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Accuracy and stability of a lattice-Boltzmann model with subgrid scale boundary conditions
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A lattice-Boltzmann method has recently been developed to incorporate solid-fluid boundary conditions on
length scales less than the grid spacing. By introducing a real numbered parameter, specified at each node and
representing the fluid volume associated with that node, we were able to accurately simulate arbitrary geom-
etries without the need to specify surface normals. In this paper a detailed description of the rules is presented
and the accuracy and stability of the method is discussed, based on numerical results for flow in systems with
planar surfaces and for flow through periodic arrays of disks and spheres.

DOI: 10.1103/PhysRevE.65.016701 PACS number~s!: 83.85.Pt, 47.11.1j, 47.15.Gf, 47.55.Mh
b
id

en
po
th
la
th
li

om
a
o
o

to
y
em
n

ng

u

f
In
th

es
th

at
a
th
nd
rie

fo
e
om
n

en

ents

ns
r-

less
ng.
-
be
out

it
Xi
-
the

a

ur-
e
re

In-
,

hat
city
n

e-
les
of

dem-
d for
c-
id

IV
of

ion
hat

a
.
tic
y a
I. INTRODUCTION

In the past decade, the lattice-Boltzmann method has
come the simulation method of choice for a number of flu
dynamics problems@1#, in particular for fluid flow in com-
plex geometries. In this paper a modification of the conv
tional lattice-Boltzmann method is presented, which incor
rates information about the solid surface on scales less
the resolution of the grid. In most lattice-Boltzmann simu
tions the solid-fluid boundary conditions are modeled by
bounce-back rule, in which particles encountering a so
surface are reflected back in the direction they came fr
However, discretization of the solid surface introduces p
ticular problems in simulations with moving boundaries
where the surface morphology is evolving due to erosion
deposition of dissolved solids@2#. In such cases, changes
the solid surfaces cannot be modeled smoothly, but onl
discrete units of the grid spacing. To simulate these syst
a boundary condition was devised for the lattice-Boltzma
method in which the location of the solid surface can cha
continuously, on scales less than the grid spacing@3#.

These boundary rules, which are called continuo
bounce-back~CBB! rules @3#, are an extension of the link
bounce-back~LBB! method@4# to include the reflections o
distributed population densities from partially filled cells.
the LBB method the boundary nodes lie midway between
solid and fluid nodes@4#, and fluid particles moving along
the links between solid and fluid nodes interact at th
boundary nodes. For planar surfaces aligned with one of
lattice directions it can be shown that the LBB rules simul
a hydrodynamic boundary that is located at the bound
nodes, with relative deviations that are second order in
lattice spacing@5#. Several other methods to obtain seco
order accurate boundary conditions for simple geomet
have been suggested in the literature@6–15#. However, most
of these methods share the drawback that they require in
mation about the shape of the particle surface. For gen
three-dimensional objects, the resulting algorithms are c
plex and not necessarily well defined without additional co
straints@7–10#. Extrapolation based methods@11,14,15# are
problematic if surfaces are in close proximity, which is oft
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the case in particle suspensions. Other recent developm
use a volumetric approach@16–19#, initially introduced by
Benzi et al. @20#. Noble and Torczynski@16# introduce a
modified collision operator to account for the interactio
with solid obstacles within a lattice cell. Their method inco
porates solid-fluid boundary conditions on length scales
than the grid spacing but a theoretical foundation is lacki
Chenet al. @17,18# developed a rigorous volumetric formu
lation of the lattice-Boltzmann method, which can also
applied to nonuniform meshes. However, information ab
the shape of the solid-fluid interface is required unless
coincides with the boundary between two lattice cells.
et al.’s approach@19# is applicable to arbitrarily complex ge
ometries, but requires an unstructured grid to model
solid-fluid interface.

The continuous bounce-back rules@3# are also based on
volumetric interpretation@18,20#, in whichni(r ,t) represents
the mean population density in the Wigner-Seitz cell s
rounding noder . However, the CBB rules do not requir
detailed information about the solid-fluid interface and a
therefore applicable to arbitrarily complex geometries.
stead, a continuous variablea(r ) is specified at each node
representing the fluid volume fraction associated with t
node, and then rules are constructed relating the velo
distribution function after propagation to the postcollisio
distribution.

In Sec. II a detailed description of the CBB rules is pr
sented. Section III analyzes the accuracy of the CBB ru
for systems with planar surfaces and for periodic arrays
disks and spheres. Numerical results are presented that
onstrate that second order accurate results were obtaine
flow in narrow channels with aligned walls that do not ne
essarily coincide with the grid. It is also shown that gr
artifacts in simulations of flows past curved surfaces~disks
or spheres! are much reduced by the CBB rules. Section
analyzes the stability of the CBB rules over a large range
shear viscosities and for different commonly used collis
operators. Numerical results using the CBB rules show t
the exponential relaxation time~ERT! model is stable only
for a limited range of kinematic viscosities. However, using
more general collision operator~see Appendix A and Ref
@21#! with separate eigenvalues for viscous and kine
modes, these instabilities could always be prevented b
©2001 The American Physical Society01-1
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suitable choice of the kinetic mode eigenvalues. Sectio
concludes this paper with a discussion of the main resul

II. METHODOLOGY

In the lattice-Boltzmann method the state of the system
characterized by the discretized one-particle velocity dis
bution functionni(r ,t), which describes the density of flui
particles at a lattice noder at time t with a velocityci . The
mass densityr(r ,t) and momentum densityj (r ,t) are mo-
ments of this velocity distribution function:

r~r ,t !5(
i

ni~r ,t !, ~1!

j ~r ,t !5(
i

cini~r ,t !, ~2!

where j (r ,t)5r(r ,t)u(r ,t) and u(r ,t) is the macroscopic
fluid velocity; the summation runs over the complete set
velocities $ci%. In this paper two velocity sets are used:
nine-velocity model for the two-dimensional simulations a
a 19-velocity model for the three-dimensional simulatio
Here, each velocity set contains the zero-velocity~rest par-
ticles! and the vectors connecting each node with its nea
and next-nearest neighbors.

The time evolution ofni(r ,t) in the presence of an exte
nal force ~e.g., an externally applied pressure gradient! is
governed by the discretized Boltzmann equation@22#

ni~r1ci ,t11!5ni~r ,t !1D i@n~r ,t !#1 f i~r ,t !, ~3!

whereD i@n(r ,t)# describes the change inni(r ,t) as a result
of collisions andf i(r ,t) incorporates the effect of externa
forces. The collision operatorD i@n(r ,t)# depends on all the
ni ’s at the node, denoted collectively byn(r ,t). A computa-
tionally useful form for the collision operator can be co
structed by linearizing about the local equilibrium distrib
tion ni

eq(r ,t) @23#, i.e.,

D i@n~r ,t !#5(
j

L i j @nj~r ,t !2nj
eq~r ,t !#, ~4!

whereLi j are the matrix elements of the linearized collisi
operatorL .

The exponential relaxation time or lattice Bhatnag
Gross-Krook~BGK! collision operator involves a single re
laxation timet, i.e., Li j 52t21d i j @24,25#,

D i@n~r ,t !#52t21@ni~r ,t !2ni
eq~r ,t !#. ~5!

A more general collision operatorL can be defined by con
structing a complete set of mutually orthogonal eigenvec
of L in the velocity space$ci% @23,26–30#, such that

n~r ,t !5(
k

mk~r ,t !bk

bk
2 , ~6!

wheremk(r ,t) is the amplitude of modek and thebk’s are
the eigenvectors. Each modemk(r ,t) relaxes exponentially
01670
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at a rate controlled by its associated eigenvalue~see Appen-
dix A!. If all the eigenvalues are equal, the collision opera
is equivalent to that of the ERT model@Eq. ~5!#. Suitable
eigenvectors for the two-dimensional nine-speed@27,31# and
the three-dimensional 19-speed model are given in App
dix A.

Lattice-Boltzmann models can also be constructed usin
linearized collision operator with a smaller number of mod
@4,21,32#. Among these are the three-dimensional 19-sp
model with only ten modes@21# and its projection onto two
dimensions~nine speeds with six modes!. Here, the eigen-
values associated with the rest-particle mode and those a
ciated with the kinetic modes are set to21, projecting them
out entirely from the postcollision velocity distribution func
tion. These models cannot be exactly derived from the ni
or 19-mode models in Appendix A, but the difference in t
macroscopic behavior occurs only in the error terms. T
different models are identified in this paper by the number
velocities and the number of modes; for example, the C9
model refers to the nine-speed model with six modes.

Each lattice-Boltzmann update consists of two steps. T
first step incorporates collisions and external forces; the
locity distribution function after this step is defined a
ni* (r ,t), i.e.,

ni* ~r ,t !5ni~r ,t !1D i@n~r ,t !#1 f i~r ,t !. ~7!

