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Stochastic growth models for driven interfaces through random media in two and three dimensions
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We introduce two simple stochastic growth models which describe the motion of the interfaces driven
through random media in two and three dimensions. One model describes the motion of the interface driven
through isotropic random media, where the dynamics of the interface can be described by the quenched
Edwards-Wilkinson~QEW! equation. The other model describes the motion of the interface driven through
anisotropic random media, where the dynamics of the interface can be described by the quenched Kardar-
Parisi-Zhang~QKPZ! equation. We show via computer simulations that two models belong to the QEW and
QKPZ universality class in two and three dimensions, respectively.
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The dynamics of a driven interface in random media h
attracted much attention during the last decade because
relevant to various interesting phenomena@1–5#. The driven
motion of the interface in random media takes place due
the interplay between the resistance force by quenched
order in random media and the driving force acting on
interface. The interface is pinned if driving forceF is smaller
than the pinning strength induced by the quenched disor
and moves with a constant velocity forF greater than the
pinning strength. Hence, there exists a threshold of the d
ing force Fc separating two regimes. This phenomenon
called the pinning-depinning transition.

Near the depinning threshold, dynamics of a driven int
face in random media can be described in terms of the rou
ness exponenta and the growth exponentb @6,7#. The two
exponents are defined from the interface widthW(L,t)
5^L2d( i@hi(t)2h̄(t)#2&1/2, which scales asLa for a long
time (t@Lz) and tb at the early stages (t!Lz) of the pro-
cess.z5a/b is called the dynamic exponent. Hereh̄, L, d,
andhi(t) denote the mean height, system size, substrate
mension, and the height at sitei and timet, respectively.

The dynamics of the driven interface in random me
can be explained well by a Langevin-type continuum eq
tion. A well-known equation describing the motion of
driven interface in random media is the quenched Kard
Parisi-Zhang~QKPZ! equation@7#:

]h~x,t !

]t
5n“2h1

l

2
~“h!21F1h~x,h!, ~1!

where the quenched noiseh(x,h) satisfieŝ h(x,h)&50 and
^h(x,h)h(x8,h8)&52Ddd(x2x8)d(h2h8).

Many studies have been carried out to describe and
derstand the motion of the driven interface following t
QKPZ equation. Tang and Leshhorn@8# suggested that the
directed percolation depinning~DPD! model @9# belongs to
the QKPZ universality class. They argued that the roughn
exponenta in the QKPZ universality class is given by th
ratio of two correlation length exponents,n' andn i , in the
perpendicular and parallel directions of directed percolat
clusters, which is a5n' /n i'0.63 in one dimension
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Leschhorn@10# also showed that the roughness exponen
the QKPZ universality class isa'0.63 in one dimension via
the numerical integration of the QKPZ equation and the
tomaton model, which is the discrete version of the QK
equation. In two and three dimensions, the DPD model gi
a.0.48 @11# and a.0.38 @12#, respectively. A self-
organized growth model in the QKPZ universality class w
also introduced by Sneppen@13#.

When there is no nonlinear term@l(“h)2# in Eq. ~1!, the
equation is called the quenched Edwards-Wilkinson~QEW!
equation. The dynamic scaling behavior of the QEW eq
tion is completely different from that of the QKPZ equatio
Analytical studies@14# of the QEW equation predicta5(4
2d)/3 andz522(2/9)(42d), whereas the direct integra
tion of the QEW equation@15# and the computer simulation
of the automaton model@16#, which is the discrete version o
this equation, givesa'1.25 in one dimension.

Thus, there exist two distinct universality classes char
terizing dynamics of driven interfaces in random media d
pending on whether there exists the KPZ nonlinear term
Eq. ~1!. Amaral et al. @17# introduced a method to classif
the two distinct universality classes from computer simu
tions by analyzing the dependence of the interface velo
v(m) on the slopem of the tilted substrate from the com
puter simulation. In the case of the QEW class, the slo
dependence of the interface velocity is either absent or v
ishes at the depinning threshold, which indicates that
KPZ nonlinear term does not exist at the threshold. In
case of the QKPZ class, however, the growing velocityv(m)
depends on the slopem near the depinning threshold. It in
dicates that the KPZ nonlinearity exists even at the depinn
threshold, i.e.,v50. Tang et al. @18# and Parket al. @19#
showed that the KPZ nonlinearity is originated from the a
isotropic properties of the random medium. The KPZ no
linearity effect does not exist in the motion of interfac
driven through isotropic random media. Tanget al. argued
that the KPZ nonlinear term can be generated from an
tropic properties of random media. If the interface under
isotropic random media is driven by external force, then
thresholdFc depends on the slopem of the tilted substrate.
The dependence of the thresholdFc on m can be written as
©2001 The American Physical Society04-1
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BRIEF REPORTS PHYSICAL REVIEW E 65 017104
Fc~m!2Fc~0!}2umu1/n(12a), ~2!

