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Stochastic growth models for driven interfaces through random media in two and three dimensions
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We introduce two simple stochastic growth models which describe the motion of the interfaces driven
through random media in two and three dimensions. One model describes the motion of the interface driven
through isotropic random media, where the dynamics of the interface can be described by the quenched
Edwards-Wilkinson(QEW) equation. The other model describes the motion of the interface driven through
anisotropic random media, where the dynamics of the interface can be described by the quenched Kardar-
Parisi-Zhang(QKPZ2) equation. We show via computer simulations that two models belong to the QEW and
QKPZ universality class in two and three dimensions, respectively.
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The dynamics of a driven interface in random media had.eschhorn10] also showed that the roughness exponent in
attracted much attention during the last decade because it ike QKPZ universality class i8~0.63 in one dimension via
relevant to various interesting phenometa5|. The driven  the numerical integration of the QKPZ equation and the au-
motion of the interface in random media takes place due t@omaton model, which is the discrete version of the QKPZ
the interplay between the resistance force by quenched digquation. In two and three dimensions, the DPD model gives
order in random media and the driving force acting on the,~0 48 [11] and «=0.38 [12], respectively. A self-
interface. The interface is pinned if driving forees smaller  organized growth model in the QKPZ universality class was
than the pinning strength induced by the quenched disordek sy introduced by Sneppéa3].
and moves with a constant velocity fér greater than the When there is no nonlinear terfn (Vh)2] in Eq. (1), the

pinning strength. Hence, there e_xists a th_reshold of the dri_véquation is called the quenched Edwards-Wilkin$QEW)
ing force FC. separatm_g tyvo regimes. This phenomenon IS‘equation. The dynamic scaling behavior of the QEW equa-
called the pinning-depinning transition. L ) i
Near the depinning threshold, dynamics of a driven inter—tlon IS .completely different from that of the QKPZ. equation.
Hﬁ_\nalytlcal studieq 14] of the QEW equation prediat= (4

—d)/3 andz=2-(2/9)(4—d), whereas the direct integra-
tion of the QEW equatiofl5] and the computer simulation
of the automaton mod¢l 6], which is the discrete version of
this equation, givesr=1.25 in one dimension.

Thus, there exist two distinct universality classes charac-
terizing dynamics of driven interfaces in random media de-
bending on whether there exists the KPZ nonlinear term in

Eqg. (1). Amaral et al. [17] introduced a method to classify

ness exponent and the growth exponem [6,7]. The two
exponents are defined from the interface wid¥(L,t)
=(L79%,[h;(t)—h(t)]%)¥2, which scales a&“ for a long
time (t>L% andt? at the early stagest€L?) of the pro-
cessz=a/ B is called the dynamic exponent. Hére L, d,
andh;(t) denote the mean height, system size, substrate d
mension, and the height at sitand timet, respectively.

The dynamics of the driven interface in random media,

can be explained well by a Langevin-type continuum equaEhe two distinct universality classes from computer simula-

tion. A well-known equation describing the motion of a tions by analyzing the dependence of the interface velocity
driven interface in random media is the quenched Kardar? (M) on the slopem of the tilted substrate from the com-
Parisi-Zhang QKP2) equation[7]; puter simulation. In_ the case of tne _QEW class, the slope
dependence of the interface velocity is either absent or van-
N ishes at the depinning threshold, which indicates that the
vV2h+ = (Vh)2+F+ 5(x,h), (1)  KPZ nonlinear term does not exist at the threshold. In the
2 case of the QKPZ class, however, the growing veloeitmn)
depends on the slop®a near the depinning threshold. It in-
where the quenched noisgx,h) satisfies(7(x,h))=0 and dicates that the KPZ nonlinearity exists even at the depinning
(m(x,h) n(x’,h’)>=2D5d(x—x’)5(h—h’). threshold, i.e.p=0. Tanget al. [18] and Parket al. [19]
Many studies have been carried out to describe and urshowed that the KPZ nonlinearity is originated from the an-
derstand the motion of the driven interface following theisotropic properties of the random medium. The KPZ non-
QKPZ equation. Tang and Leshhol8] suggested that the linearity effect does not exist in the motion of interfaces
directed percolation depinnind®PD) model[9] belongs to  driven through isotropic random media. Taagal. argued
the QKPZ universality class. They argued that the roughnesthat the KPZ nonlinear term can be generated from aniso-
exponenta in the QKPZ universality class is given by the tropic properties of random media. If the interface under an-
ratio of two correlation length exponents, and v, in the  isotropic random media is driven by external force, then the
perpendicular and parallel directions of directed percolatinghresholdF. depends on the slopa of the tilted substrate.
clusters, which isa=wv, /»~0.63 in one dimension. The dependence of the threshéld on m can be written as

