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Quantum trajectory analysis of multimode subsystem-bath dynamics
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The dynamics of a swarm of quantum trajectories is investigated for systems involving the interaction of an
active mode(the subsysteinwith an M-mode harmonic reservoitthe bath. Equations of motion for the
position, velocity, and action function for elements of the probability fluid are integrated in the Lagrangian
(moving with the fluid picture of quantum hydrodynamics. These fluid elements are coupled through the
Bohm quantum potential and as a result evolve as a correlated ensemble. Wave function synthesis along the
trajectories permits an exact description of the quantum dynamics for the evolving probability fluid. The
approach is fully quantum mechanical and does not involve classical or semiclassical approximations. Com-
putational results are presented for three systems involving the interaction on an active molle=viitH.0,
and 15 bath modes. These results include configuration space trajectory evolution, flux analysis of the evolving
ensemble, wave function synthesis along trajectories, and energy partitioning along specific trajectories. These
results demonstrate the feasibility of using a small number of quantum trajectories to obtain accurate quantum
results on some types of open quantum systems that are not amenable to standard quantum approaches
involving basis set expansions or Eulerian space-fixed grids.
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[. INTRODUCTION imposing dynamical approximations. In addition, the compu-
tational effort is concentrated upon a relatively small number

The analytical and computational analysis of a relativelyof fluid elementgquaisparticlesthat form a moving nonuni-
small subsystem interacting with a multimode bath has aform grid.
extensive historff1]. Because of computational limitations ~ The type of subsystem-bath model that we will consider
arising from the large number of degrees of freedom of theVith the quantum trajectory methd®@TM) [23-37 is ex-
composite system, it has not been possible, except in speci@mplified by the potential energy surface displayed in Fig. 1.
cases, to treat the full dynamical problem quantum mechani-
cally. Traditional quantum mechanical approaches involving
the use of square integrable basis sets or space-fixed gric ;45
quickly become intractable as the dimensionality of the sys-
tem increases. Because of these restrictions, the analysis
frequently based upon a quantum subsystem interacting pe!
turbatively or semiclassically with a classical harmonic bath.
For example, semiclassical techniques have recently been a@
plied to a double well potential and an anharmonic oscillator 2
interacting with a bath of harmonic oscillatof2—6]. Fre- e
qguently, the bath degrees of freedom are traced over ant
attention is focused upon the reduced density matrix for the
subsystem. On the assumption that the coupling between th
subsystem and the bath is bilinear in the subsystem and bat
coordinates, the subsystem dynamics can be developed vi
the Feynman-Vernon influence functiongd—10] and by
guantum master equatiopsl-1§.
In this study, the subsystem-bath dynamics will be ap-
proached in a different way, from the viewpoint of the hy-
drodynamic formulation of quantum mechan[d¥—-22. In
this approach, trajectorigstreamlinesfor a number of ele-

ments of the probability fluidor the entire systerwill be FIG. 1. A section through the potential energy surface for the
developed. Elements of this quantum fluid are correlateqy— 10 path mode model. The wire mesh shows the potential en-
through the nonlocal Bohm quantum potential, which iSgrqy in they, (subsystem coordinate, (bath mode number)1

computed on the fly as the equations of motion are integrateg{pspace. The minimum barrier is 990 ¢hand this occurs along
to find the quantum trajectories. In addition, along these trathe y,=2.0 a.u. cut. The potential minimum in the interior valley

