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Accuracy and stability of a lattice-Boltzmann model with subgrid scale boundary conditions
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A lattice-Boltzmann method has recently been developed to incorporate solid-fluid boundary conditions on
length scales less than the grid spacing. By introducing a real numbered parameter, specified at each node and
representing the fluid volume associated with that node, we were able to accurately simulate arbitrary geom-
etries without the need to specify surface normals. In this paper a detailed description of the rules is presented
and the accuracy and stability of the method is discussed, based on numerical results for flow in systems with
planar surfaces and for flow through periodic arrays of disks and spheres.
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[. INTRODUCTION the case in particle suspensions. Other recent developments
use a volumetric approadi6-19, initially introduced by
In the past decade, the lattice-Boltzmann method has beBenzi et al. [20]. Noble and Torczynsk[16] introduce a
come the simulation method of choice for a number of fluidmodified collision operator to account for the interactions
dynamics problem$l], in particular for fluid flow in com-  with solid obstacles within a lattice cell. Their method incor-
plex geometries. In this paper a modification of the convenporates solid-fluid boundary conditions on length scales less
tional lattice-Boltzmann method is presented, which incorpothan the grid spacing but a theoretical foundation is lacking.
rates information about the solid surface on scales less thabhenet al. [17,18 developed a rigorous volumetric formu-
the resolution of the grid. In most lattice-Boltzmann simula-|ation of the lattice-Boltzmann method, which can also be
tions the solid-fluid boundary conditions are modeled by theypplied to nonuniform meshes. However, information about
bounce-back rule, in which particles encountering a solidhe shape of the solid-fluid interface is required unless it
surface are reflected back in the direction they came fromgincides with the boundary between two lattice cells. Xi

However, discreti.zatipn of 'the sol_id surfape introduce;s Paret al's approach19] is applicable to arbitrarily complex ge-
ticular problems in simulations with moving boundaries or yetres  but requires an unstructured grid to model the
where the surface morphology is evolving due to erosion O yjid-fluid interface

deposition of dissolved solid]. In such cases, changes to The continuous bounce-back rul are also based on a

the solid surfaces cannot be modeled smoothly, but only 'r\]/olumetric interpretatioi18,20], in whichni(r.t) represents

discrete units of the grid spacing. To simulate these system% lation density in the Wi Seit I
a boundary condition was devised for the lattice-Boltzmanrf ' Me&aN population density in the Wigner-Seitz cell sur-
ounding noder. However, the CBB rules do not require

method in which the location of the solid surface can changé . . ) s L
continuously, on scales less than the grid spaf8ig detailed information about the solid-fluid interface and are

These boundary rules, which are called continuoudherefore applicable to arbitrarily complex geometries. In-
bounce-backKCBB) rules[3], are an extension of the link Stead, a continuous variabig(r) is specified at each node,
bounce_bacKLBB) method[4] to include the reflections of representing the fluid volume fraction associated with that
distributed population densities from partially filled cells. In node, and then rules are constructed relating the velocity
the LBB method the boundary nodes lie midway between thélistribution function after propagation to the postcollision
solid and fluid node$4], and fluid particles moving along distribution.
the links between solid and fluid nodes interact at these In Sec. Il a detailed description of the CBB rules is pre-
boundary nodes. For planar surfaces aligned with one of theented. Section Il analyzes the accuracy of the CBB rules
lattice directions it can be shown that the LBB rules simulatefor systems with planar surfaces and for periodic arrays of
a hydrodynamic boundary that is located at the boundarylisks and spheres. Numerical results are presented that dem-
nodes, with relative deviations that are second order in thenstrate that second order accurate results were obtained for
lattice spacind5]. Several other methods to obtain secondflow in narrow channels with aligned walls that do not nec-
order accurate boundary conditions for simple geometriegssarily coincide with the grid. It is also shown that grid
have been suggested in the literat[Be-15. However, most  artifacts in simulations of flows past curved surfa¢eisks
of these methods share the drawback that they require infoor spheresare much reduced by the CBB rules. Section IV
mation about the shape of the particle surface. For generalnalyzes the stability of the CBB rules over a large range of
three-dimensional objects, the resulting algorithms are comshear viscosities and for different commonly used collision
plex and not necessarily well defined without additional con-operators. Numerical results using the CBB rules show that
straints[7—10]. Extrapolation based methofi$1,14,13 are  the exponential relaxation tim@ERT) model is stable only
problematic if surfaces are in close proximity, which is oftenfor a limited range of kinematic viscosities. However, using a

more general collision operatdsee Appendix A and Ref.
[21]) with separate eigenvalues for viscous and kinetic
*URL: http://www.che.ufl.edu/~ladd/Ladd.htm modes, these instabilities could always be prevented by a
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suitable choice of the kinetic mode eigenvalues. Section \at a rate controlled by its associated eigenvakez Appen-
concludes this paper with a discussion of the main results. dix A). If all the eigenvalues are equal, the collision operator
is equivalent to that of the ERT modgEqg. (5)]. Suitable
II. METHODOLOGY eigenvectors for the two-dimensional nine-spg&d 31] and
. _the three-dimensional 19-speed model are given in Appen-
In the lattice-Boltzmann method the state of the system igjix A

characterized by the discretized one-particle velocity distri- | attice-Boltzmann models can also be constructed using a
bution functionn;(r,t), which describes the density of fluid |inearized collision operator with a smaller number of modes
particles at a lattice nodeat timet with a velocityc;. The  [4,21,32. Among these are the three-dimensional 19-speed
mass density(r,t) and momentum density(r,t) are mo-  model with only ten modef21] and its projection onto two

ments of this VE|OCity distribution function: dimensions(nine Speeds with six modhg{ere, the eigen-
values associated with the rest-particle mode and those asso-
p(r,H)=> ni(r,t), (1)  ciated with the kinetic modes are set-td, projecting them
i

out entirely from the postcollision velocity distribution func-

tion. These models cannot be exactly derived from the nine-

or 19-mode models in Appendix A, but the difference in the

macroscopic behavior occurs only in the error terms. The

different models are identified in this paper by the number of

where j(r,t)=p(r,t)u(r,t) and u(r,t) is the macroscopic velocities and the number of modes; for example, the COM6

fluid velocity; the summation runs over the complete set ofmodel refers to the nine-speed model with six modes.

velocities{¢}. In this paper two velocity sets are used: a Each lattice-Boltzmann update consists of two steps. The

nine-velocity model for the two-dimensional simulations andfirst step incorporates collisions and external forces; the ve-

a 19-velocity model for the three-dimensional simulations.locity distribution function after this step is defined as

Here, each velocity set contains the zero-velo¢igst par- nk(r,t), ie.,

ticles) and the vectors connecting each node with its nearest

and next-nearest neighbors. nF(r,t)=n;(r,t)+A;[n(r,t)]+fi(r,t). W)

The time evolution ofh;(r,t) in the presence of an exter-

nal force (e.g., an externally applied pressure gradiéat In the second step the postcollision distributiorgr,t) are

governed by the discretized Boltzmann equafi®a] propagated to the neighboring nodes in the direction of their
velocitiesc; ,

JUU:ZCﬂUM, 2

ni(r+¢,t+1)=n;(r,t) +A;[n(r,t)]+fi(r,t), (3
. ] ni(r+c,t+1)=n’(r,t). (8)
whereA;[n(r,t)] describes the change m(r,t) as a result
of collisions andf;(r,t) incorporates the effect of external For simplicity all quantities in this paper are given in lattice
forces. The collision operataX;[n(r,t)] depends on all the units; i.e., the nearest-neighbor lattice spacing and the time
n;’s at the node, denoted collectively Ioyr,t). A computa- step are both unity.
tionally useful form for the collision operator can be con-  An external force densitf(r,t)=3;cf;(r,t) causes some
structed by linearizing about the local equilibrium distribu- ambiguity in calculating the momentum density. In most
tion nSYr,t) [23], i.e., published work, the momentum density is measured before
the application of the force densifgf. Eq. (2)], but it could
4) equally well be measured afterward, i.ej*(r,t)
=3,¢gnf (r,t). It has been shown theoreticallgl] and nu-
merically [33] that the most consistent choice is to take the
whereL;; are the matrix elements of the linearized collision mean of the momentum density before and after forcing,
operatorlL . j"(r,t)y=[j(r,t)+j*(r,t)]/2. This is equivalent to measuring
The exponential relaxation time or lattice Bhatnagar-the momentum density after half the force density is applied:
Gross-Krook(BGK) collision operator involves a single re-
laxation timer, i.e., Ljj=—7 18 [24,25, jT(r, ) =j(r,t)+f(r,t)/2. 9

mmmm=;ummm%ﬁ%nL

Ailn(r,t)]=—7"ni(r,t)—nr,1)]. (55  The momentum density (r,t) leads to simulations of forced
systems with the same level of accuracy as unforced ones,
A more general collision operatdr can be defined by con- even when the force is spatially varyif@1]. Hence, all
structing a complete set of mutually orthogonal eigenvectorsimulated flow fields presented in this paper are obtained

of L in the velocity spacégc;} [23,26—30, such that from the momentum density defined in EE).
To simulate the interactions between fluid and solid, the
nroH=3 my(r, )by ©6) lattice-Boltzmann model must be modified to incorporate the
' K by boundary conditions imposed on the fluid by the solid phase.