In the second step the postcollision distributionsni* (r ,t) are
propagated to the neighboring nodes in the direction of th
velocitiesci ,

ni~r1ci ,t11!5ni* ~r ,t !. ~8!

For simplicity all quantities in this paper are given in lattic
units; i.e., the nearest-neighbor lattice spacing and the t
step are both unity.

An external force densityf(r ,t)5( ici f i(r ,t) causes some
ambiguity in calculating the momentum density. In mo
published work, the momentum density is measured be
the application of the force density@cf. Eq. ~2!#, but it could
equally well be measured afterward, i.e.,j* (r ,t)
5( icini* (r ,t). It has been shown theoretically@21# and nu-
merically @33# that the most consistent choice is to take t
mean of the momentum density before and after forci
j 8(r ,t)5@ j (r ,t)1 j* (r ,t)#/2. This is equivalent to measurin
the momentum density after half the force density is appli

j 8~r ,t !5 j ~r ,t !1f~r ,t !/2. ~9!

The momentum densityj 8(r ,t) leads to simulations of forced
systems with the same level of accuracy as unforced o
even when the force is spatially varying@21#. Hence, all
simulated flow fields presented in this paper are obtai
from the momentum density defined in Eq.~9!.

To simulate the interactions between fluid and solid,
lattice-Boltzmann model must be modified to incorporate
boundary conditions imposed on the fluid by the solid pha
The continuous bounce-back rules@3# are based on the link
bounce-back method, in which the boundary nodes lie m
way between the solid and fluid nodes@4#. The CBB rules
1-2
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ACCURACY AND STABILITY OF A LATTICE - . . . PHYSICAL REVIEW E 65 016701
differ from most previous schemes, in that they attempt
model solid-fluid surfaces that are not mapped directly o
the lattice grid. They are illustrated with a set of four ad
cent cells with positionsr0 ,...,r3 . The propagation of the
velocity distribution function in cells 1 and 2 is calculate
for increasingly complex geometries. For illustrative pu
poses the four cells are taken to be along thex axis of a
two-dimensional square lattice, but the results are equ
valid for the other directions and in three dimensions. T
fluid fraction in cell i is denoted bya i , the velocity vector
pointing fromr1 to r2 by c1 , and that in the opposite direc
tion by c2 ; i.e., r25r11c1 andc252c1 . Only the case with
a1.a2 is considered explicitly; the update rules fora1
,a2 can be obtained from the mirror image.

A. Basic CBB rules

The basic concept is introduced by assuming that
population densities are uniformly distributed throughout
volume of the Wigner-Seitz cell surrounding each node. P
ticles are propagated from each location within a cell, a
reflected at the solid-fluid interface at the appropriate tim
Each particle moves a total distance of 1 or& lattice spac-
ings in one time step, depending on its speed. If the cha
wall coincides with a face of a cell, one has the typical LB
rule @Fig. 1~a!#. Here,n1* (r1 ,t) is completely reflected at th
interface between cell 1 and 2 and returned to cell 1 with
opposite velocity, i.e.,n2(r1 ,t11)5n1* (r1 ,t). If cell 2 in-
stead contains a fraction of fluida2 @Fig. 1~b!#, n1* (r1 ,t) and
n1* (r2 ,t) are split into different fractions. Fora2,0.5, part
of n1* (r1 ,t) is propagated to cell 2, another part is reflect

FIG. 1. Schematic representation of the different geometries
cussed in the text. The gray areas represent the solid phase
arrows indicate the population densities after propagation
n1* (r1 ,t) @omitted in~d! for clarity#, and the solid dots indicate th
location of the mean population density in each cell or fraction o
cell. The population densitiesn1 andn2 are moving to the right and
left, respectively. The heavy lines in~c! and~d! indicate an inclined
boundary represented by the sequence of partially filled cells.
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at the solid-fluid interface and ends up in cell 2, and a th
part is reflected and returned to cell 1. The population d
sity in cell 2, n1* (r2 ,t), is completely reflected into cell 1
andn2* (r2 ,t) is propagated to cell 1; both densities are m
tiplied by a2 to account for mass conservation. Hence,
a2,0.5,

n2~r1 ,t11!5~122a2!n1* ~r1 ,t !1a2n1* ~r2 ,t !

1a2n2* ~r2 ,t !, ~10a!

n1~r2 ,t11!5n1* ~r1 ,t !, ~10b!

n2~r2 ,t11!5n1* ~r1 ,t !. ~10c!

For a2.0.5, none ofn1* (r1 ,t) is returned to cell 1, but
n1* (r2 ,t) is split into two parts, both reflected at the soli
fluid interface: one part ends up in cell 1 and the other p
remains in cell 2. Hence, fora2.0.5,

n2~r1 ,t11!5~12a2!n1* ~r2 ,t !1a2n2* ~r2 ,t !, ~11a!

n1~r2 ,t11!5n1* ~r1 ,t !, ~11b!

n2~r2 ,t11!5
12a2

a2
n1* ~r1 ,t !1

2a221

a2
n1* ~r2 ,t !.

~11c!

Equations~10! and ~11! correctly account for the mas
transfer between cells of different fluid fractions and redu
to the LBB rules@Fig. 1~a!# whena250 or a251. However,
only first order accuracy is obtained for Poiseuille flow
channels with solid-fluid boundaries at fractional position
The assumption that the velocity distribution function is u
formly distributed in each cell is insufficient for second ord
accuracy. This shortcoming is also present in the bound
conditions suggested by Chenet al. @17#. Chen @18# over-
comes this problem by taking account of gradients in
velocity distribution function, resulting in a higher orde
scheme.

Similarly, we proceed to a better approximation by taki
into account the velocity gradient in the direction of prop
gation. Assuming that the population density varies linea
along the line connecting cells 1 and 2,

ni* ~x,t !5
2x

11b
@ni* ~r2 ,t !2ni* ~r1 ,t !#1ni* ~r1 ,t ! ~12!

for i 51,2. Here the origin is taken at the center of cell
with the positivex axis pointing in thec1 direction and the
distance between the wall and the interface between ce
and 2 denoted byb @b5a2 for the particular geometry in
Fig. 1~b!#. This results in the following propagation rules fo
n1* (r1 ,t), n1* (r2 ,t), andn2* (r2 ,t):
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n2~r1 ,t11!5
1

a1
E

2b21/2

b11/2

dx n1* ~x,t !1
1

a1
E

1/2

b11/2

dxn2* ~x,t !

5~12b!F122b

11b
n1* ~r1 ,t !1

3b

11b
n1* ~r2 ,t !G

1bn2* ~r2 ,t !, ~13a!

n1~r2 ,t11!5
1

a2
E

21/2

b21/2

dxn1* ~x,t !

5
b

a2
F 2

11b
n1* ~r1 ,t !1

b21

11b
n1* ~r2 ,t !G ,

~13b!

n2~r2 ,t11!5
1

a2
E

b21/2

2b21/2

dxn1* ~x,t !

5
b

a2
F222b

11b
n1* ~r1 ,t !1

3b21

11b
n1* ~r2 ,t !G .

~13c!

The propagation rules in Eq.~13! are continuous functions o
b for 0,b,1; they conserve mass and momentum and
duce to the LBB rules in the limitsb50 andb51. Note
that, although the second term between square bracke
Eq. ~13b! is negative as a result of the interpolation, t
value ofn1(r2 ,t11) remains positive.

B. CBB rules for general geometries

In most situations of practical interest the system chan
rapidly from fluid to solid, typically with only one partially
filled cell in between. However, more complicated geo
etries do arise in which the solid-fluid interface extends o
more than one cell. The propagation rules for general ge
etries can be described by considering only the propaga
of n1* (r1 ,t) andn2* (r2 ,t). It is more convenient to expres
the propagation rules in terms of population fluxes inste
of population densities, where the population fl
f (r ,ci ;r 8,cj ;t) is defined as the number~as opposed to the
density! of fluid particles that propagates from noder with
velocity ci to noder 8 with velocity cj .

An inclined boundary extending over two cells is appro
mated by the geometry shown in Fig. 1~c!. This geometry is
completely determined by a single parameter, the heigh
layer II: g125(a11a2)/2. Thenb15(a12g12)/(12g12) is
the distance between the wall in layer I and the interfa
between cells 0 and 1 and similarlyb25a2 /g12. Since for
a1.a2 the entire postcollision distributionn2* (r2 ,t) propa-
gates to cell 1, the population fluxf (r2 ,c2 ;r1 ,c2 ;t) is simply
n2* (r2 ,t) times the fluid volume of cell 2, i.e.,

f ~r2 ,c2 ,r1 ,c2 ;t !5a2n2* ~r2 ,t !. ~14!

