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Numerical solution of the mode-coupling equations for the Kardar-Parisi-Zhang equation
in one dimension
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We have studied the Kardar-Parisi-Zhang equation in the strong coupling regime in the mode-coupling
approximation. We solved numerically in dimensiond51 for the correlation function at wave vectork. At
large timest we found the predicted stretched exponential decay consistent with our previous saddle point
analysis@Phys. Rev. E63, 057103 ~2001!#, but we also observed that the decay to zero occurred in an
unexpected oscillatory way. We have compared the results from mode coupling for the scaling functions with
the recent exact results from Pra¨hofer and Spohn~e-print cond-mat/0101200! for d51 who also find an
oscillatory decay to zero.
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The Kardar-Parisi-Zhang~KPZ! @1# equation is one of the
most important phenomenological equations in physics.
essentially a nonlinear Langevin equation and was propo
in 1986 as a coarse grained description of a growing in
face. It is the simplest generalization of the diffusion equ
tion which includes a relevant nonlinear term, and proba
as a consequence of this the KPZ equation also arise
connection with many other important physical proble
~the Burgers equation for one-dimensional turbulence@2#,
directed polymers in a random medium@3–5#, etc.!.

The KPZ equation in the context of a growing interfa
describes it by a single valued height functionh(x,t) on a
d-dimensional substratexPRed is

] th~x,t !5n¹2h1
l

2
~¹h!21h~x,t !. ~1!

The first term on the right of Eq.~1! represents the force
which tend to smooth the interface, the second describes
nonlinear growth locally normal to the surface, and the l
is a noise term which mimics the stochastic natu
of the growth process@6#, usually chosen to be Gaussia
with zero mean and second moment^h(x,t)h(x8,t8)&
52Ddd(x2x8)d(t2t8). The equal time interface profile i
usually described in terms of the roughness:w
5A^h2(x,t)&2^h(x,t)&2 which for a system of sizeL be-
haves like Lx f (t/Lz), where f (x)→const asx→` and
f (x);xx/z asx→0, so thatw grows with time liketx/z until
it saturates toLx whent;Lz. x andz are the roughness an
dynamic exponent, respectively.

Above two dimensions, there are two distinct types
solutions to the KPZ equation. In the weak coupling regi
(l,lc) the nonlinear term is irrelevant and the behavior
governed by the Gaussian (l50) fixed point andz52. The
strong coupling regime (l.lc), where the nonlinearity is
relevant~andlc50 for all d<2), is characterized by expo
nents which are not known exactly in general dimensiond.
From the Galilean invariance@2# @invariance of Eq.~1! under
an infinitesimal tilting of the surface# one can derive the
relation x1z52, which leaves just one independent exp
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nent. For the special case whend51, the existence of a
fluctuation-dissipation theorem gives the exact resultsx
51/2, z53/2.

Almost by definition there is no small parameter for
systematic perturbative treatment of the strong coupling
gime. One is forced either into numerical studies of the K
equation, which are naturally difficult for dimensiond
greater than 2, or intoad hoc approximations. The bes
known of these is the so-called mode-coupling approxim
tion @7–9#, in which in the diagrammatic expansion for th
correlation and response function only diagrams which
not renormalize the three point vertexl are retained. One o
the purposes of this paper is to investigate the accurac
the mode-coupling approximation by comparing it with t
recently obtained exact solution of Pra¨hofer and Spohn@10#
for d51. The mode-coupling approximation is gratifying
close to the exact solution, which encourages one to bel
in the utility of the mode-coupling approach in higher dime
sions where no exact solution is known or likely to be foun

In a recent paper we studied the long time properties
the KPZ equation within the mode-coupling approximatio
and we predicted a stretched exponential decay for the
relation function at long times. In this paper we have fou
numerically the solution of the mode-coupling equations
d51 which confirms the results of the previous asympto
analysis but which also reveals that the correlation functi
decay to zero in an oscillatory manner—a fact which was
revealed by our previous asymptotic analysis.

Mode-coupling equations are coupled equations for
correlations and response function. The correlation and
sponse function are defined in Fourier space by

C~k,v!5^h~k,v!h* ~k,v!&,

G~k,v!5^]h~k,v!/]h~k,v!&,

where^•& indicate an average overh. In the mode-coupling
approximation, the correlation and response functions are
solutions of two coupled equations,
©2001 The American Physical Society05-1
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G21~k,v!5G0
21~k,v!1l2E dV

2p E ddq

~2p!d
@q•~k2q!#

3@q•k#G~k2q,v2V!C~q,V!, ~2!