The continuous bounce-back rulg are based on the link
wheremy(r,t) is the amplitude of mod& and theb,'s are  bounce-back method, in which the boundary nodes lie mid-
the eigenvectors. Each mode(r,t) relaxes exponentially way between the solid and fluid nodg%. The CBB rules
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0 1 2 3 at the solid-fluid interface and ends up in cell 2, and a third
part is reflected and returned to cell 1. The population den-
(a) e sity in cell 2, n7(r,,t), is completely reflected into cell 1
andn3 (r,,t) is propagated to cell 1; both densities are mul-
tiplied by «, to account for mass conservation. Hence, for
a2<0.5,
b
L * g Ny(ry,t+1)=(1-2a,)ny(ry,t)+apni(rp,t)
*
" - - / - +aon; (ry,t), (109
© e
1o | < 7] Ny(rp,t+1)=n3 (ry,0), (10D
11 ° .
() i ° e —T1 I$723 Ny(ro,t+1)=n7(rq,t). (100
I e o] Y2
Yo
> > For @,>0.5, none ofny(rqy,t) is returned to cell 1, but
B B, ny(r,,t) is split into two parts, both reflected at the solid-

FIG. 1. Sch . ion of the diff ies di fluid interface: one part ends up in cell 1 and the other part
- 1. Schematic representation of the different geometries disz, . oio < in cell 2. Hence, far,> 0.5,

cussed in the text. The gray areas represent the solid phase, tRe
arrows indicate the population densities after propagation of
n% (r,,t) [omitted in(d) for clarity], and the solid dots indicate the Ny(ry,t+1)=(1—ay)ni(ry,t)+ani(ry,t), (113
location of the mean population density in each cell or fraction of a

cell. The population densities; andn, are moving to the right and

left, respectively. The heavy lines {n) and(d) indicate an inclined Ny(rp,t+1)=ny(ry,t), (11b
boundary represented by the sequence of partially filled cells.

. . . 1- (2%)] 20[2— 1

differ from most previous schemes, in that they attempt to  n,(r,,t+1)= ny(ro,t)+
model solid-fluid surfaces that are not mapped directly onto 2 @2
the lattice grid. They are illustrated with a set of four adja-

cent cells with positionsg,...,r;. The propagation of the

velocity distribution function in cells 1 and 2 is calculated Equations(10) and (11) correctly account for the mass
for increasingly complex geometries. For illustrative pur-transfer between cells of different fluid fractions and reduce
poses the four cells are taken to be along %haxis of a  to the LBB ruleqFig. 1(a] whena,=0 or @,=1. However,
two-dimensional square lattice, but the results are equallpnly first order accuracy is obtained for Poiseuille flow in
valid for the other directions and in three dimensions. Thechannels with solid-fluid boundaries at fractional positions.
fluid fraction in celli is denoted byw;, the velocity vector The assumption that the velocity distribution function is uni-
pointing fromr, tor, by ¢;, and that in the opposite direc- formly distributed in each cell is insufficient for second order
tion byc,; i.e.,r,=r;+¢; andc,= —¢,. Only the case with accuracy. This shortcoming is also present in the boundary
a1>a, is considered explicitly; the update rules fap ~ conditions suggested by Chet al. [17]. Chen[18] over-

n’]‘:(rzyt)

(119

< a, can be obtained from the mirror image. comes this problem by taking account of gradients in the
velocity distribution function, resulting in a higher order
scheme.

A. Basic CBB rul e . . .
asic ruies Similarly, we proceed to a better approximation by taking

The basic concept is introduced by assuming that thénto account the velocity gradient in the direction of propa-
population densities are uniformly distributed throughout thegation. Assuming that the population density varies linearly
volume of the Wigner-Seitz cell surrounding each node. Paralong the line connecting cells 1 and 2,
ticles are propagated from each location within a cell, and
reflected at the solid-fluid interface at the appropriate time.

Each particle moves a total distance of 1v@rlattice spac- n*(x,t)=
ings in one time step, depending on its speed. If the channel P 1+8
wall coincides with a face of a cell, one has the typical LBB

rule [Fig. 1(a)]. Here,nY (ry,t) is completely reflected at the for j=1,2. Here the origin is taken at the center of cell 1,
interface between cell 1 and 2 and returned to cell 1 with theyith the positivex axis pointing in thec, direction and the
opposite velocity, i.e.n,(ry,t+1)=n7(ry,t). If cell 2in-  distance between the wall and the interface between cells 1
stead contains a fraction of fluig, [Fig. 1(b)], n¥(r;,t) and  and 2 denoted by3 [3=a, for the particular geometry in

ni (r,,t) are split into different fractions. Fak,<0.5, part  Fig. 1(b)]. This results in the following propagation rules for
of nj(ry,t) is propagated to cell 2, another part is reflectedny (ry,t), ni(r,,t), andn}(r,,t):

2Xx
_[ni*(rZ!t)_ni*(rlrt)]—’_nr(rlvt) (12)
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1 (12 . 1 (prv2 gation rule fornj (r4,t) follows from the sum of the contri-
Ny(ry,t+1)= P 2,371/2dx ng (X,0)+ @ Jus dxm; (X,1)  putions from layers | and II, where the propagation rules in
each layer are determined by a generalization of the rules
B 1-28 , 3B, given in reference to Fig.(h). The total population in layer
=(1-p) 1+ 8 ny(ra,t)+ 1+ﬂnl(r2,t) | of cell 1 with velocity ¢, is B1(1— y12)n¥(ry,t) [Fig.
1(c)]. During the propagation step some of it ends up in cell
+Bn3(r3,1), (133 1 with velocity ¢c;, while the remaining part is reflected to
either cell 0 or cell 1. The population fluxes can be found
1 (p-12 from Eq.(13) by substituting3, for 3, r;_, for r;, by adding
—_ * 1 y Hi—1 i
Ny(rz,t+1)= a, f_l,z dxn (x,0) a multiplicative factor (+ y;,) to take into account the
height of layer | and by discarding, to account for the fact
_B| 2 0 (1 0+ B—1 A () that Eq.(13) is expressed in population densities instead of
Cay|1+p 1(fe, 1+ population fluxes. Hence, far} (r4,t) one finds
(13b 3(1
—B1)
| . ) — — *
1 28112 f (rliclirOYCZIt) 1+B1 Bl(l 712)n1(rl!t)1
Ny(ry,t+1)= —f dxnf (x,t) (153
as Jp-1/2
B[2-28 , 3-1 | _ o (B1—1) .
S Do i f'(rq,c;rq,c5t)= ———B1(1— ny(rq,t),
o 175 ny(ry,t)+ 1558 ny(ro,t)]. (r1,€1:r1,C5t) 1+ 3, B1(1—=y1x)NT(ry,t)
(15b)
(130
The propagation rules in E¢L3) are continuous functions of f'(ry,cyiry,Ct) = Mm(l_ yiNE (r,1).
B for 0<B<1; they conserve mass and momentum and re- 1+81
duce to the LBB rules in the limit=0 and 8=1. Note (159

that, although the second term between square brackets in | . ) o
Eq. (13b) is negative as a result of the interpolation, theSimilarly, yizni (ry,t) is the total population in layer I of
value ofn,(r,,t+1) remains positive. cell 1 with velocityc, . During the propagation step some of

it is propagated to cell 2, while the remainder bounces back
to either cell 1 or cell 2. The population fluxes from layer II

are therefore
In most situations of practical interest the system changes

B. CBB rules for general geometries

rapidly from fluid to solid, typically with only one partially (1-3B,+ 2[3%)

filled cell in between. However, more complicated geom- f”(fl,Cl;M,Cz;t):Tm”’{(rl,t),
etries do arise in which the solid-fluid interface extends over 2 (163
more than one cell. The propagation rules for general geom-

etries can be described by considering only the propagation 28

of nj (r1,t) andn3(r,,t). It is more convenient to express f'(ry,c0irp,005t)= —2712n’1‘(f1,t). (16b)
the propagation rules in terms of population fluxes instead 1+ 5,

of population densities, where the population flux

f(r,ci;r',;t) is defined as the numbéas opposed to the (110 Cot) = 2B,(1-B2) AF(r10). (160
density of fluid particles that propagates from nodavith t2e2 1+p, J@hiiub:

velocity ¢; to noder’ with velocity ¢; .