jectories the subsystem-bath wave function may be comge cmit) occurs aty,=1.16 a.u.,y;=0.04. A contour map of the
puted. A unique feature of the hydrodynamic approach repotential is shown in the top plane. The initial probability density
ported here is that the composite systésubsystem and for the Gaussian wave packéx800 is shown centered ay,
bath is treated quantum mechanically without the need for=2.0a.u.y,;=0.
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Shown here is a slice through the potential surface for a teeral enhancements to the hydrodynamic methodology, in-
bath mode systertthis model is considered in more detail in cluding techniques to deal with the node problgtf]. Near
Sec. IV B). The wire mesh potential surface is plotted abovelocal regions where the quantum amplitude becomes very
the coordinate plane spanned Yy (the subsystem coordi- small, R—0, the quantum potential may become singular
nate andy, (the first bath mode coordinatéd contour map and as this occurs, another effect, referred to as inflation
of this potential is shown above the wire mesh in the uppef45], sets in. Inflation is to the tendency for fluid elements to
horizontal plane. This potential is the sum of an exponentiamove away from developing singularities, the nodes, with
repulsive term and a repulsive Gaussian barrier along thtéhe result that “holes” develop in the density. From a com-
subsystem coordinate and harmonic potentials for the teputational viewpoint, this presents problems because of the
bath modes, along with bilinear coupling tertsrms of the  low information density near the node and because of the
form ygyy) that provide linkage between the subsystem andhighly unstructured mesh formed by the fluid elements.
bath modes. In addition, this figure also shows the probabilAdaptive regridding and change of representation from the
ity density for an initial Gaussian wave packet that ishydrodynamic form of the wave functidmvolving RandS,
launched from the inner repulsive wall of the potential sur-see Sec. I)to the real and imaginary foritinvolving A and
face. The goal is to study the time evolution of elementsB, whereA+iB=Ré%") are techniques that may be used to
of the probability fluid as they flow over the barrier region deal with the node problem. So far, these techniques for han-
near yo=2 a.u. out toward the asymptotic valley region dling the node problem have been tested and implemented
(Yo— ). only for one-dimensional barrier transmission problems.
The hydrodynamic formulation of quantum mechanics In parallel with our development of the quantum trajec-
has its origins in the work of Madelurid 7], de Broglie[18],  tory method, Rabitz and co-workef46—-5Q have also de-
Bohm and co-workerf19—-21]. Studies in this area fall into veloped computational methods to integrate the quantum hy-
two domains having different goals and methodologies. Irdrodynamic equations in both the Eulerian and Lagrangian
the older of these approaches, thealytical approachthe  pictures. This quantum fluid dynami©@QFD) methodology
equations of quantum hydrodynamics are useahnalyze the has been applied to two-dimensional models of the photodis-
dynamicsof elements of the probability fluidfter first solv-  sociation of NOCI and N@[46,48 and to the optimal con-
ing the time-dependent Schrodinger equation to obtain th&ol of HCI in an external electric field49]. In addition,
wave function. Examples of this approach include analysesadial basis functions were investigated for fitting of func-
of possible quantum chaos in stadium billiard probléB8%-  tions and evaluation of their derivatives in the Lagrangian
36], wave packet resonant scattering for the double barriepicture[50]. Also, the Eulerian version of QFD was used to
potential[30], vibrationally enhanced molecular breakup at astudy the dynamics of Gaussian wave packets on four-
metal surfacd37], the E® e Jahn-Teller probleni38], and  dimensional quadratic potential surfad¢ds].
wave packet dynamics for circular Rydberg stdteg]. The Approximately 30 years before the QTM and the QFD
second approach to quantum hydrodynamics is quite differwere developed, Weiner and co-work@sd —55 introduced
ent; in thesynthetic approachthe quantum hydrodynamic the first particle method for solving the quantum hydrody-
equations are solvedirectly to predict the space-time dy- namic equations. Applications made at that time were limited
namics of elements of the probability fluid. The wave func-to Gaussian wave packets evolving on quadratic potential
tion is not precomputed as in the analytical approach; rathegurfaces. It is important to recall that under these conditions,
it is developed on the fly during integration of the hydrody-the initial wave packet always remains Gaussiaithough
namic equations. spreading may occur at different rates along the different
The quantum trajectory methd@3-29,31,32 QTM, is  principal axes. The QTM and the QFD have the enormous
an example of the synthetic approach in which equations oddvantage of permitting calculations beyond the paradigm
motion for discretized fluid elements are formulated and‘Gaussian packets/quadratic potentials.”
solved in the Lagangian, moving with the fluid, picture. The  Other recent studies based upon the hydrodynamic formu-
only approximation made in solving the hydrodynamic equadation include the following: development of a quantum tra-
tions involves the use of a relatively small number of fluid jectory approach to the density matrix for dissipative systems
elements. The QTM has been applied to barrier transmissiofb6], trajectory dynamics in the double well potential and in
[23,26, a collinear model chemical reacti¢®5], nonclassi- magnetic fields[57], the use of Delaunay tessellation for
cal reflection from a downhill ramp potentig27], and elec- evaluation of the quantum potent{d@8], two approaches to
tronic nonadiabaticity in a two electronic state scatteringmixed quantum-classical dynami€§9,60, and a classical
problem[31,32. As time goes on, the fluid elements gener-limit of the Eulerian equations of motion for electronic nona-
ally form an unstructured grid and this presents computadiabiatic processg$1].
tional difficulties in evaluating first and second derivatives of A different trajectory approach to quantum dynamics,
functions known only at the grid points. The moving termed “quantum dressed classical mechanics,” has been re-
weighted least squares algorith#0—43 is one approach cently developed by Billind62]. The center of a variable
that has been utilized for derivative evaluation. In anothewidth Gaussian wave packet follows a classical trajectory. A
approach, derivative evaluation has been performed usinime-dependent preexponential factor expressed in the dis-
distributed approximating functiondl26] that have been ex- crete variable representatigpVR) brings in a set of grid
tensively developed by Hoffmaet al. [44]. points centered about the classical trajectory. These grid
In addition, Bittner and Wya{i28,29 have presented sev- points explore a patch of space around the classical trajectory
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and incorporate quantum corrections, including barrier tun-
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TABLE |. Parameters for the 2-mode model.

neling. The trajectories followed by these DVR grid points
are not Bohm trajectories, but there may be some correspon-
dences between the two methods.

As we mentioned at the start of this section, the focus of
this study concerns application of the quantum trajectory
method to systems consisting of a subsystem interacting with
a multimode harmonic bath. The subsystem itself may in
general be multimode, but in this study the subsystem is
described by a single mode for which the potential is an
anharmonic function of position. The total number of modes
considered in these models is far larger than have been con-
sidered in any previous fully quantum mechanical studies.
The emphasis here is upon the trajectory dynamics; except
for the first model in Sec. IV, averages over many trajectories
are not performed. Computing averaged “observables” using
the hydrodynamic methodology in systems of high dimen-
sionality is certainly of interest. This important topic, along
with analyses of dissipation and energy transfer, will be de-
ferred to another part of this series.

In Sec. Il of this study, the Hamiltonian for subsystem-
bath models will be described, and anharmonic potentials
will be defined for the three subsystems that are analyzed
later in this study. In Sec. Ill, the hydrodynamic formulation
of quantum mechanics will be reviewed, with emphasis upon

Mass for each modé.u) m;
2000, 2200

Center for each 1D wave packgt.u) yi0
0.4, 0.002

Harmonic bath frequencigsm 1) o;
1000, 2100

Width parameters for 1D Gaussian wave packaets) S;
Bo=4.556,3,=10.525

Subsystem-bath coupling constdatu) c;
0.0(Fig. 2 —0.10(Fig. 3 —0.17 and 0.0QFig. 4

Falloff parameter for coupling constanty=0.8 a.u.
Cutoff distance for coupling constanty=1.0 a.u.

Initial subsystem kinetic energyE?r: 10754 cm't

Cubic anharmonicity in subsystem potential

a=—0.006 92
Initial grid spacing along, Ay,=0.015a.u.

Time step for integratioldt=1 a.u.

the computation of trajectories followed by the fluid ele-
ments. In order to integrate the equations of motion, it is
necessary to evaluate derivatives of functions whose value
are known only on the unstructured mesh defined by the flui
elements. As in our earlier studies, the moving weighted Iea§
squares(MWLS) algorithm will be used for this purpose
[40-43. Some computational considerations connected with
use of the MWLS will also be mentioned in Sec. lll. Com-
putational results on systems with 1, 10, and 15 bath modes
will be presented in conjunction with the series of figures
that are described in Sec. IV. The emphasis here will be upon
the properties of a subset of trajectories that form part of the
evolving quantum fluid. Finally, concluding remarks will be
presented in Sec. V.