ah(x,t)
a
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FIG. 1. The plots of widthV?(L) versus the system sidein &
two dimensions for modeA (the filled circleé and modelB (the Le —0.05 F E
filled square. The solid guideline represenis=0.47 and the dotted —04 L L
line showsa=0.66 in two dimensions. 0 02 04 06 08 1 1
m
_ ~ v(l-a)
Fe(m) —Fc(0)—[m| ' 2 FIG. 2. The plots of the threshold forde.(0)—F.(m) as a

function of the average orientation of the surfacéor modelA (a)

where the correlation length parallel to the interface scales and for modeB (b).

asé~(F—F.)” andv is called the correlation length expo-
nent. The KPZ nonlinearity in the driven interface is origi-
nated from the characteristics of the medium rather thaface width W?(L) versus system sizeL with L2
from the kinematic effect$18]. We confirmed the TKD's =322, 48, 64, 92, and 128 in two dimensions. The
suggestion by directly controlling the degree of the anisotdilled circles represent the data obtained from the madel
ropy of random medig19]. In spite of a lot of numerical The solid guideline represents that=0.47. This value
works, there are no simple self-organized stochastic growtlgrees with that obtained from the DPD model in the QKPZ
models for the QEW and the QKPZ universality class in twouniversality class. In this model, however, the saturation is
or three dimensions. Therefore, it would be worth introduc-reached so fast that we could not obtain the value ofghe
ing simple growth models describing the motion of inter- exponent.
faces driven in random media in high dimensions. In the growth rule of this model, we always drop a par-
In this paper, we introduce two kinds of stochastic growthticle at each timestep regardless of the tilt of the substrate.
models which describe the motion of the driven interfaces iriThis means that the growth velocity in our model does not
random media in two and three dimensions. In our modelsgdepend on the tilt of the substrate, i.e., the KPZ nonlinear
we use the Family growth rulg20], which is related to the term is not generated kinematically in the model
Edwards-Wilkinson(EW) [21] universality class occurring To survey the origin of the KPZ nonlinearity in this
in the interface growth in homogeneous media. Although onenodel, we look into the characteristics of the medium by
uses the same growth rule, dynamical behavior of driverconsidering the tilt dependency of the threshold force. If the
interfaces can be changed drastically according to the way afeposited particle diffuses to its nearest-neighbor site, the
updating random numbers on the interface each time, whemrandom number at the selected site is not changed. The ran-
random numbers represent the impurities in random mediadlom number at the selected site is the lowest one among the
We find that our models belong to the QEW and the QKPZrandom numbers on the interface before the diffusion occurs.
universality class by using different updating rules of theThe selected site, therefore, tends to be chosen again at the
random numbers in the two models. next timestep because there is great probability that the
The growth rule of our modefwe call it modelA) is  newly updated random number at the updated site is larger
defined as follows: First, we preassign random numbers beahan that at the selected site. That is, if the diffusion process
tween 0 and 1 representing impurities in random media, t@ccurs, the selected site is often selected again in the next
all perimeter sites of the initially flat substrate. A particle istimestep. It makes the value of the threshold force lower
deposited on the sité with the lowest minimum random when the diffusion process occurs. The more the substrate is
number on the interface. The deposited particle allows tdilted, the more the diffusion process occurs, so that the
diffuse to a nearest-neighbor site with the smallest height if ithreshold force depends on the tilt of the substfate Fig
finds lower height thaim; . When the heights of all nearest- 2(a)]. This dependence of the threshold force on the tilt of
neighbor sites are the same and are smaller thanthe the substrate indicates that the KPZ nonlinear term is gener-
particle moves to a randomly chosen one of its nearestated by the anisotropic property of the medium and thus the
neighbor sites. Then we update the random number at themodel A belongs to the QKPZ universality class.
newly occupied site. Next, we consider another mode@hodel B), where the
Our simulations were carried out starting from a flat ini- tilt dependency of the threshold force is absent. The dynamic
tial surface with periodic boundary conditions in two andrule in this model is the same as that of modetxcept for
three dimensions. Numerical data were averaged over mot&e rule updating random numbers. In order to avoid the tilt
than 100 configurations. Figure 1 shows the plot of the surdependency of the threshold force, we always update the two
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100 ' ~0.33. These values suggest that modebelongs to the
/'/"'.'/ QKPZ class and modd to the QEW class for three dimen-
sions.
10F 1 Several years ago, Sneppen introduced two simple self-
- organized growth models which show two different scaling
behaviors when the growth rule is a bit changed like in our
Lo models[13]. In the models, the different scaling behaviors
originate from the fact that the KPZ nonlinear ternm,gen-
0 . erated in the growth process, has different signs for each
10 100 growth rule. In one model, the scaling behavior of the model
L can be explained by the QKPZ equation witk 0, which is
FIG. 3. The plots of widthW2(L) versus the system sidein in the same universality class as the DPD model giving the