An inclined boundary extending over two cells is approxi- The total population fluxes are obtained by accumulating the
mated by the geometry shown in Figicll This geometry is contributions from layers | and Il. Note that to obtain Egs.
completely determined by a single parameter, the height ofl5) and(16) an interpolated population density profile was
layer II: y1,=(a1+ @5)/2. ThenBi=(a;— v19)/(1—7y15) is  used in layer | of cells 0 and 1 and layer Il of cells 1 and 2,
the distance between the wall in layer | and the interfaceespectively, just as for Eq13) in reference to Fig. (b).
between cells 0 and 1 and similarBy= @, /7y1,. Since for  This is the reason why a fraction of (r,,t) can actually
a1> a, the entire postcollision distribution (r,,t) propa-  remain in cell 1 with the same velocifgf. Eq. (15b)].

gates to cell 1, the population fliXr,,c,;r,C,;t) is simply A general boundary extending over any number of cells is
n3(r,,t) times the fluid volume of cell 2, i.e., approximated by the geometry shown in Figd)1 Although
Fig. 1(d) assumes * ay>a;> a,>a3>0, the results be-
f(rz,Co,r1,Coit) = apn3 (r,t). (14)  low are valid for any geometry witk;= a,, while the up-

date rules for; < a, follow straightforwardly from the mir-
The propagation rule fon} (r,,t) is more involved. A frac- ror image. Three parametersy,, 7yi,, and y,; are
tion of n3(ry,t) is reflected in cell 1(layer ), while the introduced that completely determine the actual configura-
remainder bounces back in cell(ayer Il). The total propa- tion:
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1, a0=1
= 17
Yo1 ma){al,(a0+al)/2}, a’oil, ( a
1, a1=1Da2¢0
yi=3 (a1t ay)/2, a;#10ay#0, (17b
0, C¥2:0
0, a3:0 17
Ya3= min{az,(a2+a3)/2}, a3¢0. ( C)

The valuesB; and 3, follow from mass conservation:

a1— Y12
Bi=———  Yo1* Y12 (183
Yo1— Y12
A2~ Y23
= , + . (18b)
2 Vi~ Vs Y127 Y23

The entire postcollision distribution’ (r,,t) propagates
to cell 1 as before, so the population flé§,,c,;rq,Cy;t) is
again given by Eq(14). The propagation rule farj (r,t) is
again a sum of different contributions. A fractionrgf (r ,t)
is reflected in cell Llayer I), another fraction is reflected in
cell 2 (layer ll), while the remainder is propagated to cell 2
(layer 111) [Fig. 1(d)]. The only difference between layer | in
Fig. 1(c) and layer | in Fig. 1d) is the height of the layer.
Hence, the propagation rules fof (r4,t) in layer | can be
found from Eq.(15) by substitutingyg,— y1» for 1—y4,,
ie.,

3(1- By
fl(ry,ceir0,C05t) = 1+—Ié811ﬂl(7’01_ Y1201 (r,t),
(1939
(B1—1)
fl(ry,coiry,ct)= fi—lglﬂlﬁ’or Y1271 (r,t),
(19b
(36:—1)

fl(ry,co,rq,co5t) = B1(Yo1— ¥12)NI (r,1).

1+ B4

(199
Each population flux is well behaved in the limity,
=712, i.€., when the height of layer | vanishes
and fi(ry,coiry,ct)=f'(ry,ciry,ct)=f'(ry,cp;

ro,Cy;t)=0. Similarly, the propagation rules for (r,,t) in
layer Il are found from Eq(16) by substitutingy;,— v for
Y12 i.e.,

(1-3B,+285)

113, Y12~ Y297 (r1,t),

(203

fll(ry,coir.co5t)=

1:%1,125%1 ] B 12 2 1 1

PHYSICAL REVIEW E 65016701

2B2(1—B7)

f(ry,c0irp,00:t)= 155,

(Y12~ ¥29N7 (r1,1).
(200

Finally, the total population in layer IlI of cell 1 with velocity

c; is simply propagated to cell (Fig. 1(d)], i.e.,
1 (ry,ci5rp,C0t) = 2307 (ry,b). (21

The total population fluxes are again obtained by accumulat-

ing the contributions from the different layef&qgs. (19),

(20), and(21)], which results in the following general set of

propagation rules for the postcollision distributiam§(r ; ,t)

andnj (rj,t):

3(1-B)(ar1—v12)

f(rl,Cl;ro,Cz;t): 1+Bl n’]\:(rl,t),
(229
_l —
f(rlaclil’lyclit):(lgl 1)4(_211 YIZ)nI(rlat),
(22b)
38,—1)(a—
f(rl1cl;r11C2;t)={( e 1+(;ll 712
(1-3B2+283) (1= v29) |,
1+ 3, ny(rq,t),
(2209
2 —
f(r2.0u3t2. 0| 7ot — 1| (1),
(220
2(1—B)(az—v29)
f(ry,ci5rp,000) = ( Bl2+(;22 Y2 ny(rq,t),
(22¢
f(ra,Coir1,Coit) = apn; (rp,t). (22f)

Mass conservation follows straightforwardly from Eg@2f)
and by verifying that

any (ry,t)="Ff(rq,c1;rg,Coit) +f(ry,ce;rq,cq5t)
+f(ry,C3r1,C ) +f(rq,¢q5r2,6150)

+f(ry,c15r2,65t) 23
[cf. Egs.(22a—¢].

The total velocity distribution function after propagation
is obtained by accumulating the population fluxes from the
postcollision distributions* (r,t) and ni*,(r+ci ,t) for each
r and each pair of velocities; and —c; (denoted byi’).
From Eg.(22) it follows that, depending on the local geom-
etry, there are up to five different population fluxes that con-
tribute ton;(r,t+ 1) for each lattice node and each velocity
G:
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10+ @) 1 Lor () e 1 FIG. 2. Poiseuille flow in a
a0 eamnwo eame £ shifted channel for a kinematic
o g 1. - A Y 1 shear viscosityy=1/6. The open
;:’ ;\" circles are the simulation results
Z 05 1 X o5t . for a lattice where the walls coin-
= s . cide with the interfaces between
! two cells. The solid symbols are
for lattices shifted with respect to
0.0 1 0.0 S — the wall in increments of 1/10: in
-0.50 -0.25 0.00 X/LO 0.25 0.50 -0.50 -0.25 0.00 x/LO 0.25 0.50 inc_reas!ng order these_ go from
— 10° e — solid circles (0.1) to diamonds
1ok 4 i (0.9. (@—(c) Flow profile uy(x)
© wl o for a channel width_,=2, 4, and
! 8, relative to the exact center flow
s ~ 0% i velocity ud=L3V,p/8pv. The
% osft 1g i ] solid line is the exact flow profile
= 10°E ‘ of Eqg. (28). (d) Root mean square
]0-45_ \_ error €(Lg) in the flow profile.
The solid lines indicate the
ool L ot ] asymptotic 13 decay of (L)
-0.50 025 0.00 025 0.50 1 10 100 for the different shift{ Eq. (35)].
x/L, L,
ni(r,t+1)={f(r—¢,—c;r,¢;t)+f(r—c,c;r,c;t) tation lower case symbols represent properties of the indi-
vidual nodes and upper case symbols represent properties of
+f(r,—ci;rit)+f(r,c;r,cit) the entire lattice. The matriX can be stored compactly and
HE(r+G,—6r,G ) alr). (24) the multiplication can be performed efficiently, since each

column or row of T has a maximum of five nonzero ele-

Equationg(17), (18), (22), and(24) completely determine the ments, determined by the multiplicative factors in E2QR)
CBB rules for any geometry, including those in Figga2g.  L¢f- EQ. (24)].
A drawback of the proposed boundary condition is that
the limits for a;—0 or «;—1 are not continuous; for ex- IIl. RESULTS
ample, the shoulder in cells 1 and 2 of height %, [Fig.
1(c)] vanishes discontinuously whem;=1 or a,=0. Al-
though a different choice of,, can prevent this discontinu- The basic CBB rules of Eq13) were tested for Poiseuille
ity, this particular choice was made to maintain a continuouglow in aligned channels, i.e., in channels that were parallel
profile in the general case shown in Figdll The impact of  to but not coincident with one of the lattice vectors. Simula-
this discontinuity was tested numerically and found to betions were performed with different channel widths, shear
small. viscosities, and offsets between the wall and the nearest lat-
Note that the multiplicative factors in Eq22) depend tice node. The results were obtained using the C9M6 model
only on the local geometry and have to be calculated justequivalent to the C19M10 modéR1] projected down to
once for a fixed geometry. Once calculated, the propagatiotwo dimensions where the postcollision distribution is com-
step is almost as straightforward as the original LBB rulesposed of the conserved modérass and momentum den-
the only difference being that fractions of each populationsity) and the viscous modésvo shear modes and one bulk
may propagate to more than one lattice node and velocitynodg. The eigenvalue associated with the shear madgs,
The complete propagation step can be written compactly as sets the kinematic shear viscosity: — (1+2/\g)/6. The ei-