The propagation rule forn1* (r1 ,t) is more involved. A frac-
tion of n1* (r1 ,t) is reflected in cell 1~layer I!, while the
remainder bounces back in cell 2~layer II!. The total propa-
01670
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gation rule forn1* (r1 ,t) follows from the sum of the contri-
butions from layers I and II, where the propagation rules
each layer are determined by a generalization of the ru
given in reference to Fig. 1~b!. The total population in layer
I of cell 1 with velocity c1 is b1(12g12)n1* (r1 ,t) @Fig.
1~c!#. During the propagation step some of it ends up in c
1 with velocity c1 , while the remaining part is reflected t
either cell 0 or cell 1. The population fluxes can be fou
from Eq.~13! by substitutingb1 for b, r i 21 for r i , by adding
a multiplicative factor (12g12) to take into account the
height of layer I and by discardinga2 to account for the fact
that Eq.~13! is expressed in population densities instead
population fluxes. Hence, forn1* (r1 ,t) one finds

f I~r1 ,c1 ;r0 ,c2 ;t !5
3~12b1!

11b1
b1~12g12!n1* ~r1 ,t !,

~15a!

f I~r1 ,c1 ;r1 ,c1 ;t !5
~b121!

11b1
b1~12g12!n1* ~r1 ,t !,

~15b!

f I~r1 ,c1 ;r1 ,c2 ;t !5
~3b121!

11b1
b1~12g12!n1* ~r1 ,t !.

~15c!

Similarly, g12n1* (r1 ,t) is the total population in layer II of
cell 1 with velocityc1 . During the propagation step some
it is propagated to cell 2, while the remainder bounces b
to either cell 1 or cell 2. The population fluxes from layer
are therefore

f II ~r1 ,c1 ;r1 ,c2 ;t !5
~123b212b2

2!

11b2
g12n1* ~r1 ,t !,

~16a!

f II ~r1 ,c1 ;r2 ,c1 ;t !5
2b2

11b2
g12n1* ~r1 ,t !, ~16b!

f II ~r1 ,c1 ;r2 ,c2 ;t !5
2b2~12b2!

11b2
g12n1* ~r1 ,t !. ~16c!

The total population fluxes are obtained by accumulating
contributions from layers I and II. Note that to obtain Eq
~15! and ~16! an interpolated population density profile wa
used in layer I of cells 0 and 1 and layer II of cells 1 and
respectively, just as for Eq.~13! in reference to Fig. 1~b!.
This is the reason why a fraction ofn1* (r1 ,t) can actually
remain in cell 1 with the same velocity@cf. Eq. ~15b!#.

A general boundary extending over any number of cells
approximated by the geometry shown in Fig. 1~d!. Although
Fig. 1~d! assumes 1.a0.a1.a2.a3.0, the results be-
low are valid for any geometry witha1>a2 , while the up-
date rules fora1,a2 follow straightforwardly from the mir-
ror image. Three parametersg01, g12, and g23 are
introduced that completely determine the actual configu
tion:
1-4
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g015H 1, a051

max$a1 ,~a01a1!/2%, a0Þ1,
~17a!

g125H 1, a151∧a2Þ0

~a11a2!/2, a1Þ1∧a2Þ0

0, a250

, ~17b!

g235H 0, a350

min$a2 ,(a21a3)/2%, a3Þ0.
~17c!

The valuesb1 andb2 follow from mass conservation:

b15
a12g12

g012g12
, g01Þg12, ~18a!

b25
a22g23

g122g23
, g12Þg23. ~18b!

The entire postcollision distributionn2* (r2 ,t) propagates
to cell 1 as before, so the population fluxf (r2 ,c2 ;r1 ,c2 ;t) is
again given by Eq.~14!. The propagation rule forn1* (r1 ,t) is
again a sum of different contributions. A fraction ofn1* (r1 ,t)
is reflected in cell 1~layer I!, another fraction is reflected in
cell 2 ~layer II!, while the remainder is propagated to cell
~layer III! @Fig. 1~d!#. The only difference between layer I i
Fig. 1~c! and layer I in Fig. 1~d! is the height of the layer
Hence, the propagation rules forn1* (r1 ,t) in layer I can be
found from Eq.~15! by substitutingg012g12 for 12g12,
i.e.,

f I~r1 ,c1 ;r0 ,c2 ;t !5
3~12b1!

11b1
b1~g012g12!n1* ~r1 ,t !,

~19a!

f I~r1 ,c1 ;r1 ,c1 ;t !5
~b121!

11b1
b1~g012g12!n1* ~r1 ,t !,

~19b!

f I~r1 ,c1 ,r1 ,c2 ;t !5
~3b121!

11b1
b1~g012g12!n1* ~r1 ,t !.

~19c!

Each population flux is well behaved in the limitg01
5g12, i.e., when the height of layer I vanishe
and f I(r1 ,c1 ;r1 ,c1 ;t)5 f I(r1 ,c1 ;r1 ,c2 ;t)5 f I(r1 ,c1 ;
r0 ,c2 ;t)50. Similarly, the propagation rules forn1* (r1 ,t) in
layer II are found from Eq.~16! by substitutingg122g23 for
g12, i.e.,

f II ~r1 ,c1 ;r1 ,c2 ;t !5
~123b212b2

2!

11b2
~g122g23!n1* ~r1 ,t !,

~20a!

f II ~r1 ,c1 ;r2 ,c1 ;t !5
2b2

11b2
~g122g23!n1* ~r1 ,t !,

~20b!
01670
f II ~r1 ,c1 ;r2 ,c2 ;t !5
2b2~12b2!

11b2
~g122g23!n1* ~r1 ,t !.

~20c!

Finally, the total population in layer III of cell 1 with velocity
c1 is simply propagated to cell 2@Fig. 1~d!#, i.e.,

f III ~r1 ,c1 ;r2 ,c1 ;t !5g23n1* ~r1 ,t !. ~21!

The total population fluxes are again obtained by accumu
ing the contributions from the different layers@Eqs. ~19!,
~20!, and~21!#, which results in the following general set o
propagation rules for the postcollision distributionsn1* (r1 ,t)
andn2* (r2 ,t):

f ~r1 ,c1 ;r0 ,c2 ;t !5
3~12b1!~a12g12!

11b1
n1* ~r1 ,t !,

~22a!

f ~r1 ,c1 ;r1 ,c1 ;t !5
~b121!~a12g12!

11b1
n1* ~r1 ,t !,

~22b!

f ~r1 ,c1 ;r1 ,c2 ;t !5F ~3b121!~a12g12!

11b1

1
~123b212b2

2!~g122g23!

11b2
Gn1* ~r1 ,t !,

~22c!

f ~r1 ,c1 ;r2 ,c1 ;t !5Fg231
2~a22g23!

11b2
Gn1* ~r1 ,t !,

~22d!

f ~r1 ,c1 ;r2 ,c2 ;t !5
2~12b2!~a22g23!

11b2
n1* ~r1 ,t !,

~22e!

f ~r2 ,c2 ;r1 ,c2 ;t !5a2n2* ~r2 ,t !. ~22f!

Mass conservation follows straightforwardly from Eq.~22f!
and by verifying that

a1n1* ~r1 ,t !5 f ~r1 ,c1 ;r0 ,c2 ;t !1 f ~r1 ,c1 ;r1 ,c1 ;t !

1 f ~r1 ,c1 ;r1 ,c2 ;t !1 f ~r1 ,c1 ;r2 ,c1 ;t !

1 f ~r1 ,c1 ;r2 ,c2 ;t ! ~23!

@cf. Eqs.~22a–e!#.
The total velocity distribution function after propagatio

is obtained by accumulating the population fluxes from
postcollision distributionsni* (r ,t) andni 8

* (r1ci ,t) for each
r and each pair of velocitiesci and 2ci ~denoted byi 8!.
From Eq.~22! it follows that, depending on the local geom
etry, there are up to five different population fluxes that co
tribute toni(r ,t11) for each lattice noder and each velocity
ci :
1-5



s
-
n

R. VERBERG AND A. J. C. LADD PHYSICAL REVIEW E65 016701
FIG. 2. Poiseuille flow in a
shifted channel for a kinematic
shear viscosityn51/6. The open
circles are the simulation result
for a lattice where the walls coin
cide with the interfaces betwee
two cells. The solid symbols are
for lattices shifted with respect to
the wall in increments of 1/10: in
increasing order these go from
solid circles ~0.1! to diamonds
~0.5!. ~a!–~c! Flow profile uy(x)
for a channel widthL052, 4, and
8, relative to the exact center flow
velocity uc

05L0
2¹yp/8rn. The

solid line is the exact flow profile
of Eq. ~28!. ~d! Root mean square
error e(L0) in the flow profile.
The solid lines indicate the
asymptotic 1/L0

2 decay of e(L0)
for the different shifts@Eq. ~35!#.
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ni~r ,t11!5$ f ~r2ci ,2ci ;r ,ci ;t !1 f ~r2ci ,ci ;r ,ci ;t !

1 f ~r ,2ci ;r ,ci ;t !1 f ~r ,ci ;r ,ci ;t !

1 f ~r1ci ,2ci ;r ,ci ;t !%/a~r !. ~24!

Equations~17!, ~18!, ~22!, and~24! completely determine the
CBB rules for any geometry, including those in Figs. 1~a–c!.

