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Singularities, structures, and scaling in deformedm-dimensional elastic manifolds
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The crumpling of a thin sheet can be understood as the condensation of elastic energy into a network of
ridges that meet in vertices. Elastic energy condensation should occur in response to compressive strain in
elastic objects of any dimension greater than 1. We study elastic energy condensation numerically in two-
dimensional elastic sheets embedded in spatial dimensions three or four and three-dimensional elastic sheets
embedded in spatial dimensions four and higher. We represent a sheet as a lattice of nodes with an appropriate
energy functional to impart stretching and bending rigidity. Minimum energy configurations are found for
several different sets of boundary conditions. We observe two distinct behaviors of local energy density falloff
away from singular points, which we identify as cone scaling or ridge scaling. Using this analysis, we dem-
onstrate that there are marked differences in the forms of energy condensation depending on the embedding

dimension.
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[. INTRODUCTION small neighborhood of the interface between the two phases;

Ginzburg-Landau vorticeg20] which, among other things,

In the last several years, there has been a marked intered¢scribe type-two superconductors; and solid-solid phase
in the nature of crumplingi1—11]. Field theories have been transitions in crystalline material§martensitic phases
formulated for the crumpling transitidd ], quantitative laws [17,21].
have been deduced for the energy scaling of crumpled sheets One distinctive aspect of the energy condensation in
[3,4,6, and dynamics of the crumpling process have beerrumpling is the interesting dependence of the total energy
simulated and measuréd]. In this paper, we treat crumpling scaling on boundary conditions. A survey of the elastic en-
as an example of energy condensation. ergy scaling with thicknesk for a given material with two-

The crumpling of a thin elastic sheet can be viewed as thelimensional strain modulys illustrates this point. For elas-
condensation of elastic energy onto a network of point vertic sheets that are forced so that they form a single conical
tices and folding ridges. These structures spontaneouslertex or “d-cone” [4], the only curvature singularity in the
emerge, for example, when a thin sheet of thicknress\d h—0 limit is at the vertex of the conf4,9,10. The total
spatial extenL.>h is confined within a ball of diameteX  energy of the sheet scales a&? In(X/h) [10] in this situa-
<L. For X<L/2 the important length scales becotma@nd tion. When the boundary conditions are such that there are
X. The elastic energy scaling of vertices and ridges are wellnany vertices and ridgdgg.g., confinemeit the elastic en-
understood 3,6]. In the limit h/X—0, the elastic energy is ergy is concentrated on the ridges. For confined sheets, the
believed to condense into a vanishingly small area arountypical ridge length is on the order of the confining diameter
the ridges and vertices. X. It has been argued that ridges with lengtthave a char-

There is a significant body of physics literature on energyacteristic total elastic energy that scalesu4s’>x*3[22,23,
condensation, because it is a pervasive feature of condensedd that the total energy of the system scales with the same
matter. This behavior is seen in many systems includingexponent. A final example is the delamination and blistering
type-two superconductofd 2], strongly turbulent flow[13]  of thin films, which is described by the same energy func-
as well as in mechanicdll4] and electrical15] material  tional as the crumpled sheet but with different boundary con-
failure. Analogous condensation also occurs in particleditions [24—32. In this circumstance, the sheet develops a
confining gauge field theorig46]. In a mathematical con- self-similar network of folding lines, whose lengths grow
text, such condensation often arises in singular perturbatiorsmaller as we approach the bound@y,32, and the total
of nonconvex variational problenjd7,18. A few examples energy of the sheet scalesah (with a finite fraction of the
of such problems are the gradient theory of phase transitionsnergy concentrating in a narrow layer near the boundary, of
[19], wherein the bulk of the energy is condensed into aa width that also scales &s[32]).

Thus, by varying the boundary conditions, the same en-

ergy functional can lead to significantly different forms of
*Present address: Department of Physics and Astronomy, Univeenergy condensation, with different energy scalings and dif-
sity of Pennsylvania, Philadelphia, PA 19104, ferent types of energy bearing structures. This behavior is
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contrary to the widely held view that singularities are “lo- for the degree of energy condensation in the crumpled state.
cal” phenomena. Our goal is to study this phenomenon, wittBuilding on existing knowledge, we make predictions for the
a hope of understanding the factors that determine the natusezaling of energy density with a distance away from the re-
of energy condensation in general systems. In this paper, wgions of greatest elastic energy. We identify two distinct
study elastic energy condensation in spatial dimensionforms of energy scaling, which we call ridge scaling and
above three. Our motivation is to understand how the scalingone scaling(the names are based on the geometry these
behavior of crumpled sheets and the topology of energy corscalings correspond to in ordinary crumpling of two-sheet in
densation networks generalize fon-dimensional elastic three dimensions Section V describes how we represent
manifolds ind-dimensional space. To this end, our numericalelastic manifolds numerically.
study explores energy condensation in two-sheets in three or Then we present our numerical findings. We begin in Sec.
four dimensions and three-sheets in dimensions 46, subje¢t with simulations of sheets confined by shrinking hard
to boundary conditions which are akin to confinement.  \all potentials. In this qualitative study, the embedding di-
Our previous worK 33,34 showed that the notion of an mension seems to affect the crumpled structure significantly.
elastic membrane extends naturally to different dimensionsype condensation of energy appears to become progressively

Such membranes have an energy cost for “stretching” defory e aker as the embedding dimension is increased, culminat-
mations that change distances between points in th

. . ; - ﬁg in no condensation whathreaches gh. Numerical diffi-
mdimensional manifold and have an additional cost for

L . . culties prevented any significant quantitative analysis of the
bengllng Into the_embeddln_g space. When these costs are IS§eometrical confinement data. The need for better data mo-
tropic, the material properties may be expressed in terms of

stretching modulus, a bending stiffness, and a“Poisson’s ra_wates f[he simpler systems we S'”."”'ated next .
Section VII describes our studies afsheets with two

tio” of order unity. As in two-dimensional manifolds, the disclinati <clinati de b . d
ratio of bending stiffness to stretching modulus yields a chardisclinations. Disclinations are made by removing wedge

acteristic length. Indeed, if the manifold is a thin sheet ofShaped sectors from the sheet and then joining the edges of

isotropicd-dimensional material, the thicknesf the sheet €ach wedge. The essential feature of a disclination is that it
is a numerical multiple of the square root of the modulusinduces the sheet to form a cone, with lines of null curvature

ratio that may be readily calculat¢@3]. converging at a vertex. It has been shown that wheo

Our previous pap€i35] identified two regimes of dimen- disclinations are introduced into a two-sheet in three dimen-
sionality with qualitatively different response to spatial con-sions, the elastic energy of deformation between the discli-
finement. The authors considered an elastidimensional nations condenses along a ridge joining the two verti8és
ball of diametelL geometrically confined withid-spheres of These ridges appear completely similar to those in geometri-
diameter less thah/2. When the embedding dimensidris  cally confined sheets and exhibit the same energy scaling
twice the manifold dimensiom or more, the state of lowest [22]. In our present study, simulated two-sheets in three di-
energy is one of nonsingular curvature, with stretching elasmensions formed the familiar ridges, but two-sheets with the
tic energy indefinitely smaller than bending energy. For thesame boundary conditions in four-dimensional space had
complementary cases wheilés smaller than &, the defor- much lower total elastic energies and very different energy
mation is qualitatively different. Such manifolds cannot bedistributions. Similarly, three-sheets in 4 spatial dimensions
geometrically confined in a sphere of diameter smaller thafiormed ridges closely analogous to those seen in two-sheets,
L/2 without stretching or singular curvature. In ordinary two- but for three-sheets in five dimensions no ridges were evi-
sheets (h=2) in three dimensions energy condenses in ordedent. Also, nonparallel disclination lines in three-sheets ap-
to reduce the stretching energy of spatial confinement. Thpear to generate further disclinationlike lines in four spatial
degree of energy condensation depends on the stretchirimensions but not in five.
moduli through the thicknest& defined above. In three- Next, in Sec. VIl we detail our simulations of three-tori
sheets, singularities or stretching are required in four or fiveallowed to relax ind dimensions. The benefit of this geom-
embedding dimensions. Previous wdid4] confirmed that etry is that we expect it to cause energy condensation without
for three-sheets confined in four dimensions, energy conthe need to introduce disclinations. Observing that a two-
denses into a network of linelike vertices and planar ridgestorus cannot be smoothly and isometrically embedded in a
We seek to understand how the degree of energy condensgpace of dimensionality less than four, we expect an elastic
tion associated with confinement changes with increasingheet with the connectivity of am-torus embedded in a
spatial dimension. We expect that less energy will be respace of dimensiod<2m will relax to a configuration with
quired to confine a three-sheet within a five-dimensionaregions of nonzero straificondensed into a network of
sphere than within a four-dimensional sphere, but we do natidges. We found that a three-torus =4 spontaneously
know a priori how the form of energy condensation will forms a network of planar ridges that intersect in vertex sin-
differ between these two cases. gularities similar to those in the geometrically confined