A. Two-dimensional flow in aligned channels

single matrix multiplication genvalue associated with the bulk mode was set 19 cor-
. responding to a kinematic bulk viscosityy=1/9. The re-
N(t+1)=T-N*(1), (29 sults were compared with those obtained with the nine-speed

with the velocity distributions at all the nodes written in IEI?L';'/GnEEc;eI(g]éLZES for the same shear viscosity=(27

terms of a single vectoN(t), i.e., Figures 2a)—(c) show the flow profileuy(x) for Poi-

seuille flow in channels of integer WidtHSOIE,ELOa(I’)

=2, 4, and 8, for a kinematic shear viscosity 1/6. In this
N(t)=(n(ro,t),...,n(ry_1,1)), (26) case,A\g=—7=—1, and the COM6 model and the ERT
model are equivalent. Here, tlyeaxis points in the direction
and similar expressions for the postcollision distributionsof the pressure gradient and the walls are placed-=at
n*(r,t) andN* (t). HereJ denotes the number of velocities *Ly/2. It can be seen that even for a narrow chanig| (
in the lattice-Boltzmann model. Note that in this vector no-=4) the agreement with the analytic result is good; the larg-

n(r,t)=(o(r,t),....,n5_1(r,t)), r=rg,....\n_1,
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est deviations occur for channels shifted by one-half of a

lattice spacing. The root mean squémas) error in the flow i< Lo \i
profile, i Euc
11 12 i i
E(Lo)z_o[l__ > a(r)[us<r>]2] .@ | |
Uc [ Lorelg i i
is shown in Fig. 2d), where the slip velocityg(r) =uy(r) i i
—ug(r) is defined as the difference between the simulated E i
flow field uy(r) and the exact flow field ; - !
Ax2 7": 0 * |
X - ! X i
U3<r)=u8( - 7). (29 Lz, ~ ;L2
0 I~
Here, the exact flow velocity at the center of the channel is 1Ol o,
given by ud=L3V,p/8pv. For Lo=4, €(Lo) is less than ' i

6%, while the error in the location of the hydrodynamic . g
boundary, that is, the location of the zero-velocity plane with solid-fluid interface

respect to the solid-fluid interface, is less than 0.06 lattice hydrodynamic interface
spacings. The solid lines in Fig(® have a slope of-2, o _ _ _ _
indicating that the CBB rules give asymptotically second or- FIG. 3. Poisedille flow in a channel with arbitrary widtky,.

der convergence for Poiseuille flow in channels where the he flow profile in the bulk channel,(r) can be characterized by

walls are aligned but not commensurate with the grid. Simi-Ne hydrodynamic width of the channél, and the flow velocity,
t the hydrodynamic center of the channel, The gray area is the

lar results were obtained for Poiseuille flow in channels of* | ) ey ,
noninteger widthg43]. solid wall anda; and a5, are the fluid fractions in the first and last
Theoretical analysis of the LBB rules for two-dimensional cells.
channel flow has shown that the hydrodynamic boundary is
located at the boundary nodes, i.e., at the midpoints of links

connecting lattice nodes on either side of the solid-fluid i”'Note thatu, is the maximum flow velocityFig. 3) inferred

. . S —2 [ .
terface, with relative deviations of ordér, “ [5]. Further- o the parabolic profile and should not be confused with
more, it has been shown that the velocity field deviates frony,q slip velocityu (r) defined in Eq.27) or the theoretical

the exact solution by a constant slip veloaity, independent  centerline velocityu®. The hydrodynamic channel width
of channel width and position within the chanrél. This relative to its exact valu, is given by

leads to second order convergenceeiflL,) for channels

where the walls coincide with the interface between two cells L U 12

[see open circles in Fig.(@)]. L—=(—o) ,
A similar analysis of the CBB rules for two-dimensional 0 €

channel flow in aligned channels with arbitrary widis-  yhile the hydrodynamic center of the channel follows from

cluding noninteger valuggives qualitatively similar results.

The flow field in the bulk channéthe collection of cells that C,

are completely filled with fluigl has a parabolic profile, Xe=30, (33

which can be characterized by the hydrodynamic width of

the channell,, and the flow velocity, at the hydrodynamic  The coefficient<C; andC, vanish when both walls coincide

Co=az(ar—1)—ai(a;—1). (31b

5 (32

center of the channek, (Fig. 3), i.e., with interfaces between adjacent cells. Thers0 and Egs.
- (30) and(32) reduce continuously to the corresponding equa-
Uy(r) =uc[1—4(X—xc)“/L7]. (29 tion for the LBB rules[21]. Note that these results differ

from those obtained by Het al. [5], because in their analy-
The parameters,, L, andx. depend orlLg, v, the collision  sjs these authors did not add half the force density to the
model being used, and the fluid fractions and @, in the  momentum density before calculating the flow prof24]; if
boundary cellgFig. 3). The maximum flow velocity, rela-  they had their results would be equivalent with E@€) and

tive to its exact valueug is given by (32 in the casex;= a,=0.
In the partially filled boundary cells deviations from Eg.
Uc 4 . Ci—1 C§ (29) occur. A correctionAu,[ «(r)] must be added to the
o1t 3?0(6”) + L2 + 3 (B0 right hand side of Eq29) to account for deviations from the
¢ parabolic profile. Here,
with n=1 for the C9M6 model and 2 for the ERT model and L2A
0 uy( @)
———5—=(a—1)(12v+3a+1). (34)
Ci=2[ai(a;— 1)+ ay(a—1)], (313 Uc
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| L FIG. 4. Poiseuille flow in an
(a) b inclined channel. Flow profile
10 - o1 F T u,(x)/ud for a channel widthL,
A N =24/5 [(a) CBB rules; (b) LBB
] rules) and Lo=7~2 [(c) CBB
rules; (d) LBB rules], relative to
the exact center flow velocity®
=L§V,p/8pv. The symbols are
for lattices shifted with respect to
0.0 —_— , — the wall in the direction of one of
[ ' ' ' ] [ ' e ——e ' ] the lattice vectors in increments of
(© (@ « ~ 1/4: in increasing order these go
10 - — e 3 // AN . from circles to diamonds. The
sz AN \ ] solid line is the exact result of Eq.
: (28). The circles in(d) are fo_r th_e
WL\ lattice where the walls coincide
v/ s SOWNL with the lattice nodes. Here the
% .(./ AV upper and the lower curves corre-
spond to lattices where the half-
0.0 : L . : L : occupied boundary cells are con-
05 00 05 05 00 05 sidered to be fluid and solid,
respectively.

[N
oF

0
uy(x)/ u,

Note thatAu,(«) vanishes fore=1, and that the right hand entire shear viscosity range. However, when the ERT model
side of Eq.(34) is only a function of v and «; hence was used, numerical instabilities were observed for
Auy(a)/ud=0(Lg?). <1/200 and certain geometries with partially filled boundary
Several observations can be made from the results olsells. The nature of these instabilities and a way to improve
tained so far. Equation(30) shows that uclugzl the stability are discussed in more detail in Sec. IV.
+O(L52), i.e., U, approaches its exact value for large val-
ues ofL,, with deviations that are of ordér, 2. Equations
(30), (32, and (33) show thatL/Lo=1+0(L,?), while
X./Lo=0(Ly?). Hence, the hydrodynamic boundary is lo-  The general CBB rules of Eq§l7), (18), (22), and(24)
cated at the actual position of the solid-fluid interface withfor an inclined interface were tested for Poiseuille flow in
relative deviations that are of orddrgz. Equation (30) inclined channels. Here, the boundaries and pressure gradient
shows thaUC/u‘c):O(v) for the COM6 model an®(»?) for ~ Were placed gt an gngl@with respect to.one of thg Iattipe
the ERT model, making the ERT model less suitable forvectors. All simulations l_Jsed a kinematic shear V|sco_3|ty
large shear viscosities. A special shear viscosity can be ider= 1/6- Results were obtained for ta#li¢1/2, 3/4, and 1 with
tified for a;=a,=a, such thatx, vanish identically and channel widths ol o=12n/\5, 24/5, and T/v2, respec-
uc=ul. For the COM6 model this critical kinematic shear tively, at different resolutions1=1,2,4,8. In addition, each
viscosity is 1/8F a(1—a)/2, while for the ERT model it system V\(as_5|mulat_ed |nclud|ng a shift of 1/_4, 1/2, and 3/4
equals] 3+ 12a(1— «)]¥%/12. However, in general no such Iatnqe units in the direction of one of the lattice vectors.
critical viscosity exists. Note thadt< L, for shear viscosities Figure 4 shows the flow profile,(x) for tan(f)=3/4 and
smaller than the critical value. Finally, from Eq@7)—(34) 1 at the lowest resolutiom(=1). It shows that the accuracy
it follows that the rms error in the flow profile for Poiseuille ©f the CBB rules is insensitive to the actual position of the

flow in aligned channels with arbitrary widths is given by nterface with respect to the lattice. In contrast, the LBB
method is sensitive to the location of the interface relative to