A drawback of the proposed boundary condition is th
the limits for a i→0 or a i→1 are not continuous; for ex
ample, the shoulder in cells 1 and 2 of height 12g12 @Fig.
1~c!# vanishes discontinuously whena151 or a250. Al-
though a different choice ofg12 can prevent this discontinu
ity, this particular choice was made to maintain a continuo
profile in the general case shown in Fig. 1~d!. The impact of
this discontinuity was tested numerically and found to
small.

Note that the multiplicative factors in Eq.~22! depend
only on the local geometry and have to be calculated
once for a fixed geometry. Once calculated, the propaga
step is almost as straightforward as the original LBB rul
the only difference being that fractions of each populat
may propagate to more than one lattice node and velo
The complete propagation step can be written compactly
single matrix multiplication

N~ t11!5T•N* ~ t !, ~25!

with the velocity distributions at all the nodes written
terms of a single vectorN(t), i.e.,

n~r ,t !5„n0~r ,t !,...,nJ21~r ,t !…, r5r0 ,...,rN21 ,

N~ t !5„n~r0 ,t !,...,n~rN21 ,t !…, ~26!

and similar expressions for the postcollision distributio
n* (r ,t) andN* (t). HereJ denotes the number of velocitie
in the lattice-Boltzmann model. Note that in this vector n
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tation lower case symbols represent properties of the in
vidual nodes and upper case symbols represent propertie
the entire lattice. The matrixT can be stored compactly an
the multiplication can be performed efficiently, since ea
column or row ofT has a maximum of five nonzero ele
ments, determined by the multiplicative factors in Eq.~22!
@cf. Eq. ~24!#.

III. RESULTS

A. Two-dimensional flow in aligned channels

The basic CBB rules of Eq.~13! were tested for Poiseuille
flow in aligned channels, i.e., in channels that were para
to but not coincident with one of the lattice vectors. Simu
tions were performed with different channel widths, she
viscosities, and offsets between the wall and the nearest
tice node. The results were obtained using the C9M6 mo
~equivalent to the C19M10 model@21# projected down to
two dimensions!, where the postcollision distribution is com
posed of the conserved modes~mass and momentum den
sity! and the viscous modes~two shear modes and one bu
mode!. The eigenvalue associated with the shear modes,lS ,
sets the kinematic shear viscosityn52(112/lS)/6. The ei-
genvalue associated with the bulk mode was set to21, cor-
responding to a kinematic bulk viscositynB51/9. The re-
sults were compared with those obtained with the nine-sp
ERT model @24,25# for the same shear viscosityn5(2t
21)/6 @Eq. ~5!#.

Figures 2~a!–~c! show the flow profileuy(x) for Poi-
seuille flow in channels of integer widthsL05( rPL0

a(r )

52, 4, and 8, for a kinematic shear viscosityn51/6. In this
case,lS52t521, and the C9M6 model and the ER
model are equivalent. Here, they axis points in the direction
of the pressure gradient and the walls are placed atx5
6L0/2. It can be seen that even for a narrow channel (L0
>4) the agreement with the analytic result is good; the la
1-6
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est deviations occur for channels shifted by one-half o
lattice spacing. The root mean square~rms! error in the flow
profile,

e~L0!5
1

uc
0 H 1

L0
(

rPL0

a~r !@us~r !#2J 1/2

, ~27!

is shown in Fig. 2~d!, where the slip velocityus(r )5uy(r )
2uy

0(r ) is defined as the difference between the simula
flow field uy(r ) and the exact flow field

uy
0~r !5uc

0S 12
4x2

L0
2 D . ~28!

Here, the exact flow velocity at the center of the channe
given by uc

05L0
2¹yp/8rn. For L0>4, e(L0) is less than

6%, while the error in the location of the hydrodynam
boundary, that is, the location of the zero-velocity plane w
respect to the solid-fluid interface, is less than 0.06 lat
spacings. The solid lines in Fig. 2~d! have a slope of22,
indicating that the CBB rules give asymptotically second
der convergence for Poiseuille flow in channels where
walls are aligned but not commensurate with the grid. Si
lar results were obtained for Poiseuille flow in channels
noninteger widths@43#.

Theoretical analysis of the LBB rules for two-dimension
channel flow has shown that the hydrodynamic boundar
located at the boundary nodes, i.e., at the midpoints of li
connecting lattice nodes on either side of the solid-fluid
terface, with relative deviations of orderL0

22 @5#. Further-
more, it has been shown that the velocity field deviates fr
the exact solution by a constant slip velocityus , independent
of channel width and position within the channel@5#. This
leads to second order convergence ine(L0) for channels
where the walls coincide with the interface between two c
@see open circles in Fig. 2~d!#.

A similar analysis of the CBB rules for two-dimension
channel flow in aligned channels with arbitrary widths~in-
cluding noninteger values! gives qualitatively similar results
The flow field in the bulk channel~the collection of cells that
are completely filled with fluid! has a parabolic profile
which can be characterized by the hydrodynamic width
the channel,L, and the flow velocityuc at the hydrodynamic
center of the channel,xc ~Fig. 3!, i.e.,

uy~r !5uc@124~x2xc!
2/L2#. ~29!

The parametersuc , L, andxc depend onL0 , n, the collision
model being used, and the fluid fractionsa1 and a2 in the
boundary cells~Fig. 3!. The maximum flow velocityuc rela-
tive to its exact valueuc

0 is given by

uc

uc
0 511

4

3L0
2 ~6n!n1

C121

L0
2 1

C2
2

L0
4 , ~30!

with n51 for the C9M6 model and 2 for the ERT model an

C152@a1~a121!1a2~a221!#, ~31a!
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C25a2~a221!2a1~a121!. ~31b!

Note thatuc is the maximum flow velocity~Fig. 3! inferred
from the parabolic profile and should not be confused w
the slip velocityus(r ) defined in Eq.~27! or the theoretical
centerline velocityuc

0. The hydrodynamic channel widthL
relative to its exact valueL0 is given by

L

L0
5S uc

uc
0D 1/2

, ~32!

while the hydrodynamic center of the channel follows fro

xc5
C2

2L0
. ~33!

The coefficientsC1 andC2 vanish when both walls coincide
with interfaces between adjacent cells. Then,xc50 and Eqs.
~30! and~32! reduce continuously to the corresponding equ
tion for the LBB rules@21#. Note that these results diffe
from those obtained by Heet al. @5#, because in their analy
sis these authors did not add half the force density to
momentum density before calculating the flow profile@21#; if
they had their results would be equivalent with Eqs.~30! and
~32! in the casea15a250.

In the partially filled boundary cells deviations from E
~29! occur. A correctionDuy@a(r )# must be added to the
right hand side of Eq.~29! to account for deviations from the
parabolic profile. Here,

L0
2Duy~a!

uc
0 5~a21!~12n13a11!. ~34!

FIG. 3. Poiseuille flow in a channel with arbitrary widthL0 .
The flow profile in the bulk channeluy(r ) can be characterized b
the hydrodynamic width of the channel,L, and the flow velocityuc

at the hydrodynamic center of the channel,xc . The gray area is the
solid wall anda1 anda2 are the fluid fractions in the first and las
cells.
1-7
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FIG. 4. Poiseuille flow in an
inclined channel. Flow profile
uy(x)/uc

0 for a channel widthL0

524/5 @~a! CBB rules; ~b! LBB
rules# and L057/& @~c! CBB
rules; ~d! LBB rules#, relative to
the exact center flow velocityuc

0

5L0
2¹yp/8rn. The symbols are

for lattices shifted with respect to
the wall in the direction of one of
the lattice vectors in increments o
1/4: in increasing order these g
from circles to diamonds. The
solid line is the exact result of Eq
~28!. The circles in~d! are for the
lattice where the walls coincide
with the lattice nodes. Here the
upper and the lower curves corre
spond to lattices where the half
occupied boundary cells are con
sidered to be fluid and solid
respectively.
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Note thatDuy(a) vanishes fora51, and that the right hand
side of Eq. ~34! is only a function of n and a; hence
Duy(a)/uc

05O(L0
22).