where the correlation lengthj parallel to the interface scale
asj;(F2Fc)

n andn is called the correlation length expo
nent. The KPZ nonlinearity in the driven interface is orig
nated from the characteristics of the medium rather t
from the kinematic effects@18#. We confirmed the TKD’s
suggestion by directly controlling the degree of the anis
ropy of random media@19#. In spite of a lot of numerical
works, there are no simple self-organized stochastic gro
models for the QEW and the QKPZ universality class in t
or three dimensions. Therefore, it would be worth introdu
ing simple growth models describing the motion of inte
faces driven in random media in high dimensions.

In this paper, we introduce two kinds of stochastic grow
models which describe the motion of the driven interfaces
random media in two and three dimensions. In our mod
we use the Family growth rule@20#, which is related to the
Edwards-Wilkinson~EW! @21# universality class occurring
in the interface growth in homogeneous media. Although o
uses the same growth rule, dynamical behavior of driv
interfaces can be changed drastically according to the wa
updating random numbers on the interface each time, wh
random numbers represent the impurities in random me
We find that our models belong to the QEW and the QK
universality class by using different updating rules of t
random numbers in the two models.

The growth rule of our model~we call it modelA) is
defined as follows: First, we preassign random numbers
tween 0 and 1 representing impurities in random media
all perimeter sites of the initially flat substrate. A particle
deposited on the sitei with the lowest minimum random
number on the interface. The deposited particle allows
diffuse to a nearest-neighbor site with the smallest height
finds lower height thanhi . When the heights of all neares
neighbor sites are the same and are smaller thanhi , the
particle moves to a randomly chosen one of its near
neighbor sites. Then we update the random number at
newly occupied site.

Our simulations were carried out starting from a flat in
tial surface with periodic boundary conditions in two a
three dimensions. Numerical data were averaged over m
than 100 configurations. Figure 1 shows the plot of the s

FIG. 1. The plots of widthW2(L) versus the system sizeL in
two dimensions for modelA ~the filled circle! and modelB ~the
filled square!. The solid guideline representsa.0.47 and the dotted
line showsa.0.66 in two dimensions.
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face width W2(L) versus system sizeL with L2

5322, 482, 642, 922, and 1282 in two dimensions. The
filled circles represent the data obtained from the modeA.
The solid guideline represents thata.0.47. This value
agrees with that obtained from the DPD model in the QK
universality class. In this model, however, the saturation
reached so fast that we could not obtain the value of thb
exponent.

In the growth rule of this model, we always drop a pa
ticle at each timestep regardless of the tilt of the substr
This means that the growth velocity in our model does
depend on the tilt of the substrate, i.e., the KPZ nonlin
term is not generated kinematically in the modelA.

To survey the origin of the KPZ nonlinearity in thi
model, we look into the characteristics of the medium
considering the tilt dependency of the threshold force. If
deposited particle diffuses to its nearest-neighbor site,
random number at the selected site is not changed. The
dom number at the selected site is the lowest one among
random numbers on the interface before the diffusion occ
The selected site, therefore, tends to be chosen again a
next timestep because there is great probability that
newly updated random number at the updated site is la
than that at the selected site. That is, if the diffusion proc
occurs, the selected site is often selected again in the
timestep. It makes the value of the threshold force low
when the diffusion process occurs. The more the substra
tilted, the more the diffusion process occurs, so that
threshold force depends on the tilt of the substrate@see Fig
2~a!#. This dependence of the threshold force on the tilt
the substrate indicates that the KPZ nonlinear term is ge
ated by the anisotropic property of the medium and thus
modelA belongs to the QKPZ universality class.