X

tonian, three different anharmonic potentials were used, in-
uding a harmonic potential with cubic anharmonicity, an
ponential repulsive potential, and a short-range exponen-
al repulsive potential augmented with a Gaussian barrier

Vi(yo) = 3foy3—ays, (4)
Va(yo)=A(e Mo—1), (5)
Vs(yo)=Ce™ Yo+ D exd — 7(yo—yp)2. (6)

II. HAMILTONIAN FOR SUBSYSTEM-BATH MODELS

For the potentiaV,, V,(yo—®)— —A, andg is chosen so
that the potential ay,= —1 has the input valu¥,. In Eq.
(6), the barrier maximum foW3 occurs whenyy=y,. Po-

In this study, the one-dimensional subsystem, the activeéentialsV,, V,, andV; were used in thiv=1, 15, and 10

mode, is described by the coordinatg and theM bath

mode models, respectively.

modes are described by the displacement coordinates Note that theM bath oscillators are not coupled among

{y1,.ym}. The total system Hamiltonian is partitioned into
subsystem(harmonig bath, and coupling contributions$
=Hg¢+H,+H., where

themselves. Quadratic coupling termy; could be included
in future investigations. The coupling potential in E§) is
bilinear in the subsystem-bath displacemeyyy; . In Sec.
IV, mention will be made of calculations that include higher-

1
HS=2— p(2)+V(y0), (1) order subsystem-bath coupling terifog the form yoyiz). In
Mo order to prevent these coupling terms from becoming arbi-
1 M piZ , trarily large asy, increases, the coupling coefficierttswere
Hb:iZ ﬁntfiyi , (2)  damped whelry, exceeds a cutoff value. For ti=1 and
=1 (m 10 models, c;j=c? when y,<yS and c;=cexg— Yo
M —y5)?] otherwise. For thél = 15 model, a sharp cutoff func-
He= 21 Ci(Yo) fiyoYi - (3)  tion was usedg; =c? wheny,<yS andc; =0 otherwise. The
o parameters used in the Hamiltonians for these models are
In the bath Hamiltonian, the force constants are related to thisted in Tables I-Ill; further details are provided later in

mode frequencies byi=miwi2. In the subsystem Hamil-

Sec. IV when the computational results are described.
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TABLE Il. Parameters for the 11-mode model. TABLE lll. Parameters for the 16-mode model.

Mass for each modé.u) m Mass for each modé.u) m;
2000, 2200, 2400, 2600, 3000, 3200, 3400, 3600, 3700, 3800 1000, 1250, 1628, 1253, 1708, 1711, 1529, 1425, 1573, 1602,
1342, 1636, 1310, 1340, 1583,

Center for each 1D wave packet.u) yi0 1358
0.4, 0.006, 0.0, 0.001, 0.002,0.002, 0.005,-0.005, 0.0, 0.0,
0.005 Center for each 1D wave packigt.u) yio
. . 1 0.08, 0.002,-0.005, 0.003, 0.0,-0.005, 0.002, 0.007, 0.008,
Harmonic bath frequencigsm™ ") w; —0.001. 0.003. 0.002—0.006
2100, 1700, 1800, 1900, 2100, 2200, 2300, 2100, 2300, 2400 (003 0.001, 0.009 '
Width parameters for 1D Gaussian wave packats) g, Harmonic bath frequencigem 2)
Bo=3.0, Bi=(12)mw; i=12,...10 6000, 3250, 1083, 1742, 3263, 3662, 1907, 1975, 398, 449,

Subsystem-bath coupling constafdsu) c; 2003, 1914, 2917, 734, 2972

~0.03,-0.02, 0.03,-0.02, 0.03,—0.02, —0.03, —0.02, Width parameters for 1D Gaussian wave packata) ;

—0.02,0.03 8.9, 18.8, 13.3, 3.4, 7.5, 14.0, 14.0, 6.8, 7.8, 1.6, 1.5, 8.2, 6.3,

Falloff parameter for coupling constanjs=0.8 a.u. 9.1,29,101

Cutoff distance for coupling constarg§=1.0 a.u. Subsystem-bath coupling constarésu) c;

0.037,—-0.02, 0.03, 0.043;-0.045, 0.01,-0.009,—-0.002,
—0.047, 0.03, 0.026;-0.036,—0.029,

Parameters for subsystem potential —0.011, 0.043

C=100cnm!, D=1000cm?, §=0.3a.u.,,»=5.0 a.u.

Initial subsystem kinetic ener@?r: 1500 cm?

Cutoff distance for coupling constarng§=2.0 a.u.

Initial grid spacing alongo - Ayo=0.015 a.u. Initial subsystem kinetic energg2=0

Time step for integration At=1 a.u. )
P g Parameters for subsystem potential

A=1000 cm?, V,=5000 cm?, B=In(1+V,/A)

lll. QUANTUM TRAJECTORY METHOD Initial grid spacing along, Ay,=0.06 a.u.

A. Quantum hydrodynamic equations Time step for integratioldt=1 a.u.

In this section, a brief review will be presented of the
equations needed to implement the quantum trajectory
method[23—-32. The hydrodynamic formulation is initiated tion andQ is the time-dependent Bohm quantum potential
by substituting the polar form of the time-dependent wavd 19-21. If Q is neglected in Eq(8), the classical dynamics
function (this is the Madelung transfornil7]), ¥(y,t)  of an ensemble is recovered.
:R(y,t)exn]S(y't)/h], into the Schrodinger time-dependent The Bohm pOtential depends upon the LaplaCian of the
wave equation. In this amplitude-phase decomposition, th@mplitude and is given by

real-valued amplitude and action functions are denBtadd h2 1 5 %2 e 1
S An advantage of this representation is tiaand S are Qly.H=-5- R(y.0 VR )=-5- vepte,
frequently slowly varying functions of position. In terms of ’ (9)