three dimensions for modé\ (the filled circle and modelB (the roughness exponeni=0.63. In the other model, it can be

filled square. We obtainedx=0.38 anda=0.33 for modelA and explained by the QK_PZ equation with<<0 in which ’Fhe
modelB, respectively. roughness exponent ie=1 [23] and thus shows the differ-

ent scaling behavior from the QKPZ equation wikh>0.

Meanwhile, two different scaling behaviors in our models
riginate from the fact about whether the KPZ nonlinear
erm is generated or not in the growth process. Modiel

Wwhere the KPZ nonlinearity is generated in the growth pro-

ss is described by the QKPZ equation with 0, while the

Z nonlinearity is not generated in mod&lwhich belongs

{9 the QEW universality class.

W(L)

random numbers in this model each time. If diffusion of a
newly deposited particle occurs, two random numbers at th
selected site and the newly occupied one are updated sim
taneously. If the diffusion does not occur, two random num
bers at the selected site and at a randomly chosen one of i
nearest-neighbor sites are updated simultaneously. By th
updating method, the random number at the selected site

e In summary, we have introduced two simple stochastic
always updated regardless of the diffusion process. Therefore .
the threshold force does not depend on the tilt of the subgrOWth models, which belong to the QKPZ and the QEW

strate. For this model, the plot of the surface with(L) universality class in two and three dimensions. The same

versus system size is marked with a filled square in Fig. 1. dynamic growth rgle has been used in the tWQ mOdE|S’
The dotted line showsa~0.66, which is in excellent agree- whereas the updating rule of the random number is different

: - . in the two models. This slight modification of the updating
Er?]rgn\;vilct)?]sthe analytic result of the QEW equation in two algorithm make the two models belong to the different uni-

We also obtained the threshold forée by measuring versality classes. For the mod_AJ where the properties of
distribution of random numbers and distribution of the mini- random ;ned~|uor111$re ?jnlsi)t(;ogpécz Wte obta|3etdh the :jo_ughness
mum random numbers in the critical stg@2]. Figure 2 ~ XPonentSa=b.a/anda=0.56 In Wo and three dimen-
shows the plot of the threshold forée(m) versus the tilm sions, respectively. These rgsults are in good agr_eement with
of the substrate for the modal(a) and for the modeB (b). the DPD model[11] belonging to the Q.KPZ universality
The straight guideline in Fig.(d) has the slope of 1.80. This cl_ass. For_ the m(_)deB, Wherg the properties of random me-
value agrees with that expected fromw(—a) with » dium are isotropic, we obtained the rou_ghnes_s exponents
~1.06 anda=0.48 in the DPD model in two dimensions. - 2:% anda=0.33 in two and three dimensions, respec-

Figure Zb) shows that the threshold force is independent oft'VEIy.' These values are in good agreement W'.th the analytic
the tilt of the substrate for modd@. These results confirm solutions [14]. (.)f the QEW eq_uat|on. ModeB is a_good .
that modelA belongs to the QKPZ universality class and modell describing the dynam|_cs of the QEW universality
model B to the QEW universality class. class in two and three dimensions.

We also studied modeld and B in three dimensions. This work is supported in part by the Korea Research
Figure 3 shows the plot of the interface widit*(L) as a  Center for Theoretical Physics and Chemistry and by the
function of the system sizk in three dimensions for model Ministry of Education through the BK21 project. K.P. thanks
A (the filled circlg and modeB (the filled square The solid  the Korean Science and Engineering Foundatis®SEP
guideline showse~0.38 and the dotted line represents for financial support.
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