Next, we consider another model~model B), where the
tilt dependency of the threshold force is absent. The dyna
rule in this model is the same as that of modelA except for
the rule updating random numbers. In order to avoid the
dependency of the threshold force, we always update the

FIG. 2. The plots of the threshold forceFc(0)2Fc(m) as a
function of the average orientation of the surfacem for modelA ~a!
and for modelB ~b!.
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BRIEF REPORTS PHYSICAL REVIEW E 65 017104
random numbers in this model each time. If diffusion of
newly deposited particle occurs, two random numbers at
selected site and the newly occupied one are updated si
taneously. If the diffusion does not occur, two random nu
bers at the selected site and at a randomly chosen one
nearest-neighbor sites are updated simultaneously. By
updating method, the random number at the selected si
always updated regardless of the diffusion process. There
the threshold force does not depend on the tilt of the s
strate. For this model, the plot of the surface widthW2(L)
versus system sizeL is marked with a filled square in Fig. 1
The dotted line showsa'0.66, which is in excellent agree
ment with the analytic result of the QEW equation in tw
dimensions.

We also obtained the threshold forceFc by measuring
distribution of random numbers and distribution of the mi
mum random numbers in the critical state@22#. Figure 2
shows the plot of the threshold forceFc(m) versus the tiltm
of the substrate for the modelA ~a! and for the modelB ~b!.
The straight guideline in Fig. 2~a! has the slope of 1.80. Thi
value agrees with that expected from 1/n(12a) with n
51.06 anda50.48 in the DPD model in two dimension
Figure 2~b! shows that the threshold force is independent
the tilt of the substrate for modelB. These results confirm
that modelA belongs to the QKPZ universality class an
modelB to the QEW universality class.

We also studied modelsA and B in three dimensions
Figure 3 shows the plot of the interface widthW2(L) as a
function of the system sizeL in three dimensions for mode
A ~the filled circle! and modelB ~the filled square!. The solid
guideline showsa'0.38 and the dotted line representsa

FIG. 3. The plots of widthW2(L) versus the system sizeL in
three dimensions for modelA ~the filled circle! and modelB ~the
filled square!. We obtaineda.0.38 anda.0.33 for modelA and
modelB, respectively.
b,

,

.
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'0.33. These values suggest that modelA belongs to the
QKPZ class and modelB to the QEW class for three dimen
sions.

Several years ago, Sneppen introduced two simple s
organized growth models which show two different scali
behaviors when the growth rule is a bit changed like in o
models@13#. In the models, the different scaling behavio
originate from the fact that the KPZ nonlinear term,l, gen-
erated in the growth process, has different signs for e
growth rule. In one model, the scaling behavior of the mo
can be explained by the QKPZ equation withl.0, which is
in the same universality class as the DPD model giving
roughness exponenta.0.63. In the other model, it can b
explained by the QKPZ equation withl,0 in which the
roughness exponent isa.1 @23# and thus shows the differ
ent scaling behavior from the QKPZ equation withl.0.
Meanwhile, two different scaling behaviors in our mode
originate from the fact about whether the KPZ nonline
term is generated or not in the growth process. ModelA,
where the KPZ nonlinearity is generated in the growth p
cess is described by the QKPZ equation withl.0, while the
KPZ nonlinearity is not generated in modelB, which belongs
to the QEW universality class.

In summary, we have introduced two simple stochas
growth models, which belong to the QKPZ and the QE
universality class in two and three dimensions. The sa
dynamic growth rule has been used in the two mode
whereas the updating rule of the random number is differ
in the two models. This slight modification of the updatin
algorithm make the two models belong to the different u
versality classes. For the modelA, where the properties o
random medium are anisotropic, we obtained the roughn
exponentsa.0.47 anda.0.38 in two and three dimen
sions, respectively. These results are in good agreement
the DPD model@11# belonging to the QKPZ universality
class. For the modelB, where the properties of random me
dium are isotropic, we obtained the roughness exponena
.0.66 anda.0.33 in two and three dimensions, respe
tively. These values are in good agreement with the anal
solutions @14# of the QEW equation. ModelB is a good
model describing the dynamics of the QEW universal
class in two and three dimensions.
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