Several observations can be made from the results
tained so far. Equation~30! shows that uc /uc

051
1O(L0

22), i.e., uc approaches its exact value for large va
ues ofL0 , with deviations that are of orderL0

22. Equations
~30!, ~32!, and ~33! show that L/L0511O(L0

22), while
xc /L05O(L0

22). Hence, the hydrodynamic boundary is l
cated at the actual position of the solid-fluid interface w
relative deviations that are of orderL0

22. Equation ~30!
shows thatuc /uc

05O(n) for the C9M6 model andO(n2) for
the ERT model, making the ERT model less suitable
large shear viscosities. A special shear viscosity can be id
tified for a15a25a, such thatxc vanish identically and
uc5uc

0. For the C9M6 model this critical kinematic she
viscosity is 1/81a(12a)/2, while for the ERT model it
equals@3112a(12a)#1/2/12. However, in general no suc
critical viscosity exists. Note thatL,L0 for shear viscosities
smaller than the critical value. Finally, from Eqs.~27!–~34!
it follows that the rms error in the flow profile for Poiseuil
flow in aligned channels with arbitrary widths is given by

e~L0!5
1

L0
2 H F4

3
~6n!n1C121G2

1
4

3
C2

21O~L0
21!J 1/2

,

~35!

indicating asymptotic second order convergence even w
the walls are not commensurate with the grid@Fig. 2~d!#.
Here,n51 for the C9M6 model and 2 for the ERT mode

Equations~29!–~34! have been tested extensively for bo
integer as well as noninteger channel widths ranging fr
L054 to 32, for different values ofa1 anda2 , for kinematic
shear viscosities fromn55/3 down ton51/60 000, and for
both the C9M6 model and the ERT model. The simulatio
using the C9M6 model agreed with Eqs.~29!–~34! for the
01670
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entire shear viscosity range. However, when the ERT mo
was used, numerical instabilities were observed forn
,1/200 and certain geometries with partially filled bounda
cells. The nature of these instabilities and a way to impro
the stability are discussed in more detail in Sec. IV.

B. Two-dimensional flow in inclined channels

The general CBB rules of Eqs.~17!, ~18!, ~22!, and~24!
for an inclined interface were tested for Poiseuille flow
inclined channels. Here, the boundaries and pressure gra
were placed at an angleu with respect to one of the lattice
vectors. All simulations used a kinematic shear viscosityn
51/6. Results were obtained for tan(u)51/2, 3/4, and 1 with
channel widths ofL0512n/A5, 24n/5, and 7n/&, respec-
tively, at different resolutionsn51,2,4,8. In addition, each
system was simulated including a shift of 1/4, 1/2, and
lattice units in the direction of one of the lattice vectors.

Figure 4 shows the flow profileuy(x) for tan(u)53/4 and
1 at the lowest resolution (n51). It shows that the accurac
of the CBB rules is insensitive to the actual position of t
interface with respect to the lattice. In contrast, the LB
method is sensitive to the location of the interface relative
the position of the nodes, particularly when tan(u)51 and the
wall coincides with the lattice nodes; the flow profile is abo
40% too large if the half-occupied boundary cells are co
sidered to be fluid and about 50% too small if they a
treated as solid@Fig. 4~d!#.

The flow field in the bulk fluid can be characterized b
Eq. ~29!, just as for channels with aligned interfaces. F
tan(u)51 and the walls coinciding with the lattice nodes t
flow profile in the bulk channel exactly matches that of P
seuille flow in an aligned channel with the same width a
a15a250.5. Hence, for this particular geometry and she
viscosity, uc /uc

05122/3L0
2, L/L05121/3L0

21O(L0
24),

andxc50, i.e., the hydrodynamic boundary is still located
1-8
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the actual position of the solid-fluid interface with relativ
deviations that are of orderL0

22. However, the velocity in
the partially filled boundary cells deviates from Eq.~34!.
More specifically, it was found thatDuy(a)5O(L0) result-
ing in an asymptotic rms error in the flow profile of ord
L0

23/2 ~Fig. 5!. For the more general inclined channe
@tan(u)Þ1 or tan(u)51 and the walls not commensurate wi
the grid# sequences of partially filled cells with different vo
ume fractions occur as sketched in Figs. 1~c–d!. In this case
only first order convergence is obtained;uc /uc

051
1O(L0

21), L/L0511O(L0
21), and xc /L05O(L0

21), i.e.,
the hydrodynamic boundary in a very wide channel is
longer located at the actual position of the solid-fluid int
face, and the rms error in the flow profile is of orderL0

21

~Fig. 5!. The lack of second order convergence for Poiseu
flow in inclined channels is a result of several approxim
tions in the derivation of the general CBB rules: from t
stepwise implementation of an inclined solid-fluid interfac
from taking into account only the velocity gradient in th
direction of propagation, and from treating the propagat
in the @110# directions in a manner similar to that in th
orthogonal directions. However, our approach was motiva
by the need for simple but accurate boundary conditions
complex and not necessarily stationary surfaces. A m
elaborate volumetric approach@18# should be able to main
tain second order convergence for Poiseuille flow in inclin
channels, but at the price of a substantial increase in c
plexity. Such a scheme requires the location and orienta
of the surface~as opposed to only the fluid fraction in eac
cell! as well as a two-dimensional interpolation scheme
obtain the correct distribution of the population density in t
boundary cells. As a result the CBB rules are only first or
convergent for general geometries. The primary advantag
the CBB rules is the insensitivity of the flow field to th

FIG. 5. Root mean square errore(L0) in the flow profile for
tan(u)51 and the walls coinciding with the lattice nodes~circles!
with its L0

23/2 asymptote~solid line!, for tan(u)51 and the walls not
commensurate with the grid~squares!, for tan(u)53/4 ~diamonds!,
and for tan(u)51/2 ~triangles!. Only one curve for each angle i
plotted for tan(u)Þ1 or tan(u)51 and the walls not commensura
with the grid, since the results for different shifts were virtua
indistinguishable.
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position of the solid-fluid interface with respect to the und
lying lattice.

C. Drag coefficient for a periodic array of disks or spheres

The general CBB rules of Eqs.~17!, ~18!, ~22!, and~24!
were also tested by calculating the drag coefficientFD of a
square array of disks and a cubic array of spheres for dif
ent system sizes, shear viscosities, positions with respe
the lattice and different collision operators. The results
disks were obtained with the same C9M6 model as use
Secs. III A and III B. Those for spheres were obtained us
the C19M10 model@21#, i.e., a three-dimensional 19-spee
model with ten modes: the conserved modes~mass and mo-
mentum density! and the viscous modes~five shear modes
and one bulk mode!. The results are compared with thos
obtained with the nine-speed and 19-speed ERT models@Eq.
~5!#. The same equations relating the relaxation timet and
the eigenvalue associated with the shear modes,lS , with the
kinematic shear viscosity also hold for the C19M10 mod
and the 19-speed ERT model.

The reduced drag coefficientFD8 5FD /n^ j y(r )&5

2L0
D¹yp/n( j y(r )& of a periodic array of disks (D52) or

spheres (D53) can be obtained directly from the mean m
mentum flow^ j y(r )&5L0

2D( r PVa(r ) j y(r ) in a periodic lat-
tice with a unit cell that contains one disk or sphere. Here,L0
is the length of the unit cell in each dimension. Figure
shows FD8 for a periodic array of disks and spheres as
function of system size and for different positions of t
center of the particle with respect to the lattice. The nomi
radiusR0 of the disk was 3L0/8 and that of the sphere wa
7L0/16, giving nominal porosities off050.44 and f0
50.35, respectively;L054n, with n51, . . . ,10, and the ki-
nematic shear viscosity was set to 1/6. The results show
important improvements over the LBB method:~i! The drag
coefficient obtained with the CBB rules is virtually indepe
dent of the position of the center of the particle with resp
to the lattice, and~ii ! the error inFD8 is much smaller andFD8
itself converges much more smoothly to its asymptotic va
for largeL0 . For a cubic array of spheres the spread inFD8
was even smaller than for disks, most probably due t
higher degree of averaging over the different types of bou
aries.

Figure 6 shows thatFD8 converges asymptotically to
value that is slightly different from the theoretical drag c
efficient @34,35# at the nominal porosity. This implies tha
the hydrodynamic boundary has been displaced from
nominal radius of the disks or spheres. For flow through
periodic array of disks or spheres a hydrodynamic radiuR
can be defined such that the theoretical drag coeffic
@34,35# for the porosity based onR equals the value found in
the simulations. This hydrodynamic radius varies with sh
viscosity, particle size, and particle position relative to t
lattice. However, for large enough system sizes the diff
ence betweenR andR0 converges to a constant valueD for
each shear viscosity and particle position, independen
system size, with deviations that are of orderL0

21, i.e.,

R2R05D1O~L0
21!. ~36!
1-9
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FIG. 6. Reduced drag coeffi
cient FD8 of a periodic array of
disks @~a! CBB rules; ~b! LBB
rules# and spheres@~c! CBB rules;
~d! LBB rules# as a function of
system size and for different pos
tions of the center of the particle
with respect to the lattice: in the
center of a cell~l!, in the corner
of a cell ~j!, and at two random
positions ~m and .!. The kine-
matic shear viscosity was set t
1/6. The solid lines are the theo
retical results@34,35# at the nomi-
nal porosities.
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For n51/6 the value ofD is close to zero~Fig. 6!, but sig-
nificant deviations can occur for arbitrary values ofn. Figure
7 shows the relative error inR with respect to the asymptoti
hydrodynamic radiusR01D for the same systems as in Fi
6 and for n51/6. For the disks the value ofD was zero,
within the accuracy of the simulation. For the spheres a va
D50.1 was found by fittingR with Eq. ~36! over the entire
rangeL054, . . . ,40. Forboth the disks and the spheres,D
was found to be nearly independent of the particle positi
Figure 7 shows that@R2(R01D)#/R0 decreases asL0

22.
Moreover, the relative error in theFD8 decreases asL0

22 with
respect to its asymptotic value~not shown!, just like the rela-
tive error in R with respect toR01D. For the LBB rules,
qualitatively similar results were found, albeit with larg
errors and larger fluctuations in the error.