We begin our study by giving a brief review of elastic sheets. Ird=5, the three-torus forms a point-like vertex net-
theory in Sec. Il. Then, Sec. lll quantifies our definitions of work with no observable ridges. The energy scaling and
“folding lines” and “vertices” within a framework of iso- presence or absence of ridges mirrored the behavior of sheets
metric embeddings, and in Sec. Il A we propose a rule forwith disclinations in Sec. VII. The complexity of the crum-
the topological dimensionality of vertices in energy conden-pling network decreases with increasing embedding dimen-
sation networks. In Sec. IV, we present analytical estimatesion, with spontaneous symmetry breaking evident dor
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=5. As expected, the elastic energy distribution is homogein the long directions, and the orthonormal basis vectors for
neous ford=6. the thin directions, that describes the geometry in the thin
Finally, in Sec. IX we present the results of simulations ofdirections. These basis vectors for the thin directions give a
a “bow configuration,” in which the center points of oppo- normal frame field to the embedding of the center surface,
site faces of a three-cube were attached and the cube wamce they are all orthogonal to each of the long directions in
embedded in four or five spatial dimensions. With properthe sheet. Further, since the basis vectors at different points
manipulation of initial conditions, the cube embedded in fiveare related by parallel transportRf, the normal frame field
dimensions forms a single, pointlike vertex at its center. Thes torsion free.
energy density scaling away from this singularity agrees with For small distortions, we can continue to describe the em-
predictions for a novel kind of elastic structure that is a gen-bedding of them-sheet by giving the embedding of the cen-
eralization of a simple cone. By contrast, the cube embeddegr surfaceS and by specifying the normal frame fil@3].
in four dimensions forms a set of linelike vertices and planarThe rotational invariance in the thin directions implies that
ridges that are well modeled by our present understanding dhe torsion of the sheet in the embedding cannot couple to
three-dimensional crumpling. the geometry of the center surface. Since the sheet has no
We conclude by discussing the observed energy scalingtrinsic torsion, if there are no applied torsional forces, the
properties of crumpled elastic sheets. We have developedraormal frame has to remain torsion free. The torsion degrees
means to identify the presence of ridgesnirsheets based of freedom, therefore, drop out of the energetic consider-
solely on their spatial elastic energy distribution. Using theations that will determine the geometry of the shEz].
analysis of energy distributions, we demonstrate that foldingrherefore, we can leave out the thin directions and determine
lines in greater tham+ 1 dimensions have different energy the energy of the embedding through an effective Lagrangian
and thickness scaling properties thamin- 1, but ridges in  that only depends on the long directions, i.e., the geometry of
m+1 seem to have the same scaling regardlesm.ofVe  center surface of the sheét as embedded in thd-space
found that ridge scaling dominates the crumplingre$heets  [33]. This approach puts powerful tools of differential geom-
in m+ 1 dimensions, while cone scaling was the only formetry at our disposal. Numerically, this treatment greatly in-
of scaling witnessed in dimensions greater tha# 1. Dif- creases the efficiency of our simulations by decreasing the
ferences in the morphology of higher-dimensional foldingdimension and required grid resolution of our lattice. In the
lines is discussed briefly. The local structure of these folds iéimit h/L<1 and for relatively small elastic distortions of the
very different from that of the familiar ridges found in two- material, this description is highly accurate.
sheets in three-dimensional space. We also note that our We use Cartesian coordinates in the center surface, which
simulational findings strongly support the new rule for thecan be viewed as the s&CR™. We refer to these coordi-
topology of elastic energy bearing structures in higher di-nates as the material coordinates, and quantities referred to
mensions, which is presented in Sec. Ill A. We end with athe material coordinates will be denoted by Roman sub-
brief discussion of the mathematical questions raised by thecripts, e.g.j,j,k,I. The configuration of the sheet is given
nonlocal character of energy scaling in crumpled sheets. by a vector valued functions(x;) with values in the
d-dimensional target space. We also denotedthen normal
Il. ELASTIC m-SHEETS IN d-SPACE vectors in a choice for an orthonormal, torsion-free frame by
n(@, with a Greek superscript that takes values, 1,2 d
—m. Such a choice exists by our previous considerations.
The strain energy densitgs due to the distortions within
the m-sheet is given by the conventional expresdigf] in
terms of the Lameoefficientsn and u,

In this section, we review the elastic theoryrofsheets in
d-space as it is presented in REB3]. In analogy with the
elastic two-sheets of everyday experience, rsheet in
d-dimensional space is an elastically isotrogidimensional
solid that has a spatial extent of orderin m independent
directions anch<<L in the remainingd—m directions. Spe- A
cifically, our mrsheet is given bySxBf MCRY, where Lo=nyi+ 57 (1)
SCR™is a set that has a typical linear sizén all directions, 2
andBJ~ ™ is a (d—m)-dimensional ball of diametet.

We are considering embeddings of tmesheet in a where y;; is the strain tensor, defined by

d-dimensional target space. We first consider the lowest en- - o
ergy embedding in a sufficiently largkdimensional space, 723(‘1 o )
say all ofRY, so that the sheet is not distorted in the embed- o2\ ax axg Y

ding. We assume that the undistorted sheet has no intrinsic

strains, curvatures or torsior(swists). Since there are no The strain tensor quantifies the deviation of the metric tensor
curvatures or torsions, picking an orthogonal basislefm  of the embedded sheet from its intrinsic metric tensor. Here
vectors for the thin directions at one point on the sheet, andnd henceforth, repeated indicmth Greek and Roman
then parallel transporting these vectors to every point on thare summed over all the range of their allowed values.
sheet gives an orthonormal set of basis vectors for every The nonzero thickness of the-sheet leads to an energy
point of the sheet. We can, therefore, describe the geometgost for distortions of the center surfaSen a normal direc-

of the undistorted sheet, which isdedimensional object, by tion, i.e., bending distortions. A measure of the bending of
the m-dimensional center surfacg that gives the geometry the manifold at any point is the extrinsic curvature tensor
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Eij(xi), which is the projection of the second derivatives
&iﬁjF into the normal frame. The component of the extrinsic
curvature in the normal direction® is given by

A
L,=B Ki(ja)Ki(ja)+ZKi(ia)K](f‘) . (3)

The bending moduluB in the above equation is determined

» P - @ by the Lamecoefficientu and the thickness of the sheet
K= -t i
T % through the relatio33]
As shown in Ref[33], if the strains are small and the cur- B=puh?/ n(m,d),
vatures are small compared tdilthe energy density of the
bending distortions,, is given by where »(m,d) is given by
(2
- d—-m=1
3
d— T
— - d—m=2
nmd)=g—x4 3 : @
1
d m+2,6'(3/2,d—m—2)Sd,m,1 d—m>2

where S,=27%?T'(a/2) is the area of a unit sphere m  minimizing the resulting energy by a conjugate gradient
dimensions andB(a,b)=T(a)l'(b)/T'(a+b) is the beta method[37], as we outline below.
function. Form=3 andd=4,5,6, »(m,d)=3,4, and 5, re- Our goal is to study the scaling behavior of the structures
spectively. on which the energy concentrates as the thickhes®. The

For studying the geometrical confinement of an elasticvariational derivative of the potential term is given by
m-sheet, the confining forces are assumed to be derived from
a potentiaNc(F) in the embedding space. The energy of the o m - e T
m-sheet is the sum of the bending energy, the strain energy, 5_Ffsd XVe(r (%)) =VVe(r(xp)).
and the energy due to the spatially confining potential.
Therefore, the total energy is given in terms of the geometryrhis term leads to a strongly nonlinear coupling between the
of the center surface by configuration of the minimizer and the stresses and bending
moments in the sheet. Consequently, the conditions for me-
chanical equilibrium are now “global” and the stresses and

2
_ m h_ (@), (@) L (@) (a) 2 L 2 bending moments determined by the local strains and curva-
£ M d™x ij K” + Kjj K“ + 7IJ+ Yii
S n 2u 2 tures should balance a term that depends on the global ge-
R ometry of the configuration. In addition to complicating the
N Ve(r(xi)) 5 analysis, this introduces length scales besides the thickness
“w ' (5) into the problem. This in turn can lead to the lack of simple

scaling behavior at equilibrium for the structures in geo-
) ) metrically confined sheets. Note, however, that this is not the
where 7= 7(m,d) as defined in Eq(4). case for confinement in a hard wall potential
The configurationr(x;) of the sheet in the embedding
space is obtained by minimizing the eneggver the set of R Vo for reQ
all allowed configurations. Alocal) minimum energy con- Ve(r)=

figuration is obtained by requiring that the variati@gi€
should vanish to the first order for an arbitrdgmal) varia- o) is a given set ik, The configuration of the mini-

tion ér of the configuration. Since the energy density con-mijzer is now restricted to be insid® and the gradient 0¥,

tains terms |nK|J s that involve the second derivatives of the is zero here, so that there is no Coup"ng between the con-
functionr (x;), the Euler-Lagrange equations for the minimi- figuration of the minimizer and the stresses and the bending
zation problem are a system of fourth-order nonlinear ellipticmoments in the sheet, in the parts of the sheet that are in the
equations on the domaif. Very little is known about the interior of ).

rigorous analysis of such equations. Therefore, we will study One way to get around this problem is to study the con-

the geometrical confinement problem numerically, by apfigurations where the energy concentration is due to the
proximating the integral in Eq5) by a sum over a grid, and boundary conditions imposed on the sheet, and not due to an

+o  otherwise,
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external potential. If the imposed boundary conditions do notjefined by derivatives of the embeddim@x;). Since the
introduce any new length scales, we would then expect to se@-sheet is intrinsically flat, the Riemann curvature tensor for
structures and scalings that are generic, i.e., independent ¢fe embedding of the center surface can be expressed in

the precise form of the imposed boundary conditions. This i$erms of theextrinsic curvatureKi(j“) by the Gauss equation
analogous to the minimal ridge2] that is obtained by im- [38]

posing boundary conditions on a two-sheet. Although the

minimal ridge is obtained with a specific boundary condition, Ri[k]= K-(|?)K-(|a)— K-(,“)K(ﬁ) )
the scaling behaviors of the ridge are generic and are seen ! e o
with a variety of boundary conditions. However, the Riemann curvature is intrinsic to the geometry

In this study we first determine the generic structures angy¢ ihe center surface. and can be written in terms of the
scalings that we expect to see for amsheet in ¢ qins as '

d-dimensional space. We also numerically verify our predic-
tions for these scalings by the configuration of an embedded
m-sheet with a variety of boundary conditions—sheets with

disclinations, sheets with a toroidal global connectivity, andConsequentIy the curvatureﬁ") and the straing;; are con-
sheets in a “bow” configuration. In all these cases, the elastiG; . inaq in oréler thal, [ k]= Rl 7] !
ij ij .

energy is given by From the symmetries of the Riemann tensor, it hgs
N —1)(m?—m+2)/8 independent components. However,
'yizj + z—yﬁ” since it can be written purely as a function of the strgjn,
s it can only have as many independent degrees of freedom as
(6)  the strain itself. As noted in Ref33], the strain tensor is
symmetric, and further it satisfiem additional conditions

gfoﬁvgvﬁr;stge dg%n;?r:nw(i)tfh":iigﬁ;?iﬁéz ir]notLOen?:Z;:osfugr?s;tsfmm the balance of in-plane stresses. Consequently, the
2 . g , ) . strain hasm(m—1)/2 independent components, and this
with disclinations or in the “bow” configuration, or a set

whose global topology is different frofi™, in the case of Z'Ljarlg:tgr]é?_l)IZ independent constraints on the extrinsic
the sheets with toroidal connectivity. Note that this energy Form=2, i.e., for two-sheets, there is one constraint, and

functional is also applicable to the confinement in a hard[his is most economically expressed through the Gaussian

wall potential, since, without loss of generality, we can SEtcurvature of the sheg¢B3]. In terms of the extrinsic curva-

V=0 for rin Q, and impose 'Ehe constraint of the hard wall tures, the Gaussian curvatugis given by

potential through the conditiongx;) € Q) for all x; e S. Con-

sequently, the energy is still given by E&), and the energy Gl k1= kP k’P — k(D wlD

condensation is due to the additional constraints that are im-

posed, that are analogous to the boundary conditions consignd in terms of the strains, the Gaussian curvature is given

Rijki LY== Yik,ji T %itjk = Yjrik T Yjk.il +O(9).

