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Numerical solution of the mode-coupling equations for the Kardar-Parisi-Zhang equation
in one dimension
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We have studied the Kardar-Parisi-Zhang equation in the strong coupling regime in the mode-coupling
approximation. We solved numerically in dimensids 1 for the correlation function at wave vectkr At
large timest we found the predicted stretched exponential decay consistent with our previous saddle point
analysis[Phys. Rev. E63, 057103(2001)], but we also observed that the decay to zero occurred in an
unexpected oscillatory way. We have compared the results from mode coupling for the scaling functions with
the recent exact results from PRafer and Spohr{e-print cond-mat/0101200for d=1 who also find an
oscillatory decay to zero.
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The Kardar-Parisi-Zhan@<PZ) [1] equation is one of the nent. For the special case wher=1, the existence of a
most important phenomenological equations in physics. It ifluctuation-dissipation theorem gives the exact resylts
essentially a nonlinear Langevin equation and was propose€ 1/2, z=3/2.
in 1986 as a coarse grained description of a growing inter- Almost by definition there is no small parameter for a
face. It is the simplest generalization of the diffusion equasystematic perturbative treatment of the strong coupling re-
tion which includes a relevant nonlinear term, and probablygime. One is forced either into numerical studies of the KPZ
as a consequence of this the KPZ equation also arises #quation, which are naturally difficult for dimensiod
connection with many other important physical problemsgreater than 2, or intad hoc approximations. The best
(the Burgers equation for one-dimensional turbulefi2k  known of these is the so-called mode-coupling approxima-
directed polymers in a random mediyB+-5], etc). tion [7-9], in which in the diagrammatic expansion for the

The KPZ equation in the context of a growing interface correlation and response function only diagrams which do
describes it by a single valued height functib(x,t) on a  not renormalize the three point vertexare retained. One of
d-dimensional substratee Re" is the purposes of this paper is to investigate the accuracy of

the mode-coupling approximation by comparing it with the
recently obtained exact solution of Rder and Spohf10]
gh(x,t)=vV2h+ E(Vh)2+ n(x.t). (1) for d=1. The mode-co_upling gpproximation is gratifying!y
2 close to the exact solution, which encourages one to believe
in the utility of the mode-coupling approach in higher dimen-

_ _ sions where no exact solution is known or likely to be found.
The first term on the right of Eq1) represents the forces In a recent paper we studied the long time properties of

which tend to smooth the interface, the second describes thgs kpz equation within the mode-coupling approximation,
nonlinear growth locally normal to the surface, and the last 4 \ve predicted a stretched exponential decay for the cor-
is a noise term which mimics the stochastic naturegation function at long times. In this paper we have found
of the growth proces$6], usually chosen to be G?ulssmn, numerically the solution of the mode-coupling equations in
with - zero mearn and second mome((x,t)7(x",t'))  §=1 which confirms the results of the previous asymptotic
=2D &%(x—x )6(t—t"). The equal time interface profile is gnaiysis but which also reveals that the correlation functions
usually described in terms of the roughnesst  gecay to zero in an oscillatory manner—a fact which was not
= V(h*(x,t))—(h(x,1))? which for a system of siz& be-  revealed by our previous asymptotic analysis.

haves like LXf(t/L?), where f(x)—const asx—= and Mode-coupling equations are coupled equations for the

f(x)~x¥'* asx—0, so thaw grows with time liket"’* until  correlations and response function. The correlation and re-
it saturates td.¥ whent~LZ% x andz are the roughness and sponse function are defined in Fourier space by

dynamic exponent, respectively.
Above two dimensions, there are two distinct types of
solutions to the KPZ equation. In the weak coupling regime C(k,w)=(h(k,w)h* (k,w)),
(A<\.) the nonlinear term is irrelevant and the behavior is
governed by the Gaussiah €0) fixed point andz=2. The
strong coupling regimeX>\.), where the nonlinearity is G(k,w)=(dh(k,w)/dn(k,w)),
relevant(and\ .= 0 for all d<2), is characterized by expo-
nents which are not known exactly in general dimension
From the Galilean invariand@] [invariance of Eq(1) under  where(-) indicate an average over. In the mode-coupling
an infinitesimal tilting of the surfadeone can derive the approximation, the correlation and response functions are the
relation y+z=2, which leaves just one independent expo-solutions of two coupled equations,
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-1 e
(k,)=Gg (k,w) +A fhf(z e ()]
X[q-k]G(k—0,0—=Q)C(q,0), 2
A 2
C(k,w)= Co(kw)+—|ka|f j(Z 3 °
O
X[q-(k=q)]’C(k—g,0—Q)C(q,Q), (3)
where Gy(k,w)=(vk?—iw) ! is the bare response func-
tion, and Co(k,w)=2D|G(k,w)|2. In the strong coupling
limit, G(k,w) andC(k,w) take the following scaling forms
G(k, @)=k g(x), s, . : '
10 10 10 10
C(k,w) =k~ "4+ 9n(x), T