Figure 8 showsFD8 for a square array of disks at differen
shear viscosities, for both the C9M6 model and the E
model. The disks were located at the center of a lattice c
R053L0/8 and L054(2)n, with n50, . . . ,5. Theresults
show that the simulation underestimates the value ofFD8 for
kinematic shear viscosities larger than about 1/6 and ove
timates it for kinematic shear viscosities smaller than 1
This is equivalent to saying that the hydrodynamic rad
increases as the shear viscosity decreases, while it is rou
equal to the nominal radius forn51/6. Figure 8 shows tha
the deviations betweenFD8 and its theoretical value@34# at
the nominal porosity,FD,08 , increase rapidly for kinematic
shear viscosities deviating from 1/6. This large deviation a
the slow decay to their asymptotic values makes it impra
cal to study the error in the drag coefficient and the hyd
dynamic radius with respect to their asymptotic values
was done above forn51/6. Instead, Fig. 9~a! shows the
relative error inFD8 with respect toFD,08 . It shows first order
convergence with increasing system size indicating that
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FIG. 7. Relative error in the hydrodynamic radiusR with respect
to its asymptotic valueR01D for a periodic array of disks~a! and
spheres~b! ~both with the CBB rules! and for different positions of
the disk with respect to the lattice: centered in the center of a
~l!, centered in the corner of a cell~j!, and centered at two
random positions in the cell~m and .!. For the disks a value of
D50 was used, while for the spheresD50.1. The solid line indi-
cates second order convergence with increasing system size.
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asymptotic drag coefficient deviates significantly from t
theoretical value based on the nominal porosity.

The large error inFD8 with respect toFD,08 clearly shows
that R deviates significantly from the nominal radiusR0 for
smaller particle sizes and kinematic shear viscosities
close to 1/6. It is clear that this shift in the location of th
hydrodynamic boundary must be accounted for if quant
tive results are to be obtained with computationally use
particle sizes~typically less than ten lattice units! and kine-
matic shear viscosities significantly different from 1/6. A
effective way to calibrate the particle radius is to use
hydrodynamic radius obtained by fitting the drag coefficie
at a low porosity, where the dependence on particle size
shear viscosity is much less severe@21,33#. Figure 9~b!
shows the relative error inFD8 of a square array of disks with
respect to the theoretical value based on the hydrodyna
radius of the same size disks at a porosity of 10%. It sho
that, although the convergence with increasing system siz
still roughly first order, the error is reduced by about an or
of magnitude~except forn51/6, whereD'0!. The reason
that no second order convergence is found is that the valu
D differs slightly for similar particles at different porositie
Hence, the hydrodynamic radius obtained by fitting the d
coefficient at a low porosity is still different fromR01D.

Figures 8 and 9 also show that the ERT model is mu
less suitable for kinematic shear viscosities larger than
but that both models give almost identical results forn
,1/6, just as for Poiseuille flow in an arbitrary channel@cf.
Eq. ~30!#. However, the ERT model was numerically u
stable for a kinematic shear viscosity of 1/600, a point tha
discussed in more detail in the next section.

IV. STABILITY OF THE CBB RULES

In most of the simulations described above numerical
stabilities were observed below a certain shear viscos

FIG. 8. Reduced drag coefficientFD8 for a square array of disks
as a function of system size and shear viscosity. The disks w
centered with respect to the lattice cells. The kinematic shear
cosities were 5/3~l!, 1/6 ~j!, 1/60 ~m!, and 1/600~.!. The solid
symbols are for the C9M6 model and the open symbols for the E
model~unstable atn51/600 and equivalent to the C9M6 model fo
n51/6!. The straight solid line is the theoretical value at the nom
nal porosity@34#.
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These instabilities were not present for the LBB rules and
consequently a result of the boundary conditions in the C
model. To summarize: Poiseuille flow in shifted channe
simulated with the C9M6 model, was found to be stable o
the entire range of kinematic shear viscosities fromn55/3
down to n51/60 000. However, the simulations using th
ERT model showed numerical instabilities forn,1/200 in
certain geometries with partially filled boundary cells.
more general geometries, like Poiseuille flow in inclin
channels and flow through a periodic array of disks
spheres, instabilities showed up for both the C9M6 and
C19M10 models and the ERT model, although more
verely for the latter; the C9M6 and C19M10 models we
found to be stable forn>1/600, while the critical kinematic
shear viscosity for the ERT model lay between 1/60 a
1/200.

It was found that the numerical instabilities at low vi
cosities were a result of the interpolation of the populat

re
s-

T

-

FIG. 9. Relative error inFD8 for a square array of disks as
function of system size and shear viscosity. The disks were cent
with respect to the lattice cells. The error inFD8 was calculated with
respect to its theoretical value based on the nominal radius~a! and
on the hydrodynamic radius obtained from a calibration run a
porosity of 10%~b!. The kinematic shear viscosities were 5/3~l!,
1/6 ~j!, 1/60 ~m!, and 1/600~.!. The solid symbols are for the
C9M6 model and the open symbols for the ERT model~unstable at
n51/600 and equivalent to the C9M6 model forn51/6!. The
straight solid line indicates first order convergence with increas
system size.
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density. All instabilities vanished when the CBB rules we
based on Eqs.~10! and~11! instead of Eq.~13!. Furthermore,
it was found that the instabilities could be suppressed
using integer instead of floating point arithmetic, suggest
that round-off errors are driving the instability. Although
theory the CBB rules conserve mass and momentum, the
that each population after propagation is a sum of contri
tions from different postcollision populations@Eq. ~24!#
makes the CBB rules more sensitive to round-off errors t
the underlying LBB rules, where each postcollision popu
tion is either completely propagated in the direction of
velocity or completely reflected at a boundary node. It h
been suggested@36# that the instabilities are most likel
caused by the excitation of staggered invariants, as a resu
the interpolation. Furthermore, it was suggested that t
could be suppressed by reducing the magnitude of the ei
values of the kinetic modes@36#.

In order to investigate the influence of the rest-parti
mode, the bulk mode, and the kinetic modes on the stab
of the lattice-Boltzmann equation, an algorithm was dev
oped using a more general collision operator than the
used in Secs. III A–III C; a linearized collision operator w
used with a complete set of eigenvectors, instead of one
eigenvectors corresponding only to the conserved and
cous modes. The lattice-Boltzmann equation@Eq. ~3!# can
then be written in terms of the momentsmk(r ,t), k
50, . . . ,J21, of the velocity distribution function with re
spect to this basis of eigenvectors~see Appendix A!. Suitable
sets of eigenvectors are given for both the two-dimensio
nine-speed model and the three-dimensional 19-speed m
in Appendix A ~Tables I and II!. The eigenvalues associate
with the rest-particle mode, the bulk mode, and the kine
modes are denoted byl0 , lB , andlK . The symmetry of the
cubic lattice allows for only two distinct kinetic eigenvalue
lK3

, associated with the eigenvectors that are third or

polynomials inci , andlK4
, associated with the eigenvecto

that are fourth order polynomials inci ~absent in the nine-
speed model!.

For low-Reynolds-number flow the lattice-Boltzman
equation can be written as a linear system of equation
terms of the momentsmk(r ,t) ~see Appendix B!, i.e.,

M ~ t11!5P•T•@E•M ~ t !1F~ t !#. ~37!