C~k,v!5C0~k,v!1
l2

2
uG~k,v!u2E dV

2p E ddq

~2p!d

3@q•~k2q!#2C~k2q,v2V!C~q,V!, ~3!

where G0(k,v)5(nk22 iv)21 is the bare response func
tion, and C0(k,v)52DuG(k,v)u2. In the strong coupling
limit, G(k,v) andC(k,v) take the following scaling forms

G~k,v!5k2zg~x!,

C~k,v!5k2(2x1d1z)n~x!,

with x5v/kz. In d51, the mode-coupling equations sim
plify, due to the existence of a fluctuation dissipation the
rem which relates the correlation function to the respo
function. Int andk space, the fluctuation dissipation theore
can be written as

G~k,t !5
nk2

D
Q~ t !C~k,t !. ~4!

~We use the same notationG andC in t space andv space
and indicate which one we mean by the arguments.! We
choosen51 andD51 in what follows. The mode-coupling
equations are then reduced to one single equation tha
terms of the response function ink and t spaceG(tkz)
5G(k,t) reads

G~t!512l2E
0

t

dsE
0

s

dsn~s!G~s2s!, ~5!

wheret is the scaling variabletkz,

n~s!5
1

2pE0

`

dxG~ u1/21xuzs!G~ u1/22xuzs!, ~6!

andz53/2. A similar analysis to the one we have done c
be found in Ref.@11#, where similar results were foun
~compare Fig. 1 with Fig. 1 in Ref.@11#!, but here we focus
on the long time asymptotics. To make this comparison
set here and in what followsl51. In a previous study@12#,
we argued that an asymptotic solutionn̂(t)5n̂`(t) for t
→` for the scaling part of the correlation function int andk
space@t5tkz, andn̂(t) is the Fourier transform ofn(x)# is
given by

n̂`~t!5A~Bt!g/ze2uBtu(a/z)
, ~7!

with g5(d21)/2, a51, and

A5
g~0!224G~4z24!

P2(d21)/2G~2z22!2
, ~8!
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with P5l2/(2dp (d13)/2).
In d51, G(t)}n̂(t) due to the fluctuation dissipatio

theorem, so that we expect the same asymptotic expres
for G. Our numerical analysis shows, much to our surpri
an oscillatory behavior for the correlation function superi
posed on the stretched exponential decay.

The long time behavior can be revealed by plotti
uG(t)u as a function oft2/3 in a linear-log scale~see Fig. 2!,
where both the presence of the oscillations and the ove
stretched exponential decay of the envelope become ap
ent. We do not have any simple argument to explain
presence of such oscillations. However, we can show
they are perfectly consistent with the saddle point analy
performed in Ref.@12#. The same calculation can in fact b
repeated with a complex exponential with the constantB a
complex number. While the calculation leads to the sa
values of g and a, it is not now possible to predict the
amplitude constantA.

FIG. 1. Scaling function for the response functionG(t).

FIG. 2. Oscillation and stretched exponential behavior in
response functionG(t). The straight line indicates a line of slop
21 as predicted by Eq.~7!.
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We next compare the results from mode coupling with
result for the scaling function ind51 from the exact solu-
tion, which recently has became available@10#. The result in
Ref. @10# is given in terms of a functionf (w) which is re-
lated to ourG(t) by

f ~w!5
1

pE0

`

dy cos~wy!G~yz/4!. ~9!

The results are shown in Fig. 3, and show a reason
agreement between the mode-coupling approximation

FIG. 3. Comparison with the results in Ref.@10#: the solid line is
our result forf (w), the dotted line is the same function from Re
@10#.
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the exact solution@13#. From the exact solution it is also
possible to numerically calculateG(t) and compare it with
our approximate mode-coupling solution. The exact solut
also displays the oscillatory behavior which we have disc
ered in the mode-coupling approximation@13#.

Note that the functionf (w)@g9(w)/8 in Ref. @10## is also
related to the truncated correlation function in real space

C̃~x,t ![E
2`

` dk

p
@C~k,0!2cos~kx!C~k,t !#5xF~ t/x3/2!

~10!

by f (w)5 1
2 (d2/dw2)@wF(1/4w2/3)#.

An earlier study of the accuracy of the mode-coupli
approximation was undertaken by Freyet al. @11#, who stud-
ied the magnitude of the corrections of higher order diagra
to the bare vertex. They found that such diagrams did p
duce substantial corrections. It is clear, however, that s
contributions are relatively unimportant for the correlati
function we have studied.

In summary, we have presented a numerical study of
mode-coupling equations for the strong coupling regime
the KPZ equation in the long time limit ind51. We recov-
ered the stretched exponential relaxation for the correla
function predicted previously in Ref.@12#, but found a super-
imposed oscillation. Such oscillations are consistent with
previous analysis, even though we had not anticipated th
Finally, we compared the results from mode-coupling the
in d51 with the exact solution from Ref.@10#.
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