2 4 ) . 172 the position of the nodes, particularly when @1 and the
+3C+0(Lo )y wall coincides with the lattice nodes; the flow profile is about
(35) 40% too large if the half-occupied boundary cells are con-
sidered to be fluid and about 50% too small if they are
indicating asymptotic second order convergence even whetteated as solidiFig. 4(d)].
the walls are not commensurate with the gilg. 2(d)]. The flow field in the bulk fluid can be characterized by
Here,n=1 for the C9M6 model and 2 for the ERT model. Eq. (29), just as for channels with aligned interfaces. For
Equations29)—(34) have been tested extensively for both tan(®)=1 and the walls coinciding with the lattice nodes the
integer as well as noninteger channel widths ranging fronflow profile in the bulk channel exactly matches that of Poi-
Lo=4 to 32, for different values af, anda,, for kinematic ~ seuille flow in an aligned channel with the same width and
shear viscosities fronv=>5/3 down tor=1/60000, and for ~@1=a,=0.5. Hence, for this particular geometry and shear
both the COM6 model and the ERT model. The simulationsviscosity, uc/ud=1—-2/3L5, L/Ly=1—1/3L5+0(Ly"),
using the COM6 model agreed with Eq29)—(34) for the  andx.=0, i.e., the hydrodynamic boundary is still located at

B. Two-dimensional flow in inclined channels

1(/4
E(Lo): L_g{[g(61})n+ Cl_l
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10° ————— . ———T3 position of the solid-fluid interface with respect to the under-
E lying lattice.
— 101 - E C. Drag coefficient for a periodic array of disks or spheres
=] o . 9
= : Y % ] The general CBB rules of Eq§l7), (18), (22), and(24)
[4%] 4

102 | YN were also tested by calculating the drag coefficiegtof a
square array of disks and a cubic array of spheres for differ-
ent system sizes, shear viscosities, positions with respect to
the lattice and different collision operators. The results for
disks were obtained with the same C9M6 model as used in
Secs. Il A and IlI B. Those for spheres were obtained using
the C19M10 mode[21], i.e., a three-dimensional 19-speed
model with ten modes: the conserved modtesss and mo-
mentum density and the viscous modeg$ive shear modes
and one bulk mode The results are compared with those
FIG. 5. Root mean square erretL,) in the flow profile for  Obtained with the nine-speed and 19-speed ERT mdéejs
tan(@)=1 and the walls coinciding with the lattice nodésircles (5. The same equations relating the relaxation timand
with its L, 32 asymptote(solid line), for tan()=1 and the walls not ~ the eigenvalue associated with the shear madgswith the
commensurate with the grigsquarey for tan()=3/4 (diamond,  Kinematic shear viscosity also hold for the C19M10 model
and for tanf)=1/2 (triangle3. Only one curve for each angle is and the 19-speed ERT model.
plotted for tan)#1 or tang)=1 and the walls not commensurate ~ The reduced drag coefficientFn=Fp/v(jy(r))=
with the grid, since the results for different shifts were virtually _Lgvyp/y(jy(r» of a periodic array of disksf=2) or
indistinguishable. spheres D =3) can be obtained directly from the mean mo-
mentum flow(j,(r))= LgDErEVa(r)jy(r) in a periodic lat-
the actual position of the solid-fluid interface with relative tice with a unit cell that contains one disk or sphere. Hege,
deviations that are of orddr, 2. However, the velocity in is the length of the unit cell in each dimension. Figure 6
the partially filled boundary cells deviates from E@4). shows F[, for a periodic array of disks and spheres as a
More specifically, it was found thatu,(a)=0O(L,) result-  function of system size and for different positions of the
ing in an asymptotic rms error in the flow profile of order center of the particle with respect to the lattice. The nominal
L, %2 (Fig. 5. For the more general inclined channelsradiusR, of the disk was 8,/8 and that of the sphere was
[tan(@)#1 or tan@)=1 and the walls not commensurate with 7Lo/16, giving nominal porosities ofpy=0.44 and ¢,
the grid) sequences of partially filled cells with different vol- =0.35, respectivelyt o=4n, withn=1, ...,10, and the ki-
ume fractions occur as sketched in Fig&-10d). In this case nematic shear viscosity was set to 1/6. The results show two
only first order convergence is obtainedJC/u2= 1 important improvements over the LBB methdd: The drag
+0(Lg Y, L/Lo:1+o(|—61): and x¢/Loy=0(L, b, ie., coefficient obtaﬁned with the CBB rules is vi(tually. indepen-
the hydrodynamic boundary in a very wide channel is nodent of the position of the center of the particle with respect
longer located at the actual position of the solid-fluid inter-t0 the lattice, andii) the error inFf is much smaller ané g,
face, and the rms error in the flow profile is of ordeg® itself converges much more smoothly to its asymptotic value
(Fig. 5). The lack of second order convergence for Poiseuilldor largeL,. For a cubic array of spheres the spread i
flow in inclined channels is a result of several approxima-was even smaller than for disks, most probably due to a
tions in the derivation of the general CBB rules: from the higher degree of averaging over the different types of bound-
stepwise implementation of an inclined solid-fluid interface,ari€s.
from taking into account only the velocity gradient in the Figure 6 shows thaFp converges asymptotically to a
direction of propagation, and from treating the propagatiorvalue that is slightly different from the theoretical drag co-
in the [110] directions in a manner similar to that in the efficient [34,35 at the nominal porosity. This implies that
orthogonal directions. However, our approach was motivatethe hydrodynamic boundary has been displaced from the
by the need for simple but accurate boundary conditions fonominal radius of the disks or spheres. For flow through a
complex and not necessarily stationary surfaces. A morgeriodic array of disks or spheres a hydrodynamic raéus
elaborate volumetric approa¢h8] should be able to main- can be defined such that the theoretical drag coefficient
tain second order convergence for Poiseuille flow in inclined 34,35 for the porosity based oR equals the value found in
channels, but at the price of a substantial increase in conthe simulations. This hydrodynamic radius varies with shear
plexity. Such a scheme requires the location and orientatiomiscosity, particle size, and particle position relative to the
of the surfacgas opposed to only the fluid fraction in each lattice. However, for large enough system sizes the differ-
cell) as well as a two-dimensional interpolation scheme toence betweeiR andR, converges to a constant valdefor
obtain the correct distribution of the population density in theeach shear viscosity and particle position, independent of
boundary cells. As a result the CBB rules are only first ordeisystem size, with deviations that are of ordigr, i.e.,
convergent for general geometries. The primary advantage of
the CBB rules is the insensitivity of the flow field to the R—Ry=A+0(Ly ). (36)
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FIG. 6. Reduced drag coeffi-
L cient F, of a periodic array of
200 4 F a = - disks [(a) CBB rules; (b) LBB

r e 17 v 1 rules| and spheref(c) CBB rules;
1o X @717 (b) 7 (d) LBB rules] as a function of
> ‘ . ‘ [ . ‘ . . . ] system size and for different posi-
B 350 —— T — tions of the center of the particle
with respect to the lattice: in the
center of a cel( #), in the corner
¥ of a cell (W), and at two random
positions (A and ¥). The kine-
250 1L i matic shear viscosity was set to
1/6. The solid lines are the theo-
retical result§ 34,35 at the nomi-
nal porosities.
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For v=1/6 the value ofA is close to zerdFig. 6), but sig- i . (@) ]
nificant deviations can occur for arbitrary valuesvofigure 10t b $ .
7 shows the relative error iR with respect to the asymptotic F ]
hydrodynamic radiu®,+ A for the same systems as in Fig. [
6 and for v=1/6. For the disks the value af was zero, 102 *
within the accuracy of the simulation. For the spheres a value F a
A=0.1 was found by fittindR with Eq. (36) over the entire [ v
rangelL,=4, .. .,40. Forboth the disks and the spheres,
was found to be nearly independent of the particle position.r4
Figure 7 shows thafR—(Ro+A)]/R, decreases ak,?. = [
Moreover, the relative error in the}, decreases ds;, * with < 10* e
respect to its asymptotic valiyeot shown, just like the rela- +o 10° 3 —
M o
&

0

103 3

tive error in R with respect toRy+A. For the LBB rules, (b)
qualitatively similar results were found, albeit with larger i 1
errors and larger fluctuations in the error. 10t E 3
Figure 8 shows-[, for a square array of disks at different i ' ]
shear viscosities, for both the COM6 model and the ERT .1 4 . |
model. The disks were located at the center of a lattice cell; 10 3 * 3
Ry=3Ly/8 and Ly=4(2)", with n=0,...,5. Theresults C .
show that the simulation underestimates the valuk jpfor I
kinematic shear viscosities larger than about 1/6 and overes
timates it for kinematic shear viscosities smaller than 1/6. i
This is equivalent to saying that the hydrodynamic radius 104 L P
increases as the shear viscosity decreases, while it is roughl 1 10 100
equal to the nominal radius far=1/6. Figure 8 shows that
the deviations betweeR[, and its theoretical valug34] at Lo

the ”Om'”a' .porosny.F,?vo, increase rapldly for k|nemat|c FIG. 7. Relative error in the hydrodynamic radRsvith respect
shear viscosities de"'.a“”g from l./6' This large de‘.’"’?‘“o” an'qo its asymptotic valu&,+ A for a periodic array of diskéa) and

the slow decay to the'_r asymptotic valu_es makes it Irm)racn'spheres{b) (both with the CBB rulesand for different positions of
cal to study the error in the drag coefficient and the hydroye gisk with respect to the lattice: centered in the center of a cell
dynamic radius with respect to their asymptotic values as¢) centered in the comer of a celM), and centered at two
was done above for=1/6. Instead, Fig. @ shows the random positions in the celld and ¥). For the disks a value of
relative error inF [, with respect td=, o. It shows first order A=0 was used, while for the spheras=0.1. The solid line indi-
convergence with increasing system size indicating that theates second order convergence with increasing system size.

103 k . 4
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FIG. 8. Reduced drag coefficieRt, for a square array of disks 4 I S
as a function of system size and shear viscosity. The disks were & A .
centered with respect to the lattice cells. The kinematic shear vis-E le-1 ' * o $ < E
cosities were 5/34), 1/6 (W), 1/60(A), and 1/600¥). The solid = E < s
symbols are for the COM6 model and the open symbols for the ERT & I ; .
model(unstable ab=1/600 and equivalent to the COM6 model for ;< I A
v=1/6). The straight solid line is the theoretical value at the nomi- , 1e-2 : 3
nal porosity[34]. N C . ]
p y[34] i :
asymptotic drag coefficient deviates significantly from the L
theoretical value based on the nominal porosity. le3 L L
The large error irF, with respect toFp, , clearly shows 1 10 100
that R deviates significantly from the nominal radiig for L

smaller particle sizes and kinematic shear viscosities not 0

close to 1/6. It is clear that this shift in the location of the

hvdrodvnamic boundary must be accounted for if quantita- FIG. 9. Relative error irF, for a square array of disks as a
y y Y q function of system size and shear viscosity. The disks were centered

tlve_resul_ts are t_o he obtained with co_mputatlonally_ useful/vith respect to the lattice cells. The errorfi was calculated with
part_lcle S|zes(typ|ca]ly Ies_s the}n ten Iat_tlce unjtand kine- respect to its theoretical value based on the nominal ra@jusnd
matlc.shear V'Scos't,'es S'gn'f'camly dlffergnt from 1/6. An on the hydrodynamic radius obtained from a calibration run at a
effective way to calibrate the particle radius is to use the,,osity of 109(b). The kinematic shear viscosities were 548),
hydrodynamic radius obtained by fitting the drag coefficienty /s (m), 1/60 (A), and 1/600(¥). The solid symbols are for the
at a low porosity, where the dependence on particle size an@gme model and the open symbols for the ERT madeistable at
shear viscosity is much less sevei2l,33. Figure 9b)  ,=1/600 and equivalent to the COM6 model for=1/6). The
shows the relative error iR, of a square array of disks with straight solid line indicates first order convergence with increasing
respect to the theoretical value based on the hydrodynamiystem size.

radius of the same size disks at a porosity of 10%. It shows

th_at, although the convergence W'th Increasing system SIze I§, o.qq instabilities were not present for the LBB rules and are
still roughly first order, the error is reduced by about an order

of magnitude(except forv=1/6, whereA~0). The reason consequently a result of the boundary conditions in the CBB

. : odel. To summarize: Poiseuille flow in shifted channels,
that no second order convergence is found is that the value Amulated with the CIM6 model. was found to be stable over
A differs slightly for similar particles at different porosities. !

. ) . o the entire range of kinematic shear viscosities from5/3
Hencle., the hydrodynamlq ra.dlus.obt.alned by fitting the dra own to »=1/60000. However, the simulations using the
coefficient at a low porosity is still different froRy+ A.

; . ERT model showed numerical instabilities for1/200 in
F'gufes 8 and 9 also .ShOW that_the ERT model is mUChcertain geometries with partially filled boundary cells. In
less suitable for kinematic shear viscosities larger than 1/6

. : . more general geometries, like Poiseuille flow in inclined
but th"?‘t both mode_ls give almpst |dent_|cal results ior channels and flow through a periodic array of disks or
<1/6, just as for Poiseuille flow in an arbitrary chanpefl

. spheres, instabilities showed up for both the C9M6 and the
Eq. (30)]. However,_ the ERT model was numerically UN" ©19M10 models and the ERT model, although more se-

%/erely for the latter; the CO9M6 and C19M10 models were
found to be stable for=1/600, while the critical kinematic
shear viscosity for the ERT model lay between 1/60 and
1/200.

In most of the simulations described above numerical in- It was found that the numerical instabilities at low vis-
stabilities were observed below a certain shear viscositycosities were a result of the interpolation of the population

discussed in more detail in the next section.

IV. STABILITY OF THE CBB RULES
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density. All instabilities vanished when the CBB rules were 2 T T T
based on Eqg10) and(11) instead of Eq(13). Furthermore, | Unstable
it was found that the instabilities could be suppressed by

using integer instead of floating point arithmetic, suggesting

that round-off errors are driving the instability. Although in

theory the CBB rules conserve mass and momentum, the fac—
that each population after propagation is a sum of contribu-&g 1
tions from different postcollision populationgEq. (24)] -
makes the CBB rules more sensitive to round-off errors than

the underlying LBB rules, where each postcollision popula-

tion is either completely propagated in the direction of its
velocity or completely reflected at a boundary node. It has

been suggestefi36] that the instabilities are most likely ol
caused by the excitation of staggered invariants, as a result c 10° 10+ 10° 10?
the interpolation. Furthermore, it was suggested that they

could be suppressed by reducing the magnitude of the eigen- g, 10. The stability diagram for a square array of disks. The
values of the kinetic mod€gs6]. symbols are for the COM9 model witR,=3.0, L,=8, and the

In order to investigate the influence of the rest-particlecenter of the disk in the corner of a lattice cé®), and for the
mode, the bulk mode, and the kinetic modes on the stability:19M19 model withRy=1.5, Ly=4, and the center of the disk in

of the lattice-Boltzmann equation, an algorithm was develthe center{A) or in the corner¥) of a lattice cell. The symbols
oped using a more general collision operator than the onmdicate the largest magnitude af, for which the simulations
used in Secs. llIA-IlI C; a linearized collision operator was were stable. Hence, the area below the curves indicates the stable
used with a complete set of eigenvectors, instead of one witkegion. The line is added as a guide to the eye.

eigenvectors corresponding only to the conserved and vis-

cous modes. The lattice-Boltzmann equat[@&g. (3)] can
then be written in terms of the momenis,(r,t),
=0,...J—1, of the velocity distribution function with re-
spect to this basis of eigenvectgsee Appendix A Suitable
sets of eigenvectors are given for both the two-dimension
nine-speed model and the three-dimensional 19-speed moag
in Appendix A(Tables | and IJ. The eigenvalues associated
with the rest-particle mode, the bulk mode, and the kinetic
modes are denoted by, Az, and\ . The symmetry of the “while keepingho=Ag=—1. It was found that forhk,=
cubic lattice allows for only two distinct kinetic eigenvalues: —1 each system was stable at the lowest resolu(l@@
Nk, associated with the eigenvectors that are third order 1.5 andLo=4). The smallest system that showed instabili-
polynom|als inc,, and\,, associated with the eigenvectors ties forhg,=—1 was one wittR,=3.0,L,=8, the center of
that are fourth order polynomlals iy (absent in the nine- the disk in the corner of a lattice cell, and a kinematic shear
speed modg! viscosity below 1/1500. It was found that decreasing the