R and S, the probability density and the local flow velocity . . e .
e gven byy~R: and—(TS/m. e separaing o 15 U011, 1o000 1 0 ety bt = dentea o
real and imaginary parts, and then introducing the Lagran ated with thepwave pchet The local kinetic egri/er is de-
ian time derivative,df/dt=af/dt+v-Vf, we obtain the packet. 9y

equations of motion fined by[22]

dp 3 h? Y* V2
R AR] 7 Tioca= ~ 5~ R& —apr [ - (10
d 1 The kinetic energy defined in this way may be partitioned
d_v - -~ ZV(V+Q). (8)  [24] Tehapst Triow, Where the flow kinetic energy arises from
t m

the gradient of the action function and is given By,
Equation(7) is recognized at the Lagrangian version of the=(VS)%/(2m). The shape kinetic energy is then given by
continuity equation, in which the rate of change in the den-the differenceT gpape= Tioca— Triow @nd this quantity is iden-
sity along a streamline is related to the divergence of thdical to the quantum potentiaQ, in Eq. (9). Computation of
velocity field. Equation(8) is a Newtonian-type equation in the quantum potential in E@9) is rendered more accurate if
which the flow acceleration is produced by two force termsderivatives are evaluated for the exponentiated amplitude
on the right side. The classical force acting on the fluid ele{23,46, R=exp(C), whereC is referred to as th€ ampli-
ment isf.=—VV, and the quantum force is given y,  tude. In terms of derivatives of th& amplitude, the quantum
=—VQ. In these equationy/ is the potential energy func- potential is
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K2 ) ) One final feature to mention concerns the two noncrossing
Q=—5,[VCH(VC)T]. (1)  rules[22]: (1) quantum trajectories cannot pass through the
same space-time poin®) quantum trajectories cannot punc-

The advantage of working witlC amplitude is that this ture through nodal surfaces.

quantity may frequently be fit with high accuracy by a low
degree polynomial; this is not generally true Ritself. B. Trajectories for fluid elements

Closure of the set of dynamical equations is obtained by ¢ Lagrangian equations of motion are used to update
introducing the Lagrangian equation of motion for the actionype descriptorfor each of theN fluid elements. At each time

function[24], step, the descriptor for each fluid element stores the position,
velocity, C amplitude, and action function,A;(t)
d_S_ i 2_ — ={yi,vi,C;i,S;}. Each fluid element follows a trajectory that
= 5—-(V9 = (V+Q)=Lguantum (12 - - - ,
dt 2m may be viewed in both configuration and phase space. In

addition, the wave function along each trajectory may be
The right side defines the quantum Lagrangian. It measurgeund from the known values o and S for example, for
the excess of the kinetic energy flow over the total potentiathe ith fluid element, Inl;=C,+iS; /#.
energy, which in turn is the sum of the potentiadland the If the number of bath modes is small, skl<3, then at
qguantum potential. t=0 it is convenient to start out the coordinates for each
Equationg7), (8), and(12) along with the definition o)  fluid element on a Cartesian grid. However, for a larger num-
in Eq. (11) constitute the defining equations for the quantumber of bath modes, it is neither necessary nor useful to do
trajectory method. No approximations were made in derivinghis. In the studies reported here, we first set ugNaooint
these equations from the time-dependent Sdinger equa-  uniform grid along they, axis. For each of these points, a
tion. However, in order to implement these equations, amandom value is then selected for each of Khéath coordi-
approximation will be made. The initial wave packet will be nates. Each coordinate is restricted to the regiop<y™,
subdivided intaN fluid elementsind the equations of motion where the maximum value is chosen so that the wave func-
will be used to find the position, flow velocity, probability tion for this mode is greater than about 0.01. In this way,
density, and action function along the trajectories followedeach fluid element is assign&di+ 1 initial coordinates and
by these elements. The flow of these fluid elements througfyhen viewed in théM +1 dimensional coordinate space, the
phase space is that of a compressible fiigenerally,V-v  ensemble oN fluid elements forms an irregular mesh.
#0). For the system-bath problems studied here, it is not nec-
From the density and action functions computed alongessary to cover each coordinate direction with a large num-
each trajectory, the wave function may be synthes[2#8d.  ber of points, thus formingat t=0) a rectangular lattice in
Given the wave functiofW(y,,to) at positiony, attimety,  the (M + 1)-dimensional space. In this unfavorable case, the
the wave function along the trajectoyyt) developed by this  total number of points would scale roughly &)™+,

fluid element is where(N) is the average number of points along each axis. It
would be reasonable to expect thfat) >10. If this were the

W(y.t)=ex —Eftvvdt case, theM =10 and 15 mode systems used in this study

’ 2 Ji, would be beyond current computational capabilities. For the

computations reported later, the valuegdf are 1.4 and 1.6
t for theM =15 and 10 bath mode systems, respectively. From
Xex‘{_ftol‘q”a“‘“r‘t)dt}w(yo’t(’)' (13 the viewpoint of traditional space-fixed grid calculations,
these values are startlingly low.
In this equation, the first exponential updates®emplitude At t=0, the initial wave function is assumed to be factor-
along the trajectory. This term is obtained by analytic inte-izable into the product oM +1 normalized Gaussiafone-
gration of Eq.(7) for the density followed by taking the dimensionalwave functions times a translational functi@n
square root to obtaiR(y,t). The second exponential in Eq. Plane wave that specifies the initial action function

(13) updates the action function along the trajectory. This M

term is obtained by integrating E¢L2) for dS/dt along the W(y,t=0)=[] (8/m)Yexd - Bi(yi—y)?]
trajectory. An important feature of EqL3) is that asingle =0

trajectory makes the trip fromy(,,to) to (y,t). A complicated XexdiS(yo,t=0)/%A]. (14
summation over contributions from trajectories arriving

along different space-time paths is not required. The width parameterg; and the centerg, will be specified

The self-consistency of the hydrodynamic equations emlater when the computational results are presented. For the
bodies de Broglie’s pilot wave concefit8]. The wave func- M=15 model, the initial wave packet is chosen to be sta-
tion determines the motion of the fluid elements through thdionary, S(y,t=0)=0. For theM=1 and 10 models, the
quantum force, which in turn is a function of the density, wave packet is launched with an initial momentum in the
Egs. (7) and (8), and this evolving ensemble of fluid ele- +y, direction,S(y,,t=0)=(2mEN)YAy,—yd), whereE?
ments in turn determines the new value for the wave functioris the initial translational energy. Although the wave function
at the position of each fluid element, E4.3). in Eq. (14) is a multidimensional Gaussian, there is no re-
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quirement in the subsequent dynamics that the total wave, is an (M + 1)-dimensionalcomplex-valuedl square ma-
function be either factorizable or Gaussian in any degree ofrix. This local Gaussian fit does not constrain the overall
freedom. (globa) wave function to being Gaussian in shape.