h? )\
;( i(ia)K(q)_l_mKi(ia)KJ(ia) +

ij

5=,uJ d™x
S

ered above. by
We can rewrite the energy using the in-plane stressgs
and the bending momentdl () that are conjugate to the G[y]=— Y1120t 2¥12.15~ Y2211+ O(¥2).
strainsy;; and the curvatures({”, respectively. The conju- _ _
gate fields are given by the variational derivatives We can impose the constraif[«]=G[y] through a

Lagrange multipliery, so that the augmented energy func-

o6& tional is now given by33]
Uij:gzzﬂyij"')\&ij Yk
i

1
o £ = Ldmx 5 (MK + 07 )+ X(GL 1~ L) |

8  h? - iati i (@ gi
i(ja): ™ ZV(ZMK(-‘X”?\@;K(&)), Taking the variations with respect tg; , x and «j;"”’ give
Kij

ij
O'ij = 5ijV2X_‘9ian:>‘9i0-ij:0!

where we have taken the variational derivatives as though

the fieldsy;; and«{* are independent. The energy can now G[y]=G[«],

be written as

and aiﬁjMi(ja):O'ini(ja),

1
—_ (@) (@) L o\ gm
&= ZL(M” 4t i %) A which are respectively the balance of the in-plane stresses,
the Geometridor FirsY von Karman equation and the Force
Although the energy functional does not explicitly couple (or Secondvon Karman equatiof33,39. The first equation

the strains in the manifolds to the curvatufese Eq.(6)], also shows that the Lagrange multipligiis the scalar stress

they are related by geometric constraints since they are botfunction of Airy [40].
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In this paper, we will mainly focus on the case>2. For
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that is associated with the center surfdteSince the effec-

m>2, an economical way to impose the geometric constrainfive bending modulu&hzln goes to zero ak— 0, except in
relating the extrinsic curvatures to the strains is through thehe vicinity of regions with large curvature, the large scale

Einstein tensof33]

1
Gij = Rikjk = 5 ij Rikik.

which hasm(m—1)/2 independent components since it is

symmetric and satisfies the contracted Bianchi ider#)]
aiGij = O

In terms of the extrinsic curvature,

1
Gjjlx]= Ki(ja)K(kak)_ Ki(lf)KJ(f)_ E‘sij[Kl(Ia)K(ki)_ K|(|?)K|(|?)]'
(7)
and to the first order in the strains
Gii[ v]1= = %ij .kt Yikjk— Yikij T Yijik T Gl Vit ke Vi -
(8)
As in the casen=2, the constrainG;;[ «]=Gj;[ y] is incor-

porated through a tensor Lagrange multipligr. The aug-
mented energy functional is given by

&= Ldmx

Taking the variations with respect tg; , x;;, and Ki(j“) give
the balance of in-plane stresses

1
E(Mi(ja)Ki(ja)+0'ij7ij)+Xij(Gij[')’]_Gij[K]) :

dioi;=0,
the Geometric von Karman equation
Giilv]1=Gij[«], )
and the Force von-Karman equation

(7i(9jMi(ja):O'in-(ja) y

(10

respectively{33]. In the casam= 3, the Lagrange multiplier
Xij is the Maxwell stress functiof#2].

Ill. STRUCTURES IN ELASTIC m-SHEETS

We will now investigate the minimum energy configura-
tions of the sheet with external forcing. As we discusse
earlier, the sheet can be forced either by an external potentig o

V(r) [see Eq.(5)]
configurations by appropriate boundary conditipgs. (6)].
Since confinement by a hard wall potential of radiysis
also given by the energy functional in E) where the
admissibility condition is thafir(x)||<r, for all xe S, we
will restrict our attention to the energy functionélin Eq.

(6).

[O(L)] behavior of crumpled sheets should be determined
almost entirely by the stretching energy functional

ESIML( i+ Covh)d™,

which penalizes the deviation of the configuration from an
isometry. Indeed, crumpled two-sheets in three dimensions
can be described as a set of nearly isometric regions bounded
by areas of large curvatures that include vertices and bound-
ary layers around folds. Since the curvature in these regions
is large, the bending energy in this region will continue to
remain relevant af—0. As h—0, the width of, and the
strain in, the boundary layer around folds approaches zero,
and the only nonisometric regions are the vertices.

For the remainder of this paper we assume that in any
dimension, the minimum energy configurations of crumpled
m-sheets converge in the—0 limit to configurations that
are locally isometric and have smooth, well-defined curva-
ture almost everywhere. In this view, the regions of elastic
energy concentration in thersheets converge in the—0
limit to a defect sein the manifold that is not locally smooth
and isometric, and this defect set is as small as possible
relative to the boundary conditions imposed on the sheet.
The limiting procedure that connects the defect set to the
energy concentration regions is elaborated upon in Sec.
I A.

These assumptions give us descriptive tools to classify the
elastic energy structures in higher-dimensional crumpled
sheets in terms of well-defined concepts of isometry. More
importantly, the identification of crumpling with isometric
embedding will allow us to make predictions for the dimen-
sionality of energy condensation regionsnpsheets form
>2 based on geometric results on isometric immersions. We
will present these arguments in Sec. Il A and the numerical
studies reported in Secs. VII-IX appear to support these pre-
dictions.

A. Dimensionality of defects

In this section we define a certain type of singularity
called a vertex that must exist in confinegsheets. We then
argue that a vertex must have a dimensionality of at least

m-—d—1. In previous worl{ 35] we showed that at+sheet
bedded smoothly and isometrically into a space of dimen-
n less than & must have straight lines in the sheet ma-

or by restricting the set of admissible terial, which extend across the sheet and remain undeformed.

Specifically, there exists through any poiptat least one
straight line in the undistortedn-sheetS, which (1) is
straight and geodesic in the embedding sp&feand (2)
extends to the boundary &. We will denote this result as
Theorem 1. Theorem 1 implies thatnasheet of minimum
diameterL cannot be confined to d-dimensional ball of

From Eg.(6), we see that the only length scales in theradius smaller thah/2, if d<2m, where the minimum di-

energy functional are the thickneBsand the length scale

ameterL is given by
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three-sheet in which the subsheBsre two dimensional.

We may in principle confine amsheet isometrically
within a ball of arbitrarily small size by removing subsets of
S so that it has “interior” boundaries. We shall denote the
removed part as thdefect setD. By removing sufficiently
many subsets, we can assure that all points of the resulting
sheetS’ are as close to th@nterior) boundary as we like. In
order that the remaining region be isometric, further condi-
tions are needed: Conjecture 1 forces some of the removed
regions to have a dimensionality greater than some limit, as
we now show.

We first confine a convertsheetS within a ball of di-

FIG. 1. Flat subspace® in a crumpled sheet. The figure shows

i fth llel pl f a thin three- fi in f - .
sections of three parallel planes of a thin three-cube confined in Ourmeterx much smaller than the minimum diameteof the

dimensions by boundary conditions discussed in Sec. IX. This she t. As indicated ab thi fi t - trai
is nearly isometric over most of its volume, as anticipated in secSNeet. As indicated above, this confinement requires strain or

Ill A. The arguments of this section suggest that such sheets shoufifngularities. We now remove a defect gefrom the sheet
have a nearly-flat two-dimensional subshBehrough any poinp.  Sufficient to allow the remaining sheét to be isometric, as
The R for the indicated poinp is shown as a solid grid. The nearly illustrated in Fig. 2. We choose a poipfurther thanX from

flat subsheeR’ for a different pointp’ is shown as a dashed grid. the original S boundary, as measured along the sheet. The
The adjacent boundaries & and R’ meet in a nearly straight, SubsheetR at point p can have a minimum diameter no

one-dimensional region. We identify this region as a vertex. greater tharX; otherwise this flat subspace would not fit into
the confining ball. Thus the original boundary &fcannot

L=2 mafmaxr:B(p,r)CS}], touch the boundary dR; R must be bounded everywhere by

peS r>0 D. Now, sinceR is a (2n—d)-dimensional set, at least part

of its boundary must have dimension at leasin(2d—1).
andB(p,r) is them-dimensional ball of radius centered on  (The boundary may also have additional parts of lower di-
p. By taking points far from the boundary &f, we may mension, but we ignore thegelhe setD adjacent to this
identify lines roughly of the siz&/2 or longer. It is clearly —boundary must have at least this dimension as well. Thus,
impossible to confine the sheet to a region smaller than suciost R’s in the sheet must be bounded over part of their
a line. boundary by defect set® whose dimension is (2—d
Observations of embedded sheets and generalizing thel) or more.
proof from Ref.[35] lead us to conjecture the following ex- These defect sets in strictly isometric sheets have impli-
tension to Theorem 1. We conjecture that through any gmint cations for the confinement of real elastic sheets. To see this,
there is a (2n—d)-dimensional subshe@48] R such that we repeat the confinement procedure above ta&itmbe an
(1) Ris totally geodesic in the sheet. elastic sheet of thickneds. We anticipate that regions of
(2) The image oR under the embedding is totally geode- concentrated strain will appear, as they do in ordinary
sic in RY. This together with item 1 implies that the sheet is crumpled two-sheets. Following the procedure used above,
flat. we remove part of near the regions of greatest strain, such
(3) If the pointp is a distanceX from the boundary oS, as the intersection oR and R’ in Fig. 1. Specifically, we
then the subsheet R through p contains a remove sets of minimum diameté; and denote the set of
(2m—d)-dimensional ball of diameteX. removed point® ;. We remove the smallest set such that the
We denote these assertions as Conjecture 1. The subsheegmaining shees; becomes isometric in the limit ds—0.
R can be readily identified for a simple cone in a two sheetWe now reduce the minimun diamet&of our set and repeat
For any pointp on the coneR s the half-line extending from the procedure. We suppose that the new defectDseis a
the apex throughp. Figure 1 illustrates an example of a subset of the old one, and that we are led to a well-defined

(@ (®) &

=

FIG. 2. (@) lllustration of the region®d, K, Ds, andK 4 for a two-sheet. The points are a possibleBeaind the shaded circles are the
correspondingDs. The solid lines are a possible s€tD, and the area within the dashed lines are the corresporidipgDs. (b)
lllustration of a potential way to soften the folding around a regioiCin
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limiting set D as 6—0. For eachs we may consider the ash—0. We wish to study the degree of energy condensa-
boundary ofR for a given pointp. Supposing that this tion onto these elastic structures as a function of the material
boundary also behaves smoothly, we infer that it retains it@nd embedding dimensions and the elastic thickiess
dimensionality of at leasti@—d—1 inferred above. Thus this section, we show how the scaling of elastic energy den-
the limiting defect seD should also have at least this dimen- Sity with volume away from the condensation regions can be
sion. Returning now to the full elastic she®twe expect the used to quantify the degree of energy condensation in
strain to be concentrated on the defectBeThe example of ~crumpledmrsheets. We distinguish two cases for the struc-
Fig. 1 suggests thaR sets are bounded by regions of high tures involved in crumpling. In the first cas€=D and sin-
strain, whose dimension has the minimal value2d—1. gular curvature occurs only at vertices. In the complimentary
The numerical work in later sections gives more systemati€ase,X—D#J, vertices are connected by folds in the
evidence of these strained regions. We shall denote the lim="0 limit. We show that these two cases have distinctive
iting setD as thestrain defect seand denote each connected energy scaling signatures when two-sheets are crumpled in
part of D as avertex three-dimensions. Anticipated scaling exponents for general
Although the elastic shee§; becomes isometric ah  crumpling are inferred by analogy to lower-dimensional