FIG. 1. Scaling function for the response functiGiir).
with x=w/k* In d=1, the mode-coupling equations sim-

plify, due to the existence of a fluctuation dissipation theo-with P=\?%/(297 “’*3)’2)
rem which relates the correlation function to the response In d=1, G(7)=n(7) due to the fluctuation dissipation
function. Int andk space, the fluctuation dissipation theoremtheorem, so that we expect the same asymptotic expression
can be written as for G. Our numerical analysis shows, much to our surprise,
an oscillatory behavior for the correlation function superim-
posed on the stretched exponential decay.

The long time behavior can be revealed by plotting
|G(7)| as a function of?®in a linear-log scalésee Fig. 2,
(We use the same notatidh andC in t space andv space where both the presence of the oscillations and the overall
and indicate which one we mean by the arguméntde  stretched exponential decay of the envelope become appar-
choosev=1 andD=1 in what follows. The mode-coupling ent. We do not have any simple argument to explain the
equations are then reduced to one single equation that ipresence of such oscillations. However, we can show that
terms of the response function i and t spaceG(tk?) they are perfectly consistent with the saddle point analysis
=G(k,t) reads performed in Ref[12]. The same calculation can in fact be
repeated with a complex exponential with the constua
complex number. While the calculation leads to the same
values of y and «, it is not now possible to predict the
amplitude constand.

vk2
G(k,t)= F@(t)C(k,t). (4)

G(T)=1—)\2frda'fodSV(S)G(0'—S), 5)
0 0

where 7 is the scaling variablék?,

10 T

-1

1 o0
v(S)=EL dxG(|1/2+ X|%)G(|1/2-x]%s), () 10" ¢ :

—2

107+ .
andz=3/2. A similar analysis to the one we have done can
be found in Ref.[11], where similar results were found 10° ]
(compare Fig. 1 with Fig. 1 in Ref11]), but here we focus =<
on the long time asymptotics. To make this comparison Weg—10

set here and in what follows=1. In a previous studf12], =, & | |
we argued that an asymptotic solutioir)=n..(7) for 7
— oo for the scaling part of the correlation functiontiandk 10° | 1
spacd r=tk?, andn(r) is the Fourier transform afi(x)] is .
given by 100+

n (T):A(BT)ylzeler\(“lz) 7 10° ¢ ‘ ‘ ‘ .

* ' 0 2 4 6 8
with y=(d—1)/2, a=1, and - 7
-2 _ FIG. 2. Oscillation and stretched exponential behavior in the
= g(0) "aT'(4z—4) , (8 response functiols (7). The straight line indicates a line of slope
p2d-12p(2z—2)? —1 as predicted by Eq7).
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FIG. 3. Comparison with the results in REE0]: the solid line is

our result forf(w), the dotted line is the same function from Ref.

[10].
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the exact solutiorf13]. From the exact solution it is also
possible to numerically calcula®(7) and compare it with
our approximate mode-coupling solution. The exact solution
also displays the oscillatory behavior which we have discov-
ered in the mode-coupling approximatifb3].

Note that the functiorf (w)[g”(w)/8 in Ref.[10]] is also
related to the truncated correlation function in real space

E(X,t)zf

©

dk
7[c(k,O)—cos(kx)c(k,t)]=xF(t/x?”Z)
(10

by f(w)=2(d¥dw?)[wF(1/4w?3)].

An earlier study of the accuracy of the mode-coupling
approximation was undertaken by Fretyal.[11], who stud-
ied the magnitude of the corrections of higher order diagrams
to the bare vertex. They found that such diagrams did pro-
duce substantial corrections. It is clear, however, that such
contributions are relatively unimportant for the correlation
function we have studied.

In summary, we have presented a numerical study of the
mode-coupling equations for the strong coupling regime of
the KPZ equation in the long time limit id=1. We recov-

We next compare the results from mode coupling with they e the stretched exponential relaxation for the correlation

result for the scaling function id=1 from the exact solu-
tion, which recently has became availafl®]. The result in
Ref. [10] is given in terms of a functiori(w) which is re-
lated to ourG(7) by

l 9
fw)=~ | “aycoswyaiya). ©

function predicted previously in Ref12], but found a super-
imposed oscillation. Such oscillations are consistent with our
previous analysis, even though we had not anticipated them.
Finally, we compared the results from mode-coupling theory
in d=1 with the exact solution from Ref10].
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