Here, the matricesP and E are defined in Appendix B, the
matrix T is defined in Eq.~25!, and the vector notation of Eq
~26! is adopted for the momentsmk(r ,t) and the externa
forces f i(r ,t). The stability of Eq.~37! can be analyzed by
calculating the eigenvalues of the matrixA5P•T•E. Global
stability requires the magnitude of all of these eigenvalue
be less than or equal to 1. Hence, in order to investigate
influence of the rest-particle mode, the bulk mode, and
kinetic modes on the stability of the lattice-Boltzmann equ
tion the eigenvalues of the matrixA were calculated for dif-
ferent values ofl0 , lB , lK3

, andlK4
. Note that local sta-

bility of the lattice-Boltzmann equation requires a
eigenvalues of the collision operator to be between22 and 0
@23#.
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The eigenvalues of the matrixA for the general nine-
speed model~the C9M9 model! were calculated for a squar
array of disks at kinematic shear viscosities betweenn
55/3 andn51/60 000 and for different positions with re
spect to the lattice. The systems that were studied were id
tical to those in Figs. 6~a,b!. First, the influence of the eigen
value associated with the kinetic modes,lK3

, was studied,

while keepingl05lB521. It was found that forlK3
5

21 each system was stable at the lowest resolution~R0
51.5 andL054!. The smallest system that showed instab
ties forlK3

521 was one withR053.0,L058, the center of
the disk in the corner of a lattice cell, and a kinematic sh
viscosity below 1/1500. It was found that decreasing
magnitude oflK3

increased the numerical stability, and th

global stability could always be regained for values ofulK3
u

below a certain critical value. As an example, Fig. 10 sho
the stability diagram for the system withR053.0,L058, and
the center of the disk in the corner of a lattice cell. It sho
that the system was stable forn.1/300 for any value oflK3

between 0 and22. Furthermore, it shows that forn,1/300
stability could always be regained by reducing the magnitu
of lK3

. Hence, the instabilities in the lattice-Boltzman
equation at low shear viscosities induced by the bound
rules employed here can be suppressed by reducing the
nitude of the eigenvalue of the kinetic modes. Next, the
fluence of the eigenvalue associated with the rest-part
mode,l0 , was studied, while keepinglB5lK3

521. It was
found that each system, including those that were stable
l0521, became unstable for values ofl0 close to 0 or22.
Hence, changing the rest-particle mode eigenvalue to a v
different from21 decreases the global stability of the lattic
Boltzmann equation. Finally, the influence of the eigenva
associated with the bulk mode,lB , was studied, while keep

FIG. 10. The stability diagram for a square array of disks. T
symbols are for the C9M9 model withR053.0, L058, and the
center of the disk in the corner of a lattice cell~d!, and for the
C19M19 model withR051.5, L054, and the center of the disk in
the center~m! or in the corner~.! of a lattice cell. The symbols
indicate the largest magnitude oflK3

for which the simulations
were stable. Hence, the area below the curves indicates the s
region. The line is added as a guide to the eye.
1-12
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ing l05lK3
521. It was found that decreasing the magn

tude oflB , increased the stability, just as forlK3
. However,

the effect was not sufficient to stabilize those systems
were even moderately unstable. Furthermore, just as forl0 ,
even those systems that were stable forlB521 became
unstable for values oflB close to22, an observation tha
signifies an important drawback of the ERT model as d
cussed in more detail below.

The eigenvalues of the matrixA for the general 19-spee
model ~the C19M19 model! were calculated for the sam
systems as for the C9M9 model, i.e., for cylinders with on
one layer in the symmetry~z! direction, since the periodic
arrays of spheres were too large to make a study of the
genvalues feasible. Qualitatively similar results were fou
for the influence ofl0 , lB , andlK3

on the stability of the

lattice-Boltzmann equation. The main difference between
two models was a lower overall stability of the C19M1
model; the system with the center of the cylinder located
the center of a lattice cell was already unstable at the low
resolution below a critical shear viscosity of about 1/10
and for l05lB5lK3

5lK4
521. However, just as for the

C9M9 model, stability could always be regained by reduc
the magnitude oflK3

~Fig. 10!. The decrease in stability o
the C19M19 model for these systems is most probabl
result of additional invariants as a result of the symmetry
the z direction. No significant effect oflK4

on the stability
was found, so a value of21 can be used for all practica
purposes.

In addition to improving the stability it was found tha
reducing the magnitude oflK3

decreased the drag coefficie
of the disks and spheres. Hence, the hydrodynamic radiu
a disk or sphere depends onlK3

, in addition to the shea
viscosity, the nominal radius, and the position relative to
lattice. This is consistent with earlier results of Cornub
et al. @26# and Ginzbourg and Adler@28#, who showed that
the position of the zero-velocity plane for two-dimension
channel flow depends on the shear viscosity, the nom
channel width, the angle of the walls with respect to one
the lattice directions, and the kinetic eigenvalue. Th
showed that for a given shear viscosity one can tune
kinetic eigenvalue, such that the position of the hydrod
namic boundary coincides with the physical boundary. R
ducing the magnitude oflK3

both stabilizes simulations a
low viscosities and also decreases the error in the locatio
the hydrodynamic boundary.

The lower stability of the ERT model~Figs. 8 and 9! at
low shear viscosities is a result of the nonhydrodynam
modes. Low shear viscosities are obtained by choosin
relaxation timet close to 0.5, implying that all the eigenva
ues of the collision operator, including of coursel0 , lB , and
lK3

, are close to22, which severely reduces the stabili
compared to the C9M9 and C19M19 models. It is found t
choosing different relaxation rates for the kinetic mod
leads to a model that is significantly more stable than
ERT model, in agreement with the conclusion of Lallema
and Luo@31#.
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V. DISCUSSION

In this paper a detailed description is given of the contin
ous bounce-back rules@3#, a recently developed set o
boundary rules for the lattice-Boltzmann model. Althou
the CBB rules are more complicated to implement, the ad
tional computational overhead is small. The key advanc
that the accuracy of these boundary conditions is insens
to the position of the interface with respect to the lattice. T
allows for a reduction in resolution in typical simulations b
a factor of 2 or 4, corresponding to at least a 16-fold red
tion in computer time and an eightfold reduction in memo
We anticipate that the most important applications of t
idea will be to simulations of changes in morphology in p
rous media, arising from erosion or deposition of solid c
ried by the fluid@37#. The CBB rules allow for a continuou
variation in the position of the solid surfaces, and can
adopted to simulations of particle suspensions by modify
the reflected population densities to take account of the m
ing interface@4#. In simulations of particle suspensions, pa
ticles are discretized by assigning each lattice node to ei
the fluid or the solid phase, depending on the position of
node with respect to the particle interface. This leads to fl
tuations in the particle’s volume when it moves over the gr
resulting in fluctuations in the drag force@38#. The CBB
rules should prevent these fluctuations, since the particle
ume is independent of its position with respect to the gr
resulting in smoother and more accurate particle trajector
The modification of the CBB rules to extend the method
moving interfaces is in preparation.

Numerical and theoretical analysis of Poiseuille flow
aligned channels with arbitrary widthsL0 showed that the
hydrodynamic boundary, i.e., the zero-velocity plane, is
cated at the actual position of the solid-fluid interface w
relative deviations that are of orderL0

22. This leads to
asymptotic second order convergence of the rms error in
flow field @Fig. 2~d!#. For more general geometries, like flo
in inclined channels or flow through periodic arrays of dis
or spheres, the hydrodynamic boundary is generally d
placed from the physical one. This displacement varies w
shear viscosity and geometry, extending into the fluid
kinematic shear viscosities smaller than about 1/6 and
the solid for values above about 1/6. For kinematic sh
viscosities far below 1/6 the hydrodynamic boundary exte
significantly into the fluid and the simulation results shou
be interpreted in terms of the actual hydrodynamic bound
instead of the physical one, determined by the location of
solid-fluid interfaces@4#. For example, the relative error i
the drag coefficient of a periodic array of disks or sphe
decreases asL0

22 with respect to its value based on the h
drodynamic radius~Fig. 7!, but only asL0

21 with respect to
its value based on the nominal radius.

Stability analysis of the lattice-Boltzmann equation wi
the CBB rules indicated that most of the simulations d
scribed in this paper were numerically unstable below a c
tain critical shear viscosity. This poses a potential probl
for simulations of nonzero-Reynolds-number flow, when it
often necessary to reduce the shear viscosity in order to k
the Mach number small. For example, in a recent study
1-13
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inertial flow in ordered and random arrays of spheres@39# a
kinematic shear viscosity of 0.01 was used. This is w
within the stability range of all the collision operators exce
possibly the ERT model.

It was found that the instabilities were a result of t
interpolation of the population density in the CBB rules
account for the velocity gradient in the direction of propag
tion and that the critical shear viscosity below which t
instabilities occur depends on the collision operator tha
being used. The ERT model@24,25# had the highest critica
kinematic shear viscosity; its value for a general geome
lay between 1/60 and 1/200. Both the C9M6 and
C19M10 models@21# were found to be more stable. The
models produced stable results forn>1/600 for each of the
simulations described in this paper. Furthermore, it w
found that the stable region of these models could be
creased by using the more general linearized collision op
tors described in Appendix A. In that case, stability cou
always be regained by reducing the magnitude of the eig
values associated with the kinetic modes~Fig. 10!. In addi-
tion this also reduces the error in the position of the hyd
dynamic boundary. Hence, being able to choose differ
eigenvalues to separate the relaxation of the hydrodyna
modes and the kinetic modes greatly enhances the stabili
the lattice-Boltzmann method, giving the more general l
earized collision operators described in Appendix A a sign
cant advantage over the ERT model.
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APPENDIX A: GENERAL LINEARIZED
COLLISION OPERATOR

In this appendix a general linearized collision operator
the lattice-Boltzmann equation is constructed for both
two-dimensional nine-speed model~the C9M9 model! and
the three-dimensional 19-speed model~the C19M19 model!.