—0, further singularities can develop @—0. Ordinary ~ crumpling.

two-sheets in three-space show this behavior, as illustrated in There are three types of data we may use to analyze mini-
Fig. 2. Here the minimal vertex dimensiom2-d—1 is 0. Mum energy sheet configurations: the detailed embedding

The setD; consists of the four shaded disks: each disk concoordinates and the bending and stretching energy densities
stitutes a vertex. Removing these disks permits strain-frel! the manifold coordinates. To see whether energy has con-
confinement to a fraction of the size of the sheet. Howeverdensed in our simulated sheets, we first identify regions of
the strain-free deformation develops large curvaturé he-  Nigh energy concentration by plotting surfaces of constant

comes small. The diverging curvature is concentrated off€nding or stretching elastic energy in the material coordi-
lines joining the vertices. Similar diverging curvature mustnates. Figure 3 illustrates, for the case of a two-sheet in three

occur in intact sheets 45— 0. We denote such regions I c_iimensions, how surfaces Qf constant bending energy high-
which we call thecurvature defect seEor completeness, we I9ht the energy-bearing regions of the sheet. We then look at
define a sefC, that contains the regions of high curvature the coordinate information to associate regions of energy
aroundk for 5>0. For intact sheets, we expect the strain toC0ncentration with either vertices or folds.

be significant in the regio® but very small outside of it— For the remainder of our gnaly3|s we consujer the energy
noting that the geometric von Karman equation, £y, re- density data only as a function of volume fraction, indepen-
lates large gradients in the strain to large curvature, we cord€nt Of position. This removes any ambiguity in defining the
clude thatD must be a subset ok. We denote each CENter points of the high-strain regions aroundand it pro-
connected piece oE—D as afold in the crumpled sheet vides a natural framework for defining the degree of energy

The relationship between these folds and stretching ridgegonqen?]atlon. ITfetk';he vagl_ab@ represent :jh? volurr?e fra<_:-
[23] is discussed in the next section. tion in the manifold coordinates measured from the regions

Thus far we have considered effects due to confinement iff Nighest to lowest energy density=0b<1. Thus,® can

a small ball inRY. We expect similar effects if we impose °€ Written as

other constraints that reduce the spatial extent of the embed-

ded sheet. We expect defect sBtand X like those above to d(L)= J' i dmx’, (12)

form spontaneously here as well. Our numerical investiga- Viotal) £(x')=1

tions reported below do indeed show such behavior. We . . . . .
P where L= L,+ L, is the elastic energy density defined in

;:((.)mpare our expectations with the numerical findings in SeCEqs.(l) and(3), and

IV. ENERGY SCALING Viotal= Ldmx’.

We now return to the consideration of sheets with small
h>0. We consider sheets that are thin enough that the strairurfaces of constant energy in the manifold coordinates are
far away from the singular set are much less thga). This  also surfaces of constadt. Inverting Eq.(11) associates a
is the range of thicknesses that is normally considered in thgolume fraction with each observed value of the local elastic
study of thin two-sheet6,22). In this range the preferred energy density. We can write the total enefgyn the mani-
configuration of a two-sheet is well described by asymptotifold as
cally matching nearly isometric embedding over most of the
sheet to finite boundary layers around the singular /Set E=fld¢’£(¢’) (12)
(within which the strains and curvatures may become large 0 ’
on the scale oL, the manifold size We maintain the as-
sumption that energetically preferred embeddings will ex-We say the energy isondensedn a volume fractiond. if
hibit near isometry outside the singular set forsheets in - for ®>®, the energy density. falls away faster thad 1.
d-dimensional space, and view the singular set as the subsHtthis is the case, then the upper limit of integration can be
of the material manifold onto which elastic energy condensegushed to infinity without changing the value of the integral
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(@) (®)

(© @ :

FIG. 3. A cone and a ridge formed with disclinations. Imdgeshows a minimal elastic energy embedding for a two-sheet with one
disclination in three-dimensional space. The sheet was18D lattice units in size and had an elastic thickness-@f100 in lattice units.
The disclination was formed by folding one edge at its center point and attaching the two halves. The minimal energy configuration is a cone.
Plot (b) shows surfaces of equal bending energy for the she@),mplotted in its material coordinate system. Imgggshows a minimal
elastic energy embedding for a two-sheet wviitlo disclinations in three-dimensional space. The sheet wax 100 lattice units in size and
had an elastic thickness ef1/10 in lattice units. The minimal energy configuration is a ridge. Rlbtshows surfaces of equal bending
energy for the sheet ift), plotted in its material coordinate system. In each image, heavy lines indicate edges of the sheet that were joined
together to make the disclinations.

by more than a finite fraction. By repeating this analysis for=0, but forh>0 it acquires small but finite strain. Dimen-
the bending energy,, or the stretching energgs, we may  sional analysis of the force von Karman equation, @d),
characterize the condensation of these forms of energy indfor a curvature of the formC(r,68)=g(6)/r yields strain
vidually. scaling of the formh?/r? for nearly isometric embeddings.
We may now make predictions for the elastic energy scalThus, for energetically preferred embeddings, the bending
ing exponents based on our knowledge of the structureand stretching energy densities should scale a$ ahd
found in crumpled sheets. We first consider the case whera?/r*, respectively. We can express this energy scaling in
the set/C="D. In the familiar crumpling of two-sheets in terms of the volume fractiob by finding how ® grows
three dimensionsC=D when the sheet contains a single with r. In any principal material direction, smooth curvature
vertex and the configuration outside the vertex is conical. Irof orderC will typically persist over a length of order@/ In
any dimension, it is easy to see that far away fronthe  a three-sheet, the volume of high energy density surrounding
conformation should be independent of the small lengthan energetic cone generator will therefore grow 4§ the
scaleh. Far away from the curvature singularity, there is nocurvature in one material directions transverse to the genera-
intrinsic length scale, so simple dimensional analysis tells usor dominates, or as® if the curvatures in both transverse
that the curvature must be a numerical multiple rof*, directions are on the same order. The bending energy density
wherer is the distance from the vertex. The preferred em-will respectively scale asb ! or ® 23 Since the strain
bedding is thus a simple generalization of a cone, withalong a generator dies twice as quickly as the curvature, the
straight line generators radiating from a central vertex andgtretching energy density will correspondingly scalefas®
transverse curvatures decreasing asaléng the generators. or ® ~*3 Thus we surmise that conical scaling has the typi-
The cone configuration is isometric outside the vertexhfor cal form
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Lo~ P, virial relation, E,=5XEg, should also be evident in the ra-
(13) tio of scaling prefactors for the two energies. Furthermore,
L~D2P, the total elastic energy in a ridge diverges as the length of the

ridge becomes infinit§23], so the energy density along the
wherep=2/(1+n), andn is an integer equal to the number ridge should not fall faster tha® ~1. Thus we expect the
of transverse curvature directions along energetic cone gerscaling behavior of ridges to follow
erators. In all the geometries accessible to two or three-

sheets, the stretching energy is condensed while the bending Ly~d1 0<q<1 14

is not—this is not the case in all higher dimensions, where L~1/5L,~d 4 a=-= (14

the value ofn can be greater than 3 and the stretching energy

not condensed. This dependence implies that strain energy has not con-

We now consider configurations that hakie- D#J. We  densed onto the vertices alone if ridges are present. In gen-
have denoted each connected piecéCefD as afold in the  eral, our assumption of near-isometry away from the defect
previous section. At this point we need to make a distinctiorset implies that strain will condense out of the bulk of the
between folds and ridges. For two-sheets in three dimensions-sheet. Thus we expect that the strain must condense onto
with h>0, folds have an energetically preferred local struc-the ridges and vertices—onto the full $ét This means that,
ture. We describe folds in this context as ridges, a term thabeginning at someb.<1 that marks the boundary of the
encompasses both the geometric and energetic structure. flillge scaling region, there will be a more rapid dropoff
general crumpling, we do not knoa priori whether the (faster thand 1) of strain energy with volume away from
local structure around folds will be similar to that in lower- the ridges.
dimensional crumpling, so we must make our definition of a We can calculate the anticipated scaling expoiggatiove
ridge more precise. Since we already have a geometrical déased on the anticipated scaling of the ridge width) at a
scriptor for folds, we use the term ridge to describe a certainlistancer from a vertex, viaw(r) =w(X)f(r/X), whereX is
kind of energetic structure associated with folds. The generthe length of the ridge. Previous woil83] shows that
alization of a ridge is a boundary layer around a fold whosen(X)~h(X/h)?® for (m-—1)-dimensional ridges in
energy scaling depends on two length scales—the elastitrsheets. We anticipate that(r)<w(X) whenr<X, and
thicknessh of the sheet and the lengthof the fold. Clearly, that in this regimew(r) is independent oK. Then our scal-
in the thin limit these are the only two length scales that caring assumption implies/(r)~h(r/h)?2. The transverse cur-
be important around the fold. Conversely, there must be ajature C(r) is as usual presumed to be of ordew(r).
least two length scales if there is to be any nontrivial scaling_obkovsky [22] originally derived this scaling property
of the ridge profile with thickness. The presence of two based on more detailed assumptions. The curvature energy
length scales allows for a balance between the coupled benghould be significant in a region of widtiaround the center
ing and stretching energies, which is also a hallmark ofof the ridge. The local energy density therefore scales as
ridges(and could be used as an alternative equivalent defic?~r 43 while the high-energy volume should grow as
nition) ®~r x1/C=r>3 Thus the above curvature scaling leads to