For low-Reynolds-number flow the lattice-Boltzmann magnitude of, increased the numerical stability, and that
equation can be written as a linear system of equations iglobal stability could always be regained for valueg)og |

Stable |

The eigenvalues of the matria for the general nine-
speed modelthe CO9M9 modelwere calculated for a square
array of disks at kinematic shear viscosities between
=5/3 and»=1/60000 and for different positions with re-
ect to the lattice. The systems that were studied were iden-
al to those in Figs. @,b). First, the influence of the eigen-
value associated with the kinetic modesm was studied,

terms of the moments,(r,t) (see Appendix B i.e., below a certain critical value. As an example, Fig. 10 shows
the stability diagram for the system wiRy=3.0,L,=8, and
M(t+1)=P-T-[E-M(t)+F(1)]. (370  the center of the disk in the corner of a lattice cell. It shows

that the system was stable for-1/300 for any value ORKB
Here, the matrice® and E are defined in Appendix B, the between 0 and-2. Furthermore, it shows that far<1/300
matrix T is defined in Eq(25), and the vector notation of Eq. Stability could always be regained by reducing the magnitude
(26) is adopted for the moments,(r,t) and the external of 7\K3. Hence, the instabilities in the lattice-Boltzmann
forcesf;(r,t). The stability of Eq.(37) can be analyzed by equation at low shear viscosities induced by the boundary
calculating the eigenvalues of the matAxP-T-E. Global rules employed here can be suppressed by reducing the mag-
stability requires the magnitude of all of these eigenvalues tmitude of the eigenvalue of the kinetic modes. Next, the in-
be less than or equal to 1. Hence, in order to investigate thBuence of the eigenvalue associated with the rest-particle
influence of the rest-particle mode, the bulk mode, and thenode,\,, was studied, while keepingg= A, =—1. Itwas
kinetic modes on the stability of the lattice-Boltzmann equa+found that each system, including those that were stable for
tion the eigenvalues of the matrix were calculated for dif- \o=—1, became unstable for values)f close to 0 or-2.
ferent values ok, Mg, Ak, andg,. Note that local sta- Hence, changing the rest-particle mode eigenvalue to a value
bility of the lattice-Boltzmann equation requires all different from—1 decreases the global stability of the lattice-
eigenvalues of the collision operator to be betweghand O  Boltzmann equation. Finally, the influence of the eigenvalue
[23]. associated with the bulk modeg, was studied, while keep-
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ing Ao=\k,=—1. It was found that decreasing the magni- V. DISCUSSION

tude ofAg, increased the stability, just as fog . However, In this paper a detailed description is given of the continu-
the effect was not sufficient to stabilize those systems thavus bounce-back rule§3], a recently developed set of
were even moderately unstable. Furthermore, just as for boundary rules for the lattice-Boltzmann model. Although
even those systems that were stable Xg=—1 became the CBB rules are more complicated to implement, the addi-
unstable for values okg close to—2, an observation that tional computational overhead is small. The key advance is
signifies an important drawback of the ERT model as disthat the accuracy of these boundary conditions is insensitive
cussed in more detail below. to the position of the interface with respect to the lattice. This
The eigenvalues of the matrix for the general 19-speed allows for a reduction in resolution in typical simulations by
model (the C19M19 mode¢lwere calculated for the same a factor of 2 or 4, corresponding to at least a 16-fold reduc-
systems as for the COM9 model, i.e., for cylinders with onlytion in computer time and an eightfold reduction in memory.
one layer in the symmetryz) direction, since the periodic We anticipate that the most important applications of this
arrays of spheres were too large to make a study of the eldea will be to simulations of changes in morphology in po-
genvalues feasible. Qualitatively similar results were foundous media, arising from erosion or deposition of solid car-
for the influence of\o, g, and\y, on the stability of the ried by the fluid[37]. The CBB rules allow for a continuous
lattice-Boltzmann equation. The main difference between thgaration in the position of the solid surfaces, and can be

two models was a lower overall stability of the C19M19 adopted to S|mulat|ops of parp_cle suspensions by modifying
. the reflected population densities to take account of the mov-

model; the system with the center of the cylinder located 'an interface[4]. In simulations of particle suspensions, par-

the Ce'?ter of a lattice _c_eII was alrea_ldy unstable at the lowe fcles are discretized by assigning each lattice node to either
resolution below a critical shear viscosity .of about 1/1000ih4 fluid or the solid phase, depending on the position of the
and for A o=Ng=Ag,=Ag,= —1. However, just as for the ,qe with respect to the particle interface. This leads to fluc-
C9M9 model, stability could always be regained by reducingtuations in the particle’s volume when it moves over the grid,

the magnitude of\K3 (Fig. 10. The decrease in stability of resulting in fluctuations in the drag ford@8]. The CBB

the C19M19 model for these systems is most probably dules should prevent these fluctuations, since the particle vol-
result of additional invariants as a result of the symmetry inume is independent of its position with respect to the grid,

the z direction. No significant effect ok, on the stability ~ resulting in smoother and more accurate particle trajectories.
was found, so a value of1 can be used for all practical The.mo<_:j|f|cat|on O.f t_he CBB ruI_es to extend the method to

pUPOSES. moving interfaces is in preparation.

In addition to improving the Stablllty it was found that Numerical and theoretical analySiS of Poiseuille flow in

reducing the magnitude afc_ decreased the drag coefficient aligned char_mels with arpitrary widths, ShOV.Ved that the
3 t}ydrodynamlc boundary, i.e., the zero-velocity plane, is lo-

of the disks and spheres. Hence,_the hy_d_rodynamlc radius %ated at the actual position of the solid-fluid interface with
a disk or sphere depends ar,, in addition to the shear e deviations that are of orddry 2. This leads to
viscosity, the nominal radius, and the position relative to theasymptotic second order convergence of the rms error in the
lattice. This is consistent with earlier results of Cornubertjoy field [Fig. 2d)]. For more general geometries, like flow
et al.[26] and Ginzbourg and AdI€28], who showed that i inclined channels or flow through periodic arrays of disks
the position of the zero-velocity plane for tV\_/o-d|menS|0n_aIOr spheres, the hydrodynamic boundary is generally dis-
channel flow depends on the shear viscosity, the nomingl|aced from the physical one. This displacement varies with
channel width, the angle of the walls with respect to one olspear viscosity and geometry, extending into the fluid for
the lattice directions, and the kinetic eigenvalue. Theyyinematic shear viscosities smaller than about 1/6 and into
showed that for a given shear viscosity one can tune thgye solid for values above about 1/6. For kinematic shear
kinetic eigenvalue, such that the position of the hydrody-scosities far below 1/6 the hydrodynamic boundary extends
namic boundary coincides with the physical boundary. Res;jgpjficantly into the fluid and the simulation results should
ducing the magnitude ofy_ both stabilizes simulations at pe jnterpreted in terms of the actual hydrodynamic boundary
low viscosities and also decreases the error in the location dhstead of the physical one, determined by the location of the
the hydrodynamic boundary. solid-fluid interfaced4]. For example, the relative error in
The lower stability of the ERT modéFigs. 8 and at  the drag coefficient of a periodic array of disks or spheres
low shear viscosities is a result of the nonhydrodynamicdecreases as, % with respect to its value based on the hy-
modes. Low shear viscosities are obtained by choosing grodynamic radiugFig. 7), but only asL, ! with respect to
relaxation timer close to 0.5, implying that all the eigenval- its value based on the nominal radius.
ues of the collision operator, including of coubsg, Ag, and Stability analysis of the lattice-Boltzmann equation with
Ak, are close to-2, which severely reduces the stability the CBB rules indicated that most of the simulations de-
compared to the COM9 and C19M19 models. It is found thascribed in this paper were numerically unstable below a cer-
choosing different relaxation rates for the kinetic modestain critical shear viscosity. This poses a potential problem
leads to a model that is significantly more stable than thdor simulations of nonzero-Reynolds-number flow, when it is
ERT model, in agreement with the conclusion of Lallemandoften necessary to reduce the shear viscosity in order to keep
and Luo[31]. the Mach number small. For example, in a recent study of
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inertial flow in ordered and random arrays of sphd@3 a TABLE I. Basis vectors, equilibrium moments, and eigenvalues
kinematic shear viscosity of 0.01 was used. This is wellfor the COM9 mode[27,31. Herebg =(1,0, . ..,0) anct;=||g].