C. Least squares fitting and computation of derivatives D. Computational considerations

Given a functionf(y) specified only aN points in the Approximately 90% of the computational effort involved
(M+1)-dimensional spacg™* Y, it is necessary to evalu- i advancing one time step is spent in the least squares fitting
ate first and second derivatives at these points in order tBrocedure. In order to improve the efficiency of this proce-
integrate the equations of motion. The quantities that need tgyre, two techniques were employed to reduce the number of
b% evaluated at the positions of the fluid elementsté&  arithmetic operations. First, in order to find the,¢ 1) an-
V<C, VQ, andV-v. In order to evaluate these derivatives, gjjlary points surrounding the central point in the stencil, an
we will use the same algorithm that has been used in earliqhgex array is generated to sort the points by increasing dis-
applications of the QTM, namely, the MWLS algorithm. In tance from the central point. In order to reduce the number of
order to perform the fit around poirtfluid element j, we  gperations, this index array is generated once edggytime
first select a set ofi, nearest neighbor pointincluding the steps rather than at the start of every time steppractice,
“central" point j), .thes.e points defir)e the stencil. Within 'this A= 20 was used This increment must be decreased if and
stencil, the function is expanded in a setrgf local basis \yhen the dynamics is complicated by fluid elements chang-

functions{p.(y—yj)}, ing their relative positions.
Mo The least squares procedure was accelerated by abandon-
f(Y)Zgl a(tpy—y;j), (15  ing at each time step the direct solutignsing Gaussian

elimination, GB of the algebraic equations for the expansion
where the expansion coefficier{ta,} depend upon the time coefficients{a,} used in Eqg.(15). In matrix notation, the
at which the fit is performed and they are found by solving aequations for these coefficients have the fde#f] Ba=c,
system of linear algebraic equations. The accuracy of thevhere B is an n,xn, square matrix, anc and c are n,
local fit is determined by the number and nature of the basis< 1 column vectors. MatriceB andc are known in terms of
functions in addition to the number of points included in thethe local basis functions and the input function values evalu-
stencil. In order to restrict the field of view, a Gaussianated at all points of the stencil. Rather than directly solving
weight function centered at poipis used. Once the expan- these matrix equations at each time step, an iterative proce-
sion coefficients have been determined, the partial derivadure was used. If we partition the square matrix into diagonal
tives of ordem may be evaluated directly at the position of (D), lower triangular(L), and upper triangular submatrices

the central node (U), the matrix equation may be rewrittePa=c— (L
smg M 4Mp, + U)az c—(B—D)a This suggests the following simple it-
W: ak(W) . (16) erative scheméJacobi iteratiohfor the vectora,
yl k=1 y’[ ak+1=D71[C_(B_D)ak], (17)
Because the basis functions are monomials, only a single
term survives on the right side of this equation. where the first vectoa' must be specified to prime the itera-

In this study, it will be assumed that the input function cantive process. If the newly generated componenta“6f are
be accurately fit around poigf by basis seB consisting of used on the right side as soon as they are computed, this
monomials of degree less and equal to 2, including the conalgorithm is referred to as Gauss-Seidel iterati@Gsl). Al-
stant term{1}, linear terms{z,,z;,...}, diagonal quadratic togetherk,. iteration steps are used, this number is found
terms {z3,73,...}, and off-diagonal quadratic terms by monitoring the change in the iteration vector lasn-
{2021,212,,...}, where thez; are local displacement coordi- creases. This iteration procedure is implemented in the quan-
nates,zizyt—y?, i=0,1,... M. For the spac&™*1), the tum trajectory program in the following wayl) the direct
dimension of B is given by ny=1+2(M+1)+M(M algorithm based upon GE is used to generate the initial vec-
+1)/2. For example, for thtl = 10 model considered later, tor a'; (2) this vector is then used to iteratively generate the
n,= 78, and for theM = 15 model,n, = 153. Since the num- solution vectors for the followingdgs time steps. At this
ber of basis functions increases M$, it is not efficient to  Point, a fresh solution vector is generated using GE.
use this type of polynomial basis fod >15 (although we In test calculations for a model witM =4 bath modes
have done some computations wih= 20). usingN=101 fluid elements, 21 quadratic basis functions in
In practice, both theC amplitude and the action function the local fit, 30 points in the stencil, aridy,,=10 Gauss-
are fit to the previously mentioned basis set expressed ifeidel iterations, the speeduip %) using Ags iterations is
displacement coordinates. As a result, fbeal fit to the defined as S(Agg) =100 Tgirect Titerativ Acs) I/ Tdirect:
wave functiomear pointyo is given by the Comp|ex Gauss- where the numerator is the SaVing in CPU time and the de-

ian function nominator is the time for the noniterativeirecy calculation.
As Aggincreases, the accuracy of the quantities stored in the
0y — _\0 _ O\t _\0 GS '
W(y:y)=exdcotcu(y=y) +(y=y)caly=y))l, descriptor gradually decreases. To counter this tendeqgy,

in which (y—y°) is the M+ 1)-dimensional displacement was kept relatively low, in the range 2—5. This led to savings
vector,cy andc, are complex-valued coefficient vectors, andin CPU time in the range 20-30 %.
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( )g t=145fs