For two-sheets in three dimensions, the condition D & 45 scaling for bothCg and £, around the vertex if it is the
#(J occurs, e.g., when there are two vertices joined by and point of a ridge. This scaling was originally derived for
ridge, as in Fig. 3. It is well knowrd22] that the elastic two-sheets embedded in three dimensions. Other @Bk
energy density in the region surroundikigthat encompasses suggests that the same scaling should holdnfiesheets in
aridge is less than that at vertidgse region surrounding) (m+1)-dimensional spaces. Farsheets, ridges with spa-
but much greater than that in the region®f K away from  tial extentX in | long directions and width of the formv(x)
the energy condensation structures. Ridges begin and end given above in the remaining—| directions will occupy a
vertices, with the elastic energy density falling smoothlytotal volumeX™(h/X)(M~"3. Compared with the total vol-
along the ridge length away from each vertex. This impliesume of the manifold, which is of ordet™, the high-energy
that when ridges are present, the scaling ob) at values of  yolume fraction is<I>c~(h/X)(m")’3<1. Thus there is en-
® much less than 1 but large enough to fully contain theergy condensation onto ridges. For general dimensions, we
vertices will be determined by the parts of ridges that areeason that any balance of bending and stretching energies
closest to vertices. Ridges are also known to have a complishould lead to a virial relation, and a virial relation in turn
cated spatial structure, but we assume that the ridge solutiamplies parallel scaling of the two energy densities. So, Eq.
converges to a simple scaling solution near the vertex, whergi4) should hold for all higher-dimensional generalizations
the ridge length should become unimportant. It has beewf ridges.
shown[22,23 that the total bending and stretching energy of
ridges in two-sheets scale the same way with manifold length
scales and obey a virial theorem: the ratio of the total bend-
ing to stretching energy is 5—1. The same virial ratio was For the present study we have generalized the numerical
also demonstrated for n{—1)-dimensional ridges in approach of Seung and Nels@®], modeling anm-sheet as
msheets[34]. We therefore infer that to lowest order, the an m-dimensional rectangular lattice and adding terms to the
bending and stretching energy densities must folidenti-  elastic energy to produce bending stiffness. Properly speak-
cal scaling in the simple scaling region near vertices. Thang, we simulate phantomm-sheets, which can pass through

V. NUMERICAL METHODS
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themselves. In the latter part of this section, we discuss thacluding tangential components in the curvature tensor de-
parameter range in which the phantonsheet behaves like fined in Eq.(2). It is the usual practice in linear elasticity to

a physicalm-sheet, as well as the special implications of theneglect these terms because of their smalligék so leav-
phantom approximation on the structure of vertex singulariing them in for computational efficiency does not introduce

ties.

any significant change to the energy density profile.

Our manifold is a hypercubic array of nodes labeled by The sizes and elastic thicknesses of the lattices used in our

I={iy, ... in}. Each node has a-dimensional position

simulations were arrived at through a trial-and-error balanc-

vectorf(l_). The relaxed lattice has a nearest-neighbor dising of computational resources and data quality. We mini-

tancea. The lattice displacement from a siteldb a nearby
one can be expressed by a vectormofintegers,A. It is
convenient to define the lattice displacemeﬁ(ﬂ_;,é), de-
fined as the displacement between the node at sitel the
one shifted byA,

U(LA)=—r(D+r(1+4). (15
The stretching energW ({R}) for a three-sheetni=3) is
now defined as

=62 2 (lu(la)|-a)?
I A=NN

(16)

e,
|

) (Ju(1,A)|—2a)2.

A=NN

Here NN denotes the six nearest-neighbor sitAs

=(%1,0,0), (0;£1,0), and (0,0 1). The NNN sites are the

12 second neighbor sites of the formt {,+1,0), etc. The
weight coefficientg assures thdd is isotropic, i.e., indepen-

mized elastic energy by using an inverse gradient routine,
which theoretically converges i N? steps for a harmonic
potential withN degrees of freedorf87]. However, experi-
ence shows that the convergence becomes much less efficient
when we make the elastic sheets very thin, since in this limit
the total energy functional is highly nonlinear and has large
prefactors for the highest-order terms. This effect in elastic
simulations was described in Ré#3], but their “recondi-
tioning” approach to regaining fast convergence requires too
much computational overhead to be of use on large three-
dimensional lattices. The computational cost of larger lattices
must be balanced against the range of validity of the discrete
lattice approximation. The lattice can only accurately accom-
modate embeddings where the radius of curvatur€, i
locally much greater than the spacing between lattice points.
We have no hope of maintaining accuracy at a vertex, which
is a near singularity, but we try to stay within an operating
range where the sharpest features away from vertices have
radii of curvature at least a few times the interlattice point
spacing. This indirectly constrains the thickness of the elastic
manifold we simulate, since features become sharper as the

dent of the direction of strain relative to the lattice. We foundmanifold is made thinner.

by direct calculation of the elastic energy for uniform strain

Our standard simulational procedure was to begin with a

in the (1,0,0), (1,1,0) and (1,1,1) directions, minimizedIattice about 30 units on a side, since this was the smallest

with respect to lateral expansion, thafty] was equal for the
three directions of strain wheng=1. The corresponding
Poisson ratio is 1/4. By expanding Ed.6) for small devia-

lattice where fine features were clearly visible. After the elas-
tic energy of the manifold was minimized on this lattice, we
interpolated the result onto an 80-unit lattice and minimized

tions of the three-sheet from zero deformation and equatinggain. Then we decreased the elastic thickness of the mani-

terms with those of Eq(l), we infer that for our latticeu
=4a°G and\ = pu.

We use a discrete form of EQR) to determine the curva-
tures in our simulatedn-sheet. For each origin site we

evaluate the diagonal elemen?t§ from the nearest-neighbor

separations
- 1 . - - -
Kn~;{[r(lﬁéi)—r(l_)]—[r(l_)—r(l—éi)]}- 17

The off-diagonal eIementéi,- , 1#] are computed in a simi-
lar fashion from the next nearest-neighbor positions:

Ew4ia2[{r*<l_+éi+Aj>—F(1+éi—g>}—{r*<1—éi+g>

—r(I-A—Ap}]. (18)

Once the curvature matrix is known for each site, we
may compute the curvature energy from Eg. (3). To save

fold on the larger lattice over a process of several minimiza-
tions. When the elastic thickness of the manifold becomes
very small, the material becomes prone to falling into broad
local minima with fine-scale crumpling that confuses the en-
ergy data. Slowly decreasing the thickness is a method to
avoid this fine-scale crumpling. In most of the following sec-
tions we present the result of simulations on 80-unit lattices
with an elastic thickness of0.02 lattice units. The entire
process of generating each minimized lattice took up to sev-
eral weeks on a 233 MHz, Pentium-Il based linux computer
using a gcc compiler.

We note that our lattice simulates a phantonsheet,
which can pass through itself without penalty. Since the en-
ergetic properties we study follow from local laws, and we
stay in a thickness regime where curvature is nonsingular
almost everywhere, the fact that our sheets are not self-
avoiding does not affect the conclusions we draw from our
data. The effect of the phantom-sheet behavior on the di-
mensionality of vertex structures, where curvature does be-
come singular, is discussed in Sec. X. In particular, as the
thickness goes to zero, the minimum energy configurations

computational time we do not project the curvature vectorsieed not converge to objects that have the local structure of

onto the normal space of the manifoldlaf his amounts to

a manifold. For example, in the vicinity of a vertex in a
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radiusb. We tailored the potential to our cube-shaped three-
sheet by making the equipotential lines nearly cubical in
three spatial dimensions and spherically symmetric in all re-
maining dimensions. This reduced edge effects at the corners
of our cubes. The exact form of the potential was

;

An equipotential surface of this potential for a two-sheet in
d=3 is shown in Fig. 4.

We began our simulations with the hard wall potential just
outside the boundaries of the cube, then progressively moved
the walls inward on all sides until the geometrically confin-

FIG. 4. Equipotential surface of the spatially confining potentialing volume had only half the spatial extent of the resting
for a square two-sheet embedded in three dimensions. cube in any direction. The value tf was decreased in ten

equal steps, with the lattice allowed to relax to an elastic
phantom sheet, 85— 0, the configuration might converge to energy minimum after each step. This procedure simulates a
a branched manifolde.g., a cone that winds twice around gentle confinement process, which allows applied stress to
some axis propagate through the entire manifold volume instead of be-

For geometries that generated several disclinations in #1g caught in a strong ridge network at the outside edges.
single manifold, we took special care with initial conditions Gentle confinement is essential to good convergence of the
to insure that the system moved towards a symmetric finanverse gradient routines used to minimize the elastic energy.
state. Relaxed states that contained a collection of identical Since the spatial confinement technique requires multiple
vertices gave much cleaner scaling and always had a loweénverse gradient minimizations for each simulation, it is not
total energy than those that contained an ensemble of verttomputationally practical to run on large grids. Also, the data
ces with different local structure. Thus, when we started thebtained from this method do not lend itself as well to nu-
sheet in a state with several folds, we separated the opposifeerical analysis, since the energy gradient from the tails of
sides of the folds slightly in globally symmetric ways to the hard wall potential mix with the elastic energy densities.
determine how they would relax. Still, simulations performed on smaller gri¢®0 lattice units
exten) show some interesting qualitative differences be-
tween confinement i=4 vs d=5. As Fig. 5 shows, the
regions of highest energy density are well organized line-

In this and the next three sections we report the results afietworks ford=4 but are much more scattered and disorga-
our simulations. In this section we explore the distortionsnized ford=5. Our arguments for the minimal dimension-
resulting from spatially confining our three-sheet in a con-ality of D presented in Sec. Il A predict a minimal
tracting volume. Spatial confinement was simulated with ardimension of 1 and O respectively for three-sheets embedded
(R/b)*° potential, which acts essentially like a hard wall at ain four and five dimensions. If we assume that the high-
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VI. SPATIALLY CONFINED SHEETS

(a) (b)

FIG. 5. Energy condensation map for spatially confined cubes. The cubesXwe26 lattice sites wide and had elastic thicknéss
=0.07X. Image(a) shows a surface of constant bending energy density in the material coordinate system for a cube embedded in four
dimensions. The surface encloses th&0% volume fraction with the highest energy concentration. Infagshows a surface of constant
bending energy density for a cube embedded in five dimensions. This surface enclos@@theolume fraction. The wireframes represent
the edges of the cubes’ material coordinates.
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FIG. 6. Method for creating disclinations. (8), one edge of two-sheet is folded and attached as shown. Points on the edge are identified,
but the curvature is not continued across the seam. Irttagehows an equilibrium configuration of a two-sheet constructed & iafter
elastic energy minimizatiottas in Fig 3. lllustration (c) shows how the same technique is used to make a line disclination in a cubic
three-sheet.

energy regions seen in Fig. 5 surround part$ofthen the Fig. 6@. The disclination relaxes into a conical shape like

qualitative data supports these values for @m that shown in Flg 63) PlaCing two or more conical discli-
nations in a two-sheet id=3 causes formation of ridges
VII. DISCLINATION PAIRS that are apparently equivalent to those connecting vertex sin-

gularities in a confined sheet. A corresponding technique for
To gain a better understanding of elastic energy conderereating folds in a three-sheet is to add linelike wedge dis-
sation inm-sheets, we analyze several simpler forms of disclinations into the manifold. We simulate line disclinations in
tortion. We first study pairs of disclinations. One way to three-cubes numerically by folding faces of an elastic cube
create a disclination in a square two-sheet is to join twadown the center and connecting the two halves as shown in
adjacent corners and the edge connecting them, as shown fig. 6(c).