within the stability range of all the collision operators except

possibly the ERT model. k by mi{r,t) Nk
It was found that the instabilities were a result of the * 2

interpolation of the population density in the CBB rules t0° ?1b° bl]; ba p=3pu Mo

account for the velocity gradient in the direction of propaga—2 U P

tion and that the critical shear viscosity below which the {Cix} PUx

instabilities occur depends on the collision operator that i {Ciy;f puV2

being used. The ERT mod24,25 had the highest critical {3ci-4; 3pu=2p Ne

kinematic shear viscosity; its value for a general geometr)? {Ci—Ciyt pUx—pUy As

lay between 1/60 and 1/200. Both the C9M6 and theb {CixCiy} PUxUy As

C19M10 modeld21] were found to be more stable. These 7 {ciy(3¢—5)} —puy Nk,

models produced stable results fer1/600 for each of the 8 {ci(3cf=5)} —ply A,

simulations described in this paper. Furthermore, it was
found that the stable region of these models could be in-

creased by using the more general linearized collision operdlistribution functionn;(r,t), and of the equilibrium velocity
tors described in Appendix A. In that case, stability coulddistribution function,n®{r,t), with respect to these basis

always be regained by reducing the magnitude of the eigervectors, i.e.,

values associated with the kinetic mod&%g. 10. In addi-

tion this also reduces the error in the position of the hydro-

dynamic boundary. Hence, being able to choose different
eigenvalues to separate the relaxation of the hydrodynamic
modes and the kinetic modes greatly enhances the stability of
the lattice-Boltzmann method, giving the more general lin-

earized collision operators described in Appendix A a signifi-Where the vector notation of E6) is used. Here, the mo-
mentsmy(r,t) andmg{(r,t) are defined as the projections of

cant advantage over the ERT model.

+f(r,1),

ni(r,t) andn{r,t) on theb,’s, i.e.,
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APPENDIX A: GENERAL LINEARIZED 0 3995 — 210, + 5bg p—3pu? Mo
COLLISION OPERATOR 1 (1....3 P

2 {cit pUy

In this appendix a general linearized collision operator for3 {ciy} puy

the lattice-Boltzmann equation is constructed for both theg {ci,} pu,
two-dimensional nine-speed modghe CO9M9 model and 5 {19c2- 30} 19u?—11p \e
the three-dimensional 19-speed mo@ae C19M19 model 4 [3c2—c? 3pu2— pu? Ns
First a complete set of pairwise orthogonal vectbgs 7 {2 —c2} puZ— pu? As
k=0,...J—1,is constructed in the velocity space spanned; {Ciici ) puiu Ao
byc,i=0,...J—1. Asuitable set of vectors for the COM9 (c C_y} pu uy As

[27,31 and the C19M19 models is given in Tables I and II. |, {nyc_'z} uxuz \

Next, the linearized collision operatar is defined such 7, PP Flzz w3 N
that these basis vectors are its eigenvectors with correspon%]- {C‘X(sf i _2)} Plx M,
. . 2 {cix(ciy—ci)} 0 Nk
ing eigenvalues,, bACly, iz 3
13 {ciy(5¢i—9)} —2puy/3 A,
L -by=Xby. (A1) 14 {ey(ch—ch)} 0 Nk,
15 {ci,(5¢2—9)} —2pu,/3 Nk,
The collision step of the lattice-Boltzmann updéksy. (7)] 16 {cia(ch—ch)} 0 Nk,
with the collision operator as defined in E¢) can then be 17 {(c?—3c2)(3c2-5)} (3pu2-pud)/2 Nk,
written in terms of théy,’s, their associated eigenvalugg, 18 {(c%—c2)(3c?—5)} (—puz+pu)/2 Nk,

the force densityf;(r,t), and the moments of the velocity
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113, ¢?=0
mﬁ“(r,t)=2 bint4(r,t)=by-nqr,t). (A4) '2
! w;=4 1/18, c/=1 (3D). (Al
2__

The reciprocal relations 1/36, ci=2
The eigenvaluea g and\ g are again related to the bulk and
my(r,t)by : " . : ) .

nr,tH=>, oz (A5)  shear viscosities. While the expression for the shear viscosity
k

is the same as for the C9M9 modef. Eq. (A9)], the cor-
responding expression for the bulk viscosity is

and
Pl 2] (3p) (A12)
mgA(r,t)b 78=9 NS :
Nyt = — (A6) I e
K bj
APPENDIX B: MATRIX FORMULATION
follow straightforwardly from Eqs(A3) and (A4), since by FOR LOW-REYNOLDS-NUMBER FLOW
constructionb; - b; =b?8;;, whereb; = by _ _ 3 _
Finally, the eigenvaluek, and the equilibrium moments _ [N order to investigate the stability of the lattice-

Boltzmann equation a low-Reynolds-number approximation
Was used to write the lattice-Boltzmann equation as a linear
have no obvious physical meaning. For the C9M9 model alpystem of equations in terms of the moments W'Fh respect to

the eigenvectors of the general linearized collision operator

the equilibrium moments, exceptg?, are fixed in order to . o .
recover the Navier-Stokes equations. A suitable choice OﬁAppendlx A. 'I_'he global Stab'.“ty .Of these equations can
hen be determined by calculating its eigenvalues.

eq ; eq_ 2. . . . .
oo o e S Th colison siep of e laice-Solzman Udate was
Qian et al. [25] and later obtained by systematically dis- already obtained in Appendix p&q. (A2)]:
cretizing the continuous Boltzmann equation in both time . .
and phase spadd0,41], i.e., n*(r,t)=§k: by “{my(r,t) + N Ly (r,t) —m(r,t) T} by

mr,t) are defined. Note that some of these moments an
eigenvalues are related to physical quantities, but that othe

9
nt%=pw;| 1+ 3u-¢+ S UUGG—

2 +f(r,t). (B1)

EU , (A?)
Here m,(r,t) and m4r,t) are the moments af;(r,t) and

with the weightsw; in two dimensiong2D) given by niqr,t) with respect to the eigenvectots,, k=0,...J

—1 [cf. Egs.(A3) and(A4)], b,=| by, and\, is the eigen-

49, c?=0 value associated with the eigenvechyr.
_l19 =1 For low-Reynolds-number flows, the equilibrium velocity
Wi ' ' (2D). (A8) distribution functionn{r,t) is required only to linear order
1/36, c?=2 in the fluid velocity and the equilibrium momentsy{(r,t)

can be written as a linear combination of the conserved quan-
The eigenvalues associated with the viscous modes are réties p(r,t) andj(r,t) [cf. Egs.(A4) and (A7)]. The colli-
lated to the bulk and shear viscosities, i.e., sion step of the lattice-Boltzmann updE. (B1)] can then
be written as a linear system of equations,
2

1+}\_5

_P
K

(A9) n*(r,ty=e-m(r,t)+f(r,t), (B2)
and N*(t)=E-M(t)+F(t). (B3)
Here, the matrixE is a INXJN block-diagonal matrixE

1+ i) (2D). (A10) =diadfe,...,e}, ande is the Jx J expansion matrix, defined
Ag by its elements

_P
7B 6

The equilibrium moments and the eigenvalues for the COM9 i bix
model are summarized in Table I. €ij 2?(11”\1')—; F)\kgkju (B4)
For the C19M19 model a similar analysis gives the equi- ! K
librium moments and the eigenvalues that are summarized iﬂ/herebi~ is theith element ofb; and the matrixg projects
Table Il. The equilibrium momentsn$%,...,mid are deter- meq(r, t) Jonto m(r,t), i.e. meﬂ(rjt):gg mi(r,t).
. . . k A\t LRl [ A JIKTHI
mined by the form of the Navier-Stokes equations. The re- "1pe propagation step was already given in ER5):
maining onesmg?, mi7, andmig, can again be chosen t0 hence.
obtain the equilibrium distribution of EQA7). In this case
the weights are given by N(t+1)=T-[E-M(t)+F(1)]. (B5)
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Finally, the velocity distribution after propagation is pro- which completes the formulation of the lattice-Boltzmann

jected back to its moments,
m(r,t+1)=p-n(r,t+1),

M(t+1)=P-N(t+1), (B6)

where the matrixP is a INXJN block-diagonal matrixP
=diagd{p,...,p}, andp is theJ X J projection matrix, which is
defined such that itkth row equals the eigenvectby, [cf.
Eqg. (A3)]. From Eqgs.(B5) and (B6) we obtain

M(t+1)=P-T-[E-M(t)+F(t)], (B7)

equation as a linear system of equations in terms of the mo-
ments of the velocity distribution function with respect to the
eigenvectors of the collision operator.

A similar approach was used in R¢#42] to directly solve
the steady-state solution of the lattice-Boltzmann equation
for low-Reynolds-number flow in porous media. Here, the
eigenvalues associated with the rest-particle mode and those
associated with the kinetic modes were set-tb, projecting
them out entirely from the postcollision distribution. Hence,
this Appendix gives a straightforward extension of the results
in Ref.[42] to a general linearized collision operator.
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