above. Yet the numerical results in Fig. 1

il n . . .
which separates space and time. Althougk(x) is not a show that Eq(?). holds. At the same time, the da'ta in Fig. 2
homogeneous function, it contains in addition to the quartiSU99est thak did not converge to an asymptotic value as

term just one quadratic term, which keeps the property ofompared to th&/,, case. Let us give some reasons for these

space-time separation. We arrive at the set of equations ~°bServations. As we consider time-periodic solutions, we
may expand the temporal evolution at each site into a Fourier

. series with respect to time:
G(t)+G(t)+CG3(t)=0,

= ikw
k[(¢n+l+¢n)3+(¢n—1+¢n)3]+¢2zc¢n- 5 Un(t)—k;x Ukn€ L (8
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placement pattern as given in E®) with the core region

(the central and the two nearby sitesid obtain the value of

15 A\&\A\_ﬁ\ﬂ 1 g=0.403m, which agrees quite well with the analytic value
g=0.429r as obtained above. For thé, and theV,, case,

however, the space and time variables cannot be separated

and thus it is not possible to make any analytic prediction

5t 1 about the spatial variation of the lattice displacement pattern

* in the core region of the corresponding compactlike discrete

breathers. However, even for these cases also if we assume a

e o ° o o spatial variation of the form of Eq9) in the core region,

-5t . then the corresponding value gfas obtained by fitting the
@\ numerical data points i€=0.459r for the Vg case Kk
5] =0.3). For the Morse potential the similar fitting givgs
=0.431r for k=0.1
-15 ) : : In conclusion, we have studied the shape profile of dis-
10 12 14 16 18

crete compactlike breathers in nonlinear dispersive lattices.
While in a continuous system compact breathers are exact
FIG. 2. Dependence of the constanton n when computed cosine solutions with strict bounded suppfBg. (1)], in

independently at each lattice site using Ef). Symbols as in lattices compact breathers are characterized by lattice dis-
Fig. 1. Lines are connecting data and serve as guides to the eye.placements that have two distinct spatial patterns. In the core
] . region, a bounded cosinelike shape prevails while the tail

In contrast to the case of space-time separation, where eagion is clearly characterized by a much faster than expo-
Fourier component, shows up with one and the same pengia| spatial decay that is well described by the superexpo-
superexponential decay law, here we have to insert the ansaig iia| decay law. As a result, even though in nonlinear dis-
(8) into the equations of motion, sort terms with equal EXPOparsive lattices compactlike breathers have a tail, the latter is
gce)gtslé darr:gnl?r?éafrhzl ';frztétgrsu;goﬁzr]%r ;Lgecggf:g;ﬁgd'r@ery short and decays in an ultrafast fashion unlike the cor-
havg then to be solvgd Consi?dering the tail of a breather anrogsponding exponential decay in lattices with linear disper-
neglecting the interaction irk space, we would obtain slon. Th|s particular property makes compactons very inter-
§sting in the study of pattern formation, as the observed

k-dependent superexponential decay laws for each compo-"". dd ical . Iy fini
nent. The one with the weakest decay will be the leadingStationary and dynamical patterns in nature are usually finite

order asymptotic superexponential decay. Yet the results dft €Xtent. Also, compactons can be of interest for energy
Fig. 2 and numerical computations of thg, from our solu-  Storage, since due to the lack of an exponential tail they
tions show thati) the asymptotic law is not fully reached would not interact with each other until the point of contact
with our data, andii) interactions ink space cannot be ne- (Short-range interactionwhich leads to a much weaker mu-

glected for these lattice sites. Thus, we can state that while %@l interaction between different compactlike discrete
single superexponential decay will emerge for large distancedréathers in the same lattice. The lifetime of coexisting dis-
from the breather center, for the lattice sites closer to the corg'ete breathers is thus substantially increased. Similarly, due
a mixture of different superexponential laws should hold!® the absence of long-range interaction, the compactons
[due to Eq.(8)]. The observation of the-independent part have an advantage over the solitons for data transmission and

of this law in Fig. 1 is due to the fact that kiis bounded and  Signal-processing purposes. We would also like to mention
small compared to [A,] in the tails. that compacton solutions arise in the study of nonlinear dy-

We now derive the lattice displacement patterns of thdramics of shear waves in elastic plates. In this case, the

compactlike discrete breather in the core region. Let us sta onlinear evolutiqn equation.for the shear displgcements re-
with the V,, case. Using Eq(4) we find a solutionG(t) uces to the modified Boussinesq equatiGiBE) with non-

— Acn(wt,s), where cnut,s) is the Jacobi elliptic function linear dispersion. The presence of the nonlinear dispersion

with the moduluss. For the spatial variation, we assume a terms modifies the structure of the soliton solutions of the
solution to Eq.(5) i.n the form ’ MBE into compacton or peakons for different materials. Re-

cently, exact dark lattice compactons solutions have been
dn=cogq(n—ng)]. (99  found in a model of Frenkel excitatiof&2].

n

Substituting Eq(9) in Eq. (5) we get an equation fau;
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1
2cosq+3cogq—1+

2.=0 (10)
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