(@ (b)

(c) (d

embedding coordinate (lattice units)

4 1 ! I
0 50 100 150 200

material coordinate (lattice units)

FIG. 7. Equilibrium embedding coordinates for elastic two-sheets with two 90° bends. The sheeXs+28@ lattice sites wide and had
elastic thicknese=2x 10 *X. The bends were imposed by attaching opposite edges to a rigid right-angle frame (dvstymws the three
embedding coordinates for a two-sheet in three-dimensional space. (bag®ws the same three embedding coordinates for a two-sheet
in four-dimensional space. Image) shows the fourth embedding coordinfet shown in(b)] for the two-sheet in four-dimensions, plotted
against the sheet's material coordinates(dn the value of the embedding coordinate has been multiplied by 20 to enhance contfdst. In
the embedding coordinate shown(i) is plotted against material coordinate down the folding line for three different material thicknesses.
The (+) symbols correspond to an elastic thickness of 1 lattice unit, ¥iegymbols correspond to an elastic thickness of 0.1 lattice unit,
and the (J) symbols correspond to an elastic thickness of 0.01 lattice unit.

016603-13



DIDONNA, WITTEN, VENKATARAMANI, AND KRAMER PHYSICAL REVIEW E 65016603

It can be shown by construction that the three-cube in (a) 10" SRl
embedding spacé>3 can accommodate one line disclina-
tion without stretching. One can construct such an embed-
ding by bending each plane perpendicular to the line discli-
nation into an identical cone. However, pure bending
configurations for a three-cube with two such line-
disclinations will in general require folds. It is energetically
favorable for the cube to stretch to avoid singular curvatures,
S0 we may expect the sheet to form ridges with the same
degree of elastic energy condensation as in a physically con-
fined three-sheet. 106 L h

We begin our study of disclinations in general dimensions 0.001 0.01 0.1 1
by simulating a two-sheet with two sharp bends embedded in enclosed volume fraction
either three or four-dimensional space. From previous work (b) 10" . '
[23] the two-sheet in three dimensions should form a simple " bending  +
ridge—its expected behavior in four dimensions is not stetohing ,
known. Next we turn our attention to three-sheets, beginning
with a simulation of a half-cube with a single line disclina-
tion embedded in either four or five dimensions. This simu-
lation will verify the predicted scaling of a simple cone.
Then, to induce elastic energy condensation we construct
three-cubes with two line disclinations at opposite cube faces
and embed them in four or five dimensions. Since there is no
guarantee that our procedure will find the global energy . b i
minimum, we start the cubes in many different initial condi- 10 001 0.01 Y ]
tions. We investigate the behaviors when the line disclina- enclosed volume fraction

tions are either parallel or perpendicular to one another in the _ ) )
material coordinates. FIG. 8. Energy density plots for elastic two-sheets with two

sharp bends. The sheets wefe=200 lattice sites wide and had
elastic thicknes$i=2x10"*X. In each graph ther symbols de-
A. Two-sheet: Two sharp bends note bending energy while the symbols denote stretching energy.
Energies are expressed in arbitrary units. Horizontal axes are area
The behavior of two-sheets with two disclinations in fraction ®. Graph(a) shows local Stretching energy densﬁyand
three-dimensional space has been studied extensj2ely  bending energy densitg, vs area fractionb at or above this en-
and our simulations of this geometry reproduced familiarergy density from an embedding in three dimensions. Gréph
results. However, we found for a variety of material thick- shows the same quantities from an embedding in four dimensions.
nesses and disclination geometries that the behavior of the both graphs the straight lines are power law fits to the bending
same two-sheets embedded in four dimensions was remarknd stretching energy densities. In all graphs the energy fits are to
ably different. The data presented here is for a sheet geonthe region between 0.5% and 2.0% volume fraction.(d) the
etry that is closely related to imposed disclinations and dissolid line is a fit to the bending energy density, with scaling expo-
played the sheet's behavior particularly well. Instead ofnent—0.61, and the dashed line is a fit to the stretching energy
creating a disclination like that in Fig(®, we fold opposite ~ density, vyith scaling exponent0.71. In(b), the solid line is a fit to
edges of the sheet and attach them to rigid frames with shatfje bending energy density, with scaling exponeriL.66, and the
bends at their centers. Each frame keeps the edge Straigqlﬂshed line is a fit to the stretching energy density, with scaling
with a 90° angle at its center point. The frames are free t&*Ponent-1.10.

translate or rotate in the embedding space. This boundaryared to the three-dimensional embedding. For the latter em-
condition is close to the conditions used to create “minimal” pedding, the line of high stretching energy density in Fig.
ridges in Ref[22]. In that work Lobkovsky argued that the 9(b) marks the presence of the stretching ridge. However,
configuration of the sheet around a bending point on the edggere is no such stretching line in the four-dimensional em-
will be much like that around a vertex. We found that thebedding energy map plotted in Fig(d, even though Fig.
quantitative behavior of this boundary condition was consis7(b) shows that there is still a folding line between the sharp
tent with that of imposed disclinations, but it allowed for bends in four dimensions. The energy plot in Figa)8for
more flexibility. The equilibrium embeddings of sheets with three-dimensional embedding, shows the parallel scaling of
this geometry are shown in Fig. 7. Figure 8 presents plots dbending and stretching energies that is indicative of a ridge,
energy density versus area for three and four dimensiondlut the energy plot in Fig.(®), for four dimensions, is more
embeddings, and Fig. 9 plots local bending and stretchinguggestive of conelike scaling, since the stretching energy
energy densities in the sheets’ coordinate systems. falls twice as fast as bending energy away from the sharp
It is immediately evident from Figs. 9 that the stretching bends.
energy density in the region between the two sharp bends is Examining the embedding coordinates of the manifold in
greatly diminished in the four-dimensional embedding com<four dimensions, we found that the sheet mainly occupied

bending  +
stetching  x

Pty
1 0_3 B %M

energy density (relative units)

N’

102

102 L ——— H
\\\\
\\‘s ]
104 | Sk, \ H
R ~

105 |

energy density (relative units)
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(@) (®)

© @

FIG. 9. Elastic energy density profiles in two-sheet with two sharp bends pictured in Fig. 7. The sheeXsa2é lattice sites wide.
The elastic thickness of each wlas: 2x 10™*X. In each plot the height of the surface is proportional to energy density in relative units and
the x andy coordinates are the material coordinates in the manifold. The same energy units are used in all four plges.dridte) are
for a three-dimensional embedding, plétsand(d) are from a sheet embedded in four dimensions. P&tand(c) are the bending energies
in the two-sheets, ploté) and(d) are the stretching energies.

only three of the four available spatial dimensions. Figurethe ridge between them. If this is the case, our stretching
7(c) plots the value of the embedding coordinate with theenergy graph shows only the initial energy falloff away from
lowest moment of inertidthe moment for the entire mani- the sharp bends and never reaches the energy density value at
fold in this direction is four orders less than that in otherwhich parallel scaling would commence. We can use the
directions, in a frame where the inertia tensor is diagonal graph to put a lower limit on any possible virial relation by
We believe this slight bubbling into the extra dimension actshoting that conelike scaling continues to at least 2% volume
as a sink for compressive stress along the line connecting theaction, at which point the ratio between bending and stretch
sharp bends. Since this deviation is so small, one of the twgnergy densities is-70. Thus, if the bending and stretching

nor_mals to the manifold lies mostly in thls d[rectlpn over theenergies do scale with elastic thickness, they should satisfy
entire surface. The curvature shown in Fidc)7is small E,>70E
s

compared to the major component of curvature across the Following the derivation presented in the Appendix, we

folding line, and is nearly orthogonal to it, so it has little an use the virial relation to put limits on the scaling expo-
effect on the total bending energy. Yet, in the thin sheets we P g exp

simulate, the resulting changes in the strain field affect thd'ents for th? -typlca}l gurvatures a_no_l strains on thg “S’ge- For
stretching energy enormously. the above virial r.atlo, in thé@— 0 limit the typlczlatlggrndrldge
The bubbling discussed above is evidence of an interaccurvature would increase more slowly tha}ﬂgzms and the
tion between the sharp bends, since such a configuration f¥Pical ridge strain would fall faster tham(X)="** whereh
not seen for isolated disclinations or vertices and must bés the elastic thickness andis the length of the folding line.
energetically less favorable than perfectly straight cone genl© test our scaling hypothesis, we probed the deviation into
erators. If the sharp bends interact in a way that depends dhe normal direction shown in Fig(@). We estimate that the
the distance between them relative to the elastic thicknes#)verse square of the height of these bumps is proportional to
then there might be some analog of a higher-dimensionahe residual Gaussian curvature and therefore the strain along
ridge between them, with much weaker stretching energythe ridge. In simulations of the same system at several dif-
We did not see ridgelike parallel scaling in Figb8 but itis  ferent thicknesses, spanning two orders of magnitude, we
possible that the strain in this kind of ridge is so weak, andcould not discern a consistent change in the peak-to-peak
the virial ratio between bending and stretching is correspondheight along this second normgdee Fig. 7d)]. Since our
ingly so high, that the systems we simulated were dominateddge scaling arguments tell us we should see clear scaling of
by a conelike configuration near the sharp bends and not bthis peak-to-peak height with thickness, we conclude that
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107" — T —r——— on one face. We use a AB0X 80 unit lattice. The minimum

; i bending + . . . . . .

; stetching  x energy embedding is a virtually identical cone in all the
P planes perpendicular to the line disclination. The radius of

the cone ranges from 40 tg2x 40 lattice units. Figure 10

show the scaling of bending and stretching energy densities

away from the disclination for both four and five-

dimensional embeddings. In both cases the scaling exponents

are very close to the theoretical values-ofl for bending

and — 2 for stretching for a cone with two-dimensional sym-

metry. We are quite satisfied that the elastic lattice can accu-

rately represent the cone around a single disclination.