(e)A 1.0

=
0.0
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FIG. 2. (a) Contour map of the potent_ial energ_y_surface for the :FllG'n?(')éae)l C(;_T]tgu;lzréassstzfeme ;’ﬁéeqﬂzl ebr;rr]gya?;rfigigg dth?
M =1 model. The subsystem-bath coupling coefficient has been Sé\={|70 10) Thé circular dashed curve is the surface across which
to zero. The circular dashed curve is the surface across which tr}%e f|l'JX is‘ calculated. Parté)—(e) show the time development of
flux is calculated. Parth)—(e) show the time development of the ; ' » P

. 2 the fluid elements. In addition, contours of the real part of the wave
fluid elements(dotg. In addition, contours of the real part of the function are shown
wave function(interpolated from the values at the doése shown. ’

=R(Yq,Y1)c0$ Xyq.,y1)/%]. Although this quantity oscillates

IV. COMPUTATIONAL RESULTS along they, coordinate, nodes do not develop in the density.
) o ) These figures were generated from the descriptors carried by
A. The M=1 dissociative model: Wave function the nodes by the following procedure. Since Gamplitude
and flux analysis (R=¢€%) and the action(S) are known only at the positions

Our first application involves an anharmonic oscillator in- Of the fluid elements, it is necessary to interpoléatsing
teracting with a single bath mode. Parameters for the HamilMWLS) from this irregular grid onto a uniform mesh cover-
tonian used in this model are given in Table | and contoufNd the display region before invoking the contour routine.
maps of the potential surfaces in the absence of subsysterﬁ‘-n important fea.ture of the Lagrangian fo_r_mulat|0n IS appar-
bath coupling ¢=0) and with coupling €= —0.10) are ent from these flgqres, smoothed gquantities can be interpo-
shown in Figs. 2) and 3a), respectively. The subsystem lated from information available at a relatively small number

. . . . of points on the irregular mesh. When we go to systems with
potentlalvl(yO) cons[sts of a cubic qnharmomc term add_edhigher dimensionality, this advantage becomes even more
to a harmonic potential. The local minimum of the potential

. o ; significant.
lies atyo=y,=0 and has the value zero. In Figa the From information carried in the descriptors for the fluid
saddle point occurs aty=2.0a.u.,y; =0 and has the value

1 A ; elements, average values of dynamical quantities may be cal-
GOZ7 cm-, Wh"g in Fig. 2b), the saddle point occu_r;ﬂat culated. For example, the following expression is used to
Yo=2.04a.u.,y;=0.09a.u., and has the value 5906 ¢m 5 cyjate the time dependence of the rate of flow of probabil-
Also shown in these figures is a dashed cufaecircle of

, , . ity across a boundary surfacg)
radiusr =2 a.u) across which the flux will be calculated.

Also note in Fig. 8a) that the principal axis of the potential R(t):f j-ndA, (18
energy surface is tilted in the counterclockwise directién ( 3
=0.042rad) due to the coupling term in the potential. wheren is an outward directed unit normal vectgr pv,

In Figs. 2 and 3, the time dependence of the fluid eleanddAis an element of area. In addition, the time integral of
ments(large dot$ are shown along with contour maps dis- the rate gives the decay probability from the initial localized
playing the real part of the wave function, [RI&y,,Y1)] state
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1. Density and velocity maps

Figure 5 shows velocity maps for the particles in the
(Yo,Y1) subspace at three timés t=0, (b) =9.5 fs, and(c)
t=14.25fs. The size of the ball at the tail of each velocity
vector is related nonlinearly to the density carried by that
particle. [The radius of the ball is given byr
=A(p! pma) @Y, Wherep,. is the largest value of the den-
sity at this time steg.The velocity vectors shown here are
projections of theM +1 component vectors into the/{,y,)
plane. In paria), all vectors are of the same length and they
are directed along the-y, axis, this is in accord with the
initial condition. In part(b), 28 of the fluid elements have
crossed the barrier 3f,=2 a.u. and they are starting to ac-
celerate downhill into the asymptotic valley. The velocity
vectors are shorter for the remaining fluid elements that are
0 25 5 75 10 125 15 still decelerating on the uphill side of the barriey(

Time(fs) <2 a.u.). In par{c), many of the fluid elements have picked
o up small velocity components along tlyg direction, this
FIG. 4. (a) Rate of flow of probability across the boundary sur- represents energy transfer to the bath from the subsystem

face(dashed lines in Figs. 2 and 8nd(b) time integral of the rate, modey,. Also, by this time step, 69 of the fluid elements
the decay probability. The continuous curve corresponds to the norn, ' '

Jjave m it over th rrier.
coupling case shown in Fig. 2 and the dashed curve was obtainedel e made it over the barrie
using the coupling coefficiert=—0.17.

Rate (prob./fs)

Prob.

2. Trajectory evolution

t The configuration space-time evolution for five trajecto-
PfOt(t)Zf R(7)dr. (190 ries from this ensemble are plotted in Fig. 6. In this figure,
0 the time dependence of thgy,y;) coordinate pair is shown
In order to obtain a continuous flupg) from the descrip-  fOr trajectories 20, 40, 60, 80, and 100. In addition, the pro-
tors carried by the discrete fluid elements flowing actss  jection of trajectory 100 onto the three coordinate planes is
is necessary to interpolate the density and velocity carried b!SO shown. Trajectories 20 and 100 are launched from near
the fluid elements onto the boundary surface. Using thidhe back and front enddarger value foryo) of the swarm,
technique, flow rates and decay probabilities were calculatetgSPectively. It is evident that trajectories 20, 40, and 60
and these are shown for in Fig. 4 for two cases, ngdecelerate as they approaqh the'barrler rediois occurs at
subsystem-bath couplingontinuous curvesand for a sys- abputt=15fs) and that trajectories 801 and 100 a_ccelerate
tem where coupling is includeddashed curves, forc quickly to larger values o after crossing the barrier.
=—0.17. [A different value for the coupling constaiit)
was used in this figure compared to Fig. 3 in order to obtain 3. Wave function synthesis along trajectories
larger differences in the flux and probability between the  \ve mentioned in Sec. Il A that the wave function can be
=0 andc#0 cased.By 12.5 fs, the flow rate has decreased synthesized along each trajectory as it evolves through the
to about 3% of the maximum value, and the decay probabili\ + 1).dimensional space. The three-dimensional plots dis-
ity has increased to about 0.93. played in Fig. 7 show the time dependence of the wave func-
tion for two trajectories selected from the ensemble. For each
B. The M =10 barrier model horizontal time slice, the radial distance from the vertical

‘s ia o112 ; i i
In Sec. |, reference was made to the potential energy sufxIs 1Sp and the twist of the parametrized functiti(t)

S - around this axis is generated by the ph&ge)/h. Figure
ifra:cgi an(il ﬂ.}i'emt'g:;vn?;/; Psaikszt df?;tm; 1?)t2¥1stit§|malsohnow\?vit 7(a) for trajectory 72 shows gradually increasing density as
9. - P P 9 rEhe trajectory moves toward the barrier maximum that is

other quantities needed to specify the model are listed irp g : }
. eached for times near the top of the figure. Figufie Tor
Table II. The bath mode frequencies range from 1700 to trajectory 45 shows an increase of density near 15 fs, but the

2400 cm ! and the masses range from 2000 to 3800 a.u. Fo . : : :
this model, the initial wave packet was discretized ifto Elensny starts to decrease as the trajectory begins accelerating

=101 fluid elements and the Lagrangian hydrodynamicOn the downhill side of the barrigneart=201s).

equations were integrated for 1200 time steps=1 a.u
=0.024fs). The initial wave packet was launched from the
inner repulsive wall of the potential with a translational en-  Further dynamical analysis for trajectory 72 is shown in
ergy of 1500 cm?! and with the initial momentum in the the four parts of Fig. 8. Figure(8 displays they, compo-
+y, direction. Each time step in the numerical integration ofnents of the forces acting on this fluid element. Reference to
the equations of motion required about 7 sec of CPU time orEq. (8) shows that the acceleration of a fluid element is due
one processor of the Cray SV1. to the “classical” force arising from the gradient of the po-

4. Dynamical analysis
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FIG. 5. Velocity maps projected into thg{,y;) plane at three
times:(a) t=0, (b) t=9.5fs, andc) t=14fs. The radius of the ball
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11 MODES
18
16 1
141
1271
<10
£
E 8
ot
4l 0.75
YO/ 050
2 e 0.25
1 -0.25
2 3 " -0.50
5

FIG. 6. Time dependence of trajectories 20, 40, 60, 80, and 100
in the (yo,y,) plane. The projections of trajectory 100 upon the
three coordinate planes are also shown. Trajectory 100 is associated
with a fluid element near the leading edge of the wave packet.

tential V acting in concert with the quantum force arising
from the gradient of the quantum potent@l The time de-
pendence of both components of these forces are shown in
Fig. 8(@). During some time intervals, the classical and quan-
tum forces act together in the same direction, but at other
times they work to oppose each other. The classical force is
positive fromt=0 until 4.5 fs and remains negative for the
remaining times shown in this figure. The quantum force is
positive until 2.1 fs, becomes negative until 8.3 fs, and then
becomes positive again until 15.9 fs. What is, at first, sur-
prising about the classical force is that this fluid element is
moving downhill on the potential/,(yy) until 3.2 fs and
then uphill toward the barrier maximum that is reached at
11.6 fs. Thus for part of the time that the fluid element is
moving uphill, between 3.2 and 4.5 fs, the classical force is
negative, directed away from the barrier maximum. The ori-
gin of this odd feature is that the classical force is made up of
two components, the “pure” mode-zero compongatising
from the gradient ofV,(yy)] and a contribution from the
gradient of the coupling term. During some time intervals,
these two contributions have opposite signs and partially
cancel.

Continuing with the analysis for trajectory 72, Figb8
shows the time dependence of the potenfialsnd Q. Start-
ing att=0, V decreases for the first 6 fs, then gradually
increases when the trajectory moves uphill toward the barrier
maximum. At 11.6 fs, the barrier is crossed, BMitthe total
potential energydoes not decrease because a fraction of the
potential energy is stored in the bath modes. Figu® 8
shows the time dependence of the total potential enargy,
+Q, and the kinetic energy, KB. The kinetic energy initially
increases whil&/+ Q decreases. The kinetic energy then de-

at the tail of each vector is proportional to the density carried bycreases for the first part of the uphill journey. The kinetic
this fluid element. The vertical dotted line shows the position of theenergy begins to increase before the barrier maximum when

barrier maximum.

the bath modes acquire energy. Finally, Figd)&hows the
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11 MODES (@) Again, the coupling coefficients are damped at large values
of y, using the same damping function as for the bilinear
e I————1 — coupling term. In this study, the coefficients are given by
14 4 : e di=(—1)!¢ (whereZ=0.1a.u) and this is multiplied by the
exponential damping function whey, exceeds a cutoff
value. Similar to Fig. 6 for the bilinear coupling case, Fig.
9(a) shows the time dependence of thg, {y,) coordinate
pair for five trajectories, numbers 20, 40, 60, 80, and 100.
Both the bilinear and the cubic coupling potentials were in-
cluded in the dynamics. Over the 20 fs time scale shown in
this figure, only trajectory 20 fails to make it over the barrier.
After surmounting the barrier, the trajectories quickly accel-
erate toward the asymptotic valley.

Time (fs)

6. Random coupling

In the previous calculations, once the sets of coupling
coefficients{c;} and{d;} were specified at=0, they re-
mained constant throughout the time evolution of the trajec-
tories. However, it is possible to impart a time dependence to
these coefficients, to simulate a fluctuating linkage between
11 MODES (b) the subsystem and the bath. In another set of calculations,

20 everyA, time steps, the signs and magnitudes of the coeffi-
cients were varied randomly. In particular, the coefficients
18 were chosen according to;= *rc, .« and dy==*r"d .y,
16 wherer andr’ are random numbers chosen from a uniform
14 distribution on the interval0, 1), the signs were also chosen
T randomly, andc,,, and d,,x are maximum allowed values
= (Cmax=0.03 a.u. andd,,,,=0.12a.u.. A different random
.E 10 number was used when each new coefficient was calculated.
871 The coupling coefficients were altered eveky=20 time
6 steps(0.48 f9. Figure 9b) shows the time dependence of the
4 (Yo,Y1) coordinate pair for five trajectories launched from
, the same initial conditions as those in Figa® Compared

p 0.2 with the trajectories in Fig. @), these trajectories remain
-0.10 1 more localized in the region near or before the barrier; ex-
‘ ’ cursions into the asymptotic valley are delayed.

0.15 0.4 ' C. The M=15 direct decay model

FIG. 7. Time dependence of the wave function for trajectories ~Limited computational results will be reported for the
72 [part (@)] and 45[part (b)]. The real and imaginary parts of the =15 direct(barrier-fre¢ dissociative model using the bilin-
wave function are plotted vs time. At each time, the radius of theear(nonrandomcoupling Hamiltonian in Eq(3). In contrast
cylinder isp*? and the phase angle &#. to the potential used for thil =10 model, the potentiaV,

) . given in Eq.(5) lacks a barrier along thg, coordinate. Pa-
action function and the quantum Lagrangiaee Eq.(12)]. ameters used in the Hamiltonian for this model are listed in
The quantum Lagrangian is negative at all times because t ble Ill. The bath mode frequencies range from 450 to
kinetic energy remains lower than the total potential energysqnq cr’r.Tl and the masses, range from 1000 to about
as shown in Fig. &). The action function starts out positive, 00 The CPU time f Ith' del is 76 i
but becomes increasingly negative as time increases becaujsé au. the Ime for this modet 1S Sec per ime

: stép, about 11.5 times larger than the CPU time required for
of the negative values fdr guantun the M=10 model. For the 15 bath mode moddl=201
5. Higher-order coupling trajectories were used to discretize the initial wave packet.

Most studies of subsystem-bath dynamics use the bilinear The configuration space-time _evol_ution fqr two trajecto-
coupling potential in Eq(3). In order to investigate the effect '€S from the ensemble is shown in Fig.(80 Similar to the
of higher-order coupling terms, a cubic coupling potentialt/@€ctory plots shown earlier in Figs. 6 and 9, this figure
was added to the bilinear term. This coupling potential isShows the time dependence of the, {y;) coordinate pair

given by for trajectories 120 and 160. Both of these trajectories move
M to relatively large values ofy by aboutt=10 fs, although
ngbicz 21 di(yo) fiVoy?, (20) trajectory 160 temporarily slows down negs 6 fs. Along

each trajectory, the total energlf{;) may be partitioned into
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FIG. 8. Dynamical results for trajectory 7@) time dependence of thg, components of the classical and quantum for@esclassical

(V) and quantum(Q) potential energiegc) total potential energy\(+ Q) and kinetic energyKE), (d) action function(S) and quantum
Lagrangian (—quantun)-

subsystem Eqyeen) and bath Epy) components(There is — €lements of the probability fluid are obtained by integrating
some ambiguity about where to put the coupling energy, buthe quantum hydrodynamic equations in the Lagrangian pic-
for this study, it was included in with the bath eneigyor  ture of fluid mechanics. Along each quantum trajectory, the
this trajectory, the fraction of energy in the subsystem is thefvave function may be computed, which in addition to the

f oysten™ Esyston{ Exot- Figure 1@b) shows the time depen- time evolving density, flow velocity, action function, and the
dence of the two fractiont,semand fpam (=1~ fysten) fOr classical and quantum forces leads to a detailed, mechanistic,
trajectory 72. At early times, the subsystem energy increasedgscription of the dynamics. As quantum trajectories for
slightly, but for later times > 8 fs) most of the energy has these and other related models are computed and analyzed
migrated into the 15 bath modes. using the quantum hydrodynamic approach, it is likely that
new insights will arise and that new approximations will be
suggested.

The three systems chosen for analysis in this study have
The quantum trajectory method had been applied to multhe common feature that wave function nodes do not form
tidimensional systems consisting of an active mode, the suliduring passage of the wave packet from small to large values
system, interacting with a bath &fl uncoupled harmonic of the subsystem coordinate. If nodal surfaces were to form,
oscillators. In this approach, the time-dependent dynamics dhe computational analysis would become more complicated

V. CONCLUSIONS

016702-11



ROBERT E. WYATT AND KYUNGSUN NA

PHYSICAL REVIEW E65 016702
11 MODES (a) 16 MODES

(2)
18 - Traj. 40/
1617 L AP T
6 4

14 1
;‘E 12 @
© 10 o 4
£ £
= i

o N h O ®

4 10 0.2
0.0
)70) )’(1O)5 5 \'\\
10 -2.0 2.5 0.4
11 MODES (b) 16 MODES (b)
20 8

Time (fs)
Time (fs)
N

0.00
0.05
0.10
0.15
o 0.20
5 08 0.25 0.75 :
FIG. 9. Time dependence of trajectories 20, 40, 60, 80, and 100 F|G. 10. TheM =15 bath mode modela) Time dependence of
in the (yq,y1) plane. Trajectory 100 is associated with a fluid ele- trajectories 120 and 160 in thg,y,) plane.(b) Energy partition-
ment near the front edge of the wave packet.The subsystem- jng the time dependence of the fraction of energy in the subsystem
bath coupling include&ime-independentbilinear and cubic terms.

" - : e > and the fraction in the bath are shown for trajectory 160.
(b) The bilinear and cubic coupling coefficients are randomized
every 0.48 fs.

of the bath spectral density, dissipation of energy and phase
and some of the techniquésuch as adaptive remeshjng from the subsystem, decoherence, and dynamical averages

discussed recently by Wyatt and Bittj@®] could be used to  Will be presented in other parts of this serjés)].
propagate the fluid elements. In spite of this, there are likely

a number of r_nult|d|menS|onaI systems where node formation ACKNOWLEDGMENTS
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