First a complete set of pairwise orthogonal vectorsbk ,
k50, . . . ,J21, is constructed in the velocity space spann
by ci , i 50, . . . ,J21. A suitable set of vectors for the C9M
@27,31# and the C19M19 models is given in Tables I and

Next, the linearized collision operatorL is defined such
that these basis vectors are its eigenvectors with corresp
ing eigenvalueslk ,

L•bk5lkbk . ~A1!

The collision step of the lattice-Boltzmann update@Eq. ~7!#
with the collision operator as defined in Eq.~4! can then be
written in terms of thebk’s, their associated eigenvalueslk ,
the force densityf i(r ,t), and the moments of the velocit
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distribution function,ni(r ,t), and of the equilibrium velocity
distribution function,ni

eq(r ,t), with respect to these basi
vectors, i.e.,

n* ~r ,t !5(
k

bk
22$mk~r ,t !1lk@mk~r ,t !2mk

eq~r ,t !#%bk

1f~r ,t !, ~A2!

where the vector notation of Eq.~26! is used. Here, the mo
mentsmk(r ,t) andmk

eq(r ,t) are defined as the projections o
ni(r ,t) andni

eq(r ,t) on thebk’s, i.e.,

mk~r ,t !5(
i

bkini~r ,t !5bk•n~r ,t ! ~A3!

and

TABLE I. Basis vectors, equilibrium moments, and eigenvalu
for the C9M9 model@27,31#. Hereb0* 5(1,0, . . . ,0) andci5ici i .

k bk mk
eq(r ,t) lk

0 9b0* 2b11b4 r23ru2 l0

1 ~1, . . . ,1! r
2 $cix% rux

3 $ciy% ruy

4 $3ci
224% 3ru222r lB

5 $cix
2 2ciy

2 % rux
22ruy

2 lS

6 $cixciy% ruxuy lS

7 $ciy(3ci
225)% 2ruy lK3

8 $cix(3ci
225)% 2rux lK3

TABLE II. Basis vectors, equilibrium moments, and eigenva
ues for the C19M19 model. Hereb0* 5(1,0, . . . ,0) andci5ici i .

k bk mk
eq(r ,t) lk

0 399b0* 221b115b5 r23ru2 l0

1 ~1, . . . ,1! r
2 $cix% rux

3 $ciy% ruy

4 $ciz% ruz

5 $19ci
2230% 19ru2211r lB

6 $3cix
2 2ci

2% 3rux
22ru2 lS

7 $ciy
2 2ciz

2 % ruy
22ruz

2 lS

8 $cixciy% ruxuy lS

9 $ciyciz% ruxuz lS

10 $cizcix% ruzuz lS

11 $cix(5ci
229)% 22rux/3 lK3

12 $cix(ciy
2 2ciz

2 )% 0 lK3

13 $ciy(5ci
229)% 22ruy/3 lK3

14 $ciy(ciz
2 2cix

2 )% 0 lK3

15 $ciz(5ci
229)% 22ruz/3 lK3

16 $ciz(cix
2 2ciy

2 )% 0 lK3

17 $(ci
223ciz

2 )(3ci
225)% (3ruz

22ru2)/2 lK4

18 $(cix
2 2ciy

2 )(3ci
225)% (2rux

21ruy
2)/2 lK4
1-14
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mk
eq~r ,t !5(

i
bkini

eq~r ,t !5bk•neq~r ,t !. ~A4!

The reciprocal relations

n~r ,t !5(
k

mk~r ,t !bk

bk
2 ~A5!

and

neq~r ,t !5(
k

mk
eq~r ,t !bk

bk
2 ~A6!

follow straightforwardly from Eqs.~A3! and ~A4!, since by
constructionbi•bj5bi

2d i j , wherebi5ibi i .
Finally, the eigenvalueslk and the equilibrium moment

mk
eq(r ,t) are defined. Note that some of these moments

eigenvalues are related to physical quantities, but that ot
have no obvious physical meaning. For the C9M9 model
the equilibrium moments, exceptm0

eq, are fixed in order to
recover the Navier-Stokes equations. A suitable choice
m0

eq is m0
eq5r23ru2; for this particular choice an equilib

rium distribution is recovered equal to that introduced
Qian et al. @25# and later obtained by systematically di
cretizing the continuous Boltzmann equation in both tim
and phase space@40,41#, i.e.,

ni
eq5rwi S 113u•ci1

9

2
uu:cici2

3

2
u2D , ~A7!

with the weightswi in two dimensions~2D! given by

wi5H 4/9, ci
250

1/9, ci
251

1/36, ci
252

~2D!. ~A8!

The eigenvalues associated with the viscous modes ar
lated to the bulk and shear viscosities, i.e.,

h5
r

6 S 11
2

lS
D ~A9!

and

hB5
r

6 S 11
2

lB
D ~2D!. ~A10!

The equilibrium moments and the eigenvalues for the C9
model are summarized in Table I.

For the C19M19 model a similar analysis gives the eq
librium moments and the eigenvalues that are summarize
Table II. The equilibrium momentsm1

eq,...,m16
eq are deter-

mined by the form of the Navier-Stokes equations. The
maining ones,m0

eq, m17
eq, andm18

eq, can again be chosen t
obtain the equilibrium distribution of Eq.~A7!. In this case
the weights are given by
01670
d
rs
ll

of

re-

9

i-
in

-

wi5H 1/3, ci
250

1/18, ci
251

1/36, ci
252

~3D!. ~A11!

The eigenvalueslB andlS are again related to the bulk an
shear viscosities. While the expression for the shear visco
is the same as for the C9M9 model@cf. Eq. ~A9!#, the cor-
responding expression for the bulk viscosity is

hB5
r

9 S 11
2

lB
D ~3D!. ~A12!

APPENDIX B: MATRIX FORMULATION
FOR LOW-REYNOLDS-NUMBER FLOW

In order to investigate the stability of the lattice
Boltzmann equation a low-Reynolds-number approximat
was used to write the lattice-Boltzmann equation as a lin
system of equations in terms of the moments with respec
the eigenvectors of the general linearized collision opera
~Appendix A!. The global stability of these equations ca
then be determined by calculating its eigenvalues.

The collision step of the lattice-Boltzmann update w
already obtained in Appendix A@Eq. ~A2!#:

n* ~r ,t !5(
k

bk
22$mk~r ,t !1lk@mk~r ,t !2mk

eq~r ,t !#%bk

1f~r ,t !. ~B1!

Here mk(r ,t) and mk
eq(r ,t) are the moments ofni(r ,t) and

ni
eq(r ,t) with respect to the eigenvectorsbk , k50, . . . ,J

21 @cf. Eqs.~A3! and~A4!#, bk5ibki , andlk is the eigen-
value associated with the eigenvectorbk .

For low-Reynolds-number flows, the equilibrium veloci
distribution functionni

eq(r ,t) is required only to linear orde
in the fluid velocity and the equilibrium momentsmk

eq(r ,t)
can be written as a linear combination of the conserved qu
tities r(r ,t) and j (r ,t) @cf. Eqs. ~A4! and ~A7!#. The colli-
sion step of the lattice-Boltzmann update@Eq. ~B1!# can then
be written as a linear system of equations,

n* ~r ,t !5e•m~r ,t !1f~r ,t !, ~B2!

N* ~ t !5E•M ~ t !1F~ t !. ~B3!

Here, the matrixE is a JN3JN block-diagonal matrix,E
5diag$e,...,e%, ande is theJ3J expansion matrix, defined
by its elements

ei j 5
bi j

bj
2 ~11l j !2(

k

bik

bk
2 lkgk j , ~B4!

wherebi j is the i th element ofbj and the matrixg projects
mk

eq(r ,t) onto m(r ,t), i.e., mk
eq(r ,t)5( jgk jmj (r ,t).

The propagation step was already given in Eq.~25!;
hence,

N~ t11!5T•@E•M ~ t !1F~ t !#. ~B5!
1-15
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Finally, the velocity distribution after propagation is pr
jected back to its moments,

m~r ,t11!5p•n~r ,t11!,

M ~ t11!5P•N~ t11!, ~B6!

where the matrixP is a JN3JN block-diagonal matrix,P
5diag$p,...,p%, andp is theJ3J projection matrix, which is
defined such that itskth row equals the eigenvectorbk @cf.
Eq. ~A3!#. From Eqs.~B5! and ~B6! we obtain

M ~ t11!5P•T•@E•M ~ t !1F~ t !#, ~B7!
ot

us

Y.

01670
which completes the formulation of the lattice-Boltzma
equation as a linear system of equations in terms of the
ments of the velocity distribution function with respect to t
eigenvectors of the collision operator.

A similar approach was used in Ref.@42# to directly solve
the steady-state solution of the lattice-Boltzmann equa
for low-Reynolds-number flow in porous media. Here, t
eigenvalues associated with the rest-particle mode and t
associated with the kinetic modes were set to21, projecting
them out entirely from the postcollision distribution. Henc
this Appendix gives a straightforward extension of the resu
in Ref. @42# to a general linearized collision operator.
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