102 |

energy density (relative units)

6 iid
0.001 0.01 0.1
enclosed volume fraction

C. Three-sheet: Parallel disclinations
(b) 107

S8l Mo "'Sg’;g'g:gg v Apart from boundary conditions, the cube with parallel
— NEEIH disclinations has a natural symmetry along the direction of
. the disclinations. We found that for all initial conditions
\\\ 1 tested, energy minimization resulted in a final configuration
‘ that showed this same symmetsee Fig. 11 The manifold
has no strain or curvature in the direction parallel to the
disclinations, and very similar configurations for all planes
perpendicular to this direction. In principle, for embedding in
‘ d dimensions, the configuration in each of the perpendicular
106 B, W planes is identical to that which we would expect for an
0.001 °'°1| ol 03‘1 ! elastic two-sheet with the same thickness to length ratio em-
enlosed velume fragton bedded ind—1 dimensions. In practice, we find that the
FIG. 10. Energy density plots for elastic half-cubes with singleextra material dimension adds an additional stiffness against
line disclinations. The rectangular solids wexe=40 lattice sites  fine scale crumpling that often confuses similar simulations
across perpendicular to the face with the disclination and 80 sitef, two-sheets.
wide in the other directions. They had elastic thicknéss2.5 For four-dimensional embedding the equilibrium configu-

X 10"4X. In each graph thet symbols denote bending energy ration is a “stack of ridges,” which shows the same energy
while the X symbols denote stretching energy. Energies are ex-

pressed in arbitrary units. Horizontal axes are volume fracton scaling as a rldge in three dimensions. Flgurﬁali§ a plot
Graph (a) shows local stretching energy densify and bending O_f energy depSIty VS .vqum.e for a.th.ree-cub.e with parallel
energy densityC,, vs volume fractiond at or above this energy disclinations in four dimensions. Within the high energy re-
density from an embedding in four dimensions. Graphshows  9ion encompassing=2—-8 % volume fraction, the ratio of
the same quantities from an embedding in five dimensions. In botfending energy density to stretching energy density at a
graphs the straight lines are power law fits to the bending andjiven volume fraction is~6.2. This number is consistent
stretching energy densities in the region between 2.0% and 10%vith the theoretical energy ratio of 5. In this volume range
volume fraction. In(a), the solid line is a fit to the bending energy the plots also confirm the lack of condensatiaiong the
density, with scaling exponent0.95, and the dashed line is a fit to ridge of both bending and stretching energies as well as the
the stretching energy density, with scaling exponerit87. In(b),  identical scaling of these energies. For the entire region up to
the solid line is a fit to the bendllng.ene.rgy density, leh scaling~30% volume fraction the bending and stretching energy
expo_nentf_ 0.95, a_md the dashed line is a fit to the stretching energy, 5 /e roughly the same dependence on volume, though they
density, with scaling exponert 1.87. do not fit a clean scaling exponent for any extended region.
either we are not close enough to the thin limit for any po-The sharp dropoff of the dominant energy above 30% vol-
tential scaling behavior to be evident, or the equilibrium con-ume fraction shows the significant condensation of energy
figuration is really a higher-dimensional variation of simple around the ridge structure.
cone scaling, which is truly independent of elastic thickness In contrast to the ridge-scaling in four dimensions, the
and fold length. These tests were run biX) ratios from  energy scaling behavior of the sheet embedded in five di-
10 3to 10 %, the entire range of thicknesses our simulationsmensions appears conelike. The stretching scaling exponent
can handle and a region where two-sheets in three dimersf —1.59 indicates that the stretching energy is condensed at
sions show very clear thickness scaling. It is clearly beyondhe vertices, while the bending exponent-00.93 is consis-
our computational capabilities to resolve this potential scaltent with — 1, the predicted bending scaling of isolated line
ing behavior. disclinations. The scaling data, as well as the lack of a strong
ridge region in Fig. 1(b), indicate that the scaling around
each disclination is not strongly influenced by interaction
To verify our numerical predictions for the cone, we between the two disclinations. The scaling resembles that
simulate an elastic half-cube with a single line disclinationaround the isolated disclination reported in Sec. VII B.

102 |

e W
10° | &%

104 |

energy density (relative units)

B. Three-sheet: Single disclination
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(a) (b)

FIG. 11. Energy condensation map for cubes with parallel disclinations. The cubeX w8lattice sites wide and had elastic thickness
h=2x10 “X. Image(a) shows a surface of constant bending energy density in the material coordinate system for a cube embedded in four
dimensions. The surface enclose40.0% volume fraction and shows energy condensation along the ridge which spans the gap between the
disclinations. Imagéb) shows the same surface for a cube embedded in five dimensions. The wireframes represents the edges of the cubes’
material coordinates. Heavy lines mark the locations of disclinations.

D. Three-sheet: Perpendicular disclinations tion, without any evidence of folds. We surmise that the

A typical spatial energy distribution after energy minimi- sheet has relaxeq to a configuratipn whgre the cones around
zation for a cube with perpendicular disclinations embedde@a?h line vertex Interpenetrate'wnh.out interacting strongly.
in d=4 is shown in Fig. 18). A common feature of all the Thls resuIF demoqstrates tha_t in h|gher-d|men5|onal crum-
cubes embedded in four dimensions is the spontaneous apling, multiple vertices can exist in a sheet without requiring
pearance of additional linelike vertex structures. Spannir?gE)US, for some geometries.
the volume between vertices and disclinations are two- For this simulated geometry and several of the following,
dimensional ridges. This result is consistent with the4 we present data for thicker sheets in four dimensions than in
geometrical confinement simulations detailed in H8#4].  five. This is because the ridges found in four dimensions
Figure 14a) shows the decay of local energy density with become very sharp aB gets smaller, and we typically
volume away from ridges and vertices for an elastic cubepresent the thinnest data that do not show signs of finite
with nonparallel disclinations in four dimensions. The lattice effectdlike those seen below in Fig (&]. For five-
highest-energy regions correspond to the imposed disclinatimensional embeddings, decreasing the thickness typically
tions and spontaneous vertex network. Lower energy regionshifts all the stretching energy densities upward and thereby
correspond to ridges. The region between 1% am8l%  extends the volume of cone scaling visible before the stretch-
volume fraction shows smooth scaling of bending anding energy density fades to background levels. We thus chose
stretching energy densities with volume in a region domi-o present data from thinner sheets for five dimensions. We
nated by the high-energy part of ridge structutebere they  f5ng that ridge scaling becomes more distinct as the sheet
join at vertices. In this region the bending energy density pocomes thinner, so the use of thinner sheets in five dimen-
scales with exponent 0.77 and the stretching with exponent gjgns only strengthens our claim that there is no evident
—0.91. The values of the scaling exponents in thls.reglon arfidge structure in five dimensions.
reasonably close to each other and to the theoretical scaling
of —4/5 derived in Sec. IV. The scaling is clearly distinct
from that of a cone, where the stretching energy density is
expected to fall faster thad 1. Toroidal connectivity was simulated numerically by de-

The behavior of the same cubes placed #5 was quite  fining the lattice displacement vectak, such that opposite
different [see Fig. 18)]. For this embedding there is no faces of our cubic array had nearest-neighbor connections.
spontaneous ridge-vertex network between the imposed dihe resulting connectivity was everywhere isotropic, with no
clinations. The difference in structure is reflected in the enborders or disclinations. Simulations were run for three-tori
ergy density plot, Fig. 1d). In the volume fraction that embedded in four, five, and six spatial dimensions. Initial
typically encompasses high-energy structures apart from veconditions were either random or chosen to be very symmet-
tices and disclinations, the bending energy scales with volric or close to possible energy minima. In all cases when
ume with an exponent of 0.90 while the stretching energy =4 or 5, minimization of the elastic energy resulted in en-
scales with an exponent of 1.65. These numbers indicate ergy condensation and the formation of high-energy net-
the dominance of conical scaling near the vertices. They areorks. For six-dimensional embeddings the elastic energy
similar to the scaling exponents for the cube with parallelwas many times smaller than in lower dimensions and was
disclinations in five dimensions. Figure 15 shows that theuniformly distributed over the manifold. Figure 16 compares
embedding appears to be locally conical around a disclinathe energy condensation networks for three-tori embedded in

VIIl. TOROIDAL CONNECTIVITY
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10° T

(a

N’

——r The analog of ridges in the three-torusds-4 are again
g planes of high elastic energy. These ridge structures meet in
ah vertex-lines of very high elastic energy. Figure(@7shows
the decay of local energy density with volume away from
ridges and vertices for a three-torus in four dimensions. We
fit a power law to the region that we identify as parts of
ridges near the vertex structures. In this region the energy
densities scale with an exponent 6f0.87 for bending en-
ergy and—0.88 for stretching. These values are consistent
with the theoretical ridge scaling exponent-e#/5 derived
in Sec. IV. Within the ridge scaling volume the ratio of bend-
ing energy density to stretching energy density is 8.5, within
a factor of 2 of the known value, 5, for two-sheets in three-
b) 10" i} : I dimensional crumpling.

“x S S?;gg:gg M The energy structures of tori embeddedds5 were
102k %\ SRR qualitatively different from those embedded dr=4 (refer
™ ™ again to Fig. 1¥. For d=5, the structures corresponding to
100 | % vertices appear pointlike instead of linelike. The majority of
% the total energy density is concentrated around these point-
like vertices. Between vertices we were able to see smaller,
linelike energy concentrations of elastic energy that could
correspond to ridge structures. However, these regions occu-
pied a miniscule volume in the manifold. The predominant
. energy structures were more symmetric and were centered
1% 001 0.01 0.1 around vertices.
enclosed volume fraction Energy density vs volume is plotted in Fig(bY for an 80
lattice unit three-torus embedded éh=5. Smooth energy
scaling begins at about 0.5% volume fraction and holds for

tic thicknessh=2x10"*X. In each graph ther symbols denote up .to ~10% of the total volume. .W|th|n thesg hlgh-energy
bending energy while th& symbols denote stretching energy. En- regions the bending energy density scalgs with volume V\,”th
ergies are expressed in arbitrary units. Horizontal axes are volum@,n exponent Of__0'56' Whereas SFretchlng energy density
fraction . Graph(a) shows local stretching energy densiyand ~ dies off more quickly, with a scaling exponent 6f1.02.
bending energy densitg, vs volume fractiond® at or above this This is consllstent wlth our S|mulat|9ns of line disclinations in
energy density from an embedding in four dimensions. Grdgph  five dimensions, since the stretching energy falls off nearly
shows the same quantities from an embedding in five dimensiondWice as fast as the bending energy. The number of vertices
In both graphs the straight lines are power law fits to the bendingdresent in the manifold would lead us to expect ridges, but as
and stretching energy densities. In graghthe bending energy fit we saw in Sec. VII C, ridges cannot be resolved by energy
is to the region between 3.0% and 8.0% volume fraction and thecaling alone in five dimensions at elastic thicknesses acces-
stretching energy fit is to the region between 2.0% and 5.0% volsible to our simulations. The scaling exponents above are
ume fraction. In grapttb) the fits are to the region between 1.0% closer to the expected exponents-02/3 and— 4/3 for coni-

and 4.0% volume fraction. Ife), the solid line is a fit to the bend- cal scaling around a pointlike disclination than to any other
ing energy density, with scaling exponent0.63, and the dashed kind of scaling behavior we know. The embedding is prob-

line is a fit to the stretching energy density, with scaling exponenfgp|y close to this form of cone near the vertices.
—0.48. In(b), the solid line is a fit to the bending energy density,

with scaling exponent-0.93, and the dashed line is a fit to the
stretching energy density, with scaling exponert.59. IX. SINGLE FOLD (BOW CONFIGURATION )
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FIG. 12. Energy density plots for an elastic cube with parallel
disclinations The cubes webe= 80 lattice sites wide and had elas-

In our final set of simulations we set our boundary and
either four or five dimensions. Although the network is moreinitial conditions to create single, pointlike vertices. Our aim
extensive ford=4, in either dimension high-energy struc- was to verify scaling predictions for vertex deformations in
tures have comparable energy densities. We simulated thfsur and five dimensions and to show clearly the existence of
geometry beginning from many different initial conditions pointlike vertex structures in five-dimensional embeddings.
and the resulting final configurations showed varying degreeAccording to the relations presented in Sec. Il, a vertex is
of asymmetry between the vertices. The configuration preexpected to have high Gaussian curvature. In more specific
sented in Fig. 1&) showed the highest degree of symmetryterms this means a vertex is a locus of strong curvature in at
of all our four-dimensional torus simulations—its total elas-least two material directions along the same normal vector.
tic energy was~25% less than that of configurations that Therefore, to force the existence of exactly one vertex in five
broke symmetry, so we believe it is most likely the true dimensions(where every manifold point has two indepen-
ground state of the system. Our energetic analysis was pedent normals we searched for a minimal set of boundary
formed on this configuration. conditions that necessitated that some points in the manifold
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(a) (b

FIG. 13. Energy condensation map for cubes with perpendicular disclinations. The cubeé=n@bdattice sites across, 90 lattice units
wide in the directions parallel to the disclinations, and had elastic thicknasséx 10 *X (a) andh=3x10" %X (b). Image(a) shows a
surface of constant bending energy density in the material coordinate system for a cube embedded in four dimensia(ig.sihoage a
surface of constant bending energy density for a cube embedded in five dimensions. The energy density value~3fflogekime
fraction in image(a) and shows the spontaneous vertex lines that arise between disclinations. In(fondmpeequal energy density surface
encloses=10% volume fraction and shows the growth of the high-energy region around the disclinations without additional vertices evident
between them. The wireframes represent the edges of the cubes’ material coordinates. Heavy lines mark the locations of disclinations.

have curvature in all three material directions. Our most suc10% volume fraction and find an exponent ©fL.02. The
cessful simulations, presented here for four and fivestretching energy scales more cleanly in the region between
dimensional embeddings of a three-cube, had only the cent@% and 9% volume fraction, with an exponent 60.75.
points of opposite faces attached. This geometry caused vethe stretching energy exponent is close to the expected value
tices to form while leaving the majority of the boundary free.of —4/5 and is smaller in magnitude thanl, so we can
Figure 18 shows the pattern of energy condensation isafely identify the scaling as ridgelike. When viewing the
three-cubes with attached opposite faces after energy minequal energy surfaces at larger volume fractitms shown
mization. For four-dimensional embeddings the surfaces ohere we saw a good deal of secondary structure in the ridges
constant energy density enclose linelike regions that traversemselves, which could explain the many features in the
the cube as seen in Figs. (88 and (b). The high-energy energy density dependence.
regions appear linelike all the way up to the highest values of For the five-dimensional embedding we fit a simple power
the energy density. In contrast, the surfaces of constant efaw to the region of the graph that enclosed less th&?o
ergy density for five-dimensional embeddings form a serievolume fraction, since above this enclosed volume fraction
of shells, as seen in Figs. B and(d), whose typical diam- the surfaces shown in Figs. @ and(d) intersect the bound-
eters increase with decreasing energy density value. The eary of the cubd49]. In this region the bending energy den-
ergy density at the surface in Fig. &8 which encloses sity scales with an exponent 6f0.65 while the stretching
0.1% volume fraction, is nearly an order of magnitudeenergy density scales with an exponent -ef..26. These
greater than the energy density at the surface of Figd)18 numbers are consistent with the theoretical five-dimensional
which encloses 1% volume fraction and just touches the outeone scaling exponent ef 2/3 and— 4/3 derived in Sec. IV.
side edges of the cube. These data clearly support our asser-
tion that pointlike vertex structures are possible in five- X. DISCUSSION
dimensional embeddings. At the same time, they are

consistent with conjecturd®2] that the high-energy regions . . . X :

in four-dimensional embeddings are linelike. It may be notecpave. investigated the_behawor .Of two and three-dlmensmr_]al
that the five-dimensional embedding is asymmetric, Whilern"’m'fOId.S embedded in dlmens!qns three and greater, squect
the four-dimensional embedding has a high degree of Syn{l? a variety of boundary conditions that cause crumpling.

metry. We found that the elastic manifolds always spontane- he results of our simulations, which are summarized in

ously broke symmetry in five dimensions, but the minimumTable |, show a consistent dependence of the crumpling re-

. . A : : sponse ord—m, the difference between the dimensionality
energy configuration we could find in four dimensions was . .
perfectly symmetrical. of the embedding space and that of the sheet. The behavior

Plots of energy density vs enclosed volume fraction forsummar|zgd n Table | can be described by the following
eneral principles.

this geometry are presented in Fig. 19. For four-dimensiona¥
embeddings the bending energy density does not scale with a (1) For all the boundary conditions we consider, the di-
simple exponent in the volume range between 1% and 10%nensionality of spontaneous verticEsis 2d—m—1, sug-
volume fraction that we associate with the high-energy regesting that the vertex dimensionality is always given by the
gion of ridges. To get a representative value of the energjower bound from the arguments in Sec. Ill A that yield
dropoff we fit a power law to the region between 3% anddim(D)=2m—-d—1.

In the numerical simulations reported in this paper, we

016603-19



DIDONNA, WITTEN, VENKATARAMANI, AND KRAMER PHYSICAL REVIEW E 65 016603

@ 10° — T —r A. Effect of embedding dimension on defect dimension
[~ 1, bending  + . .

7 TR, _ stetching  x Our data consistently supports the arguments presented in
5 ot Pl “‘“*nm SHH Sec. IIlA that for an m-dimensional manifold in
_% i) ! \\. d-dimensional space witd<<2m, the dimensionality of the
e % N setD of vertex singularities will be greater than or equal to
= 102 Hag | NSRRI
2 "a..,.“ N 2m—d—1. In fact, we found that all spontaneous vertex
s ‘-\ N\ 1 structures had dimensionalityn2-d—1 identically. For
§ 10% \ five-dimensional embeddings of three-sheets in which we did
& N not explicitly make linelike disclinations, the manifolds were

4 ‘ ’ able to relax to configurations wherei? was small and

0.001 0.01 0.1

pointlike. In contrast, when the embedding space was four
enclosed volume fraction dimensional for the same manifolds and boundary condi-
(b) 100 . tions, D was always linelike, terminating only at material
" bending  + | boundaries. It is worth noting that in all cases whé&revas
& T stetchlnq N . . . . . Lo
NS VAN S SO L one dimensional, it was also piecewise flat—it is easy to
5 N T argue that in order to minimize its spatial extemwill in
g 0 . S~ general be flat. Though our dimensionality arguments apply
° ", i — Lo . o
i’; 102 | *s% to only asymptotically thin sheets, the predictions appear
9 ‘%.‘ well obeyed even for sheets as thick as 1/30 of their width.
f"; 104 “n\ The dimensional behavior is thus much more robust than the
g s ridge scaling behavior.
s 10°r A Because of the phantom nature of our simulated sheet, we
10 found that favorable energy configurations often had local
0.001 0.01 0.1

geometries at vertices in which the sheet passed through
itself—the most common example was branched manifolds
FIG. 14. Energy density plots for the elastic cubes with nonpar-at vertices. The arguments for scaling and the minimum di-
allel disclinations in Fig 13. The cubes weXe=60 lattice sites mensionality ofD are not affected by whether or not the
across, 90 lattice units wide in the directions parallel to the discli-sheets are phantom. However, the set of boundary conditions
nations, and had elastic thicknesdes6x10™“X (8 andh=3 that produce nonphantom sheets with minimal vertex dimen-

X 107X (b). In each graph the- symbols denote bending energy sjonality may be more limited than for phantarsheets.
while the X symbols denote stretching energy. Energies are ex-

pressed in arbitrary units. Horizontal axes are volume fracton
Graph (a) shows local stretching energy densify and bending
energy density’, versus volume fractiod® at or above this energy In Sec. IV we made predictions for the energetic scaling
density from an embedding in four dimensions. Grdbhshows  outside of vertex structures for a sheet whose thickness was
the same quantities from an embedding in five dimensionga)in  much smaller than its width. However, we did not analyti-
the solid line is a power law fit to the bending energy density in thecally address how thin the sheet must be before it displays
region between 1.0% and 5.0% volume fraction, with scaling ex~“thin limit” behavior. Our observations of the typical
ponent—0.77, and the dashed line is a power law fit to the stretchprogress of a numerical simulation lend some insight into the
ing energy density in the region between 3.0% and 10% volume&pproach to this asymptotic limit. In the process of relaxing
fraction, with scaling exponent-0.91. In (b), the solid line is a our sheets, we often vary the thicknégswhich shows us
power law fit to the bending energy dgnsity i.n the region betweery, oy the energy distribution depends bnWe were not able
1.0% and 10.0% volume fraction, with scaling exponer.90, 14 yary h enough to directly observe any scaling behavior
Zggs?emdﬁf:?g _Ilneblst\;\ povxie(r)o/law Zt;f)’/ thel stret;:hlntg ene?ﬁ(/vith h. Even our smalles’s show little enough of the de-
1LY glon between 1.U70 an o volume fraction, Withg; e asymptotic behavior, and increasimgnly blurs this
scaling exponent- 1.65. - i —
behavior beyond recognition. However, the qualitative be-
havior with h is consistent with our conclusions. The re-
(2) If d=m+1, the details of the curvature defect $&t ported results are for the smalldsvalues we could reliably
determine the nature of the energy condensation.FeilC  attain. Wherh is made larger, the main effect is to reduce the
(no folding lines we have the cone scaling discussed in Secdynamic range in our energy density plots. It makes the en-
IV, and for C—D# (folding lines presentwe find ridge  ergy spread more uniformly over the sheet. Where ridge scal-
scaling. ing is observed, increasing reduces the proportion of
(3) If d=m+2 we always find cone scaling K+ . stretching energy, as we have previously observed in two-
sheetd22]. Finally, increasingh reduces the observed effect
of embedding dimension. The clear differences between the
We believe that these principles are true in general. Constretching and bending energy profiles in five dimensions
sequently, they give explicit predictions for the behavior ofbecome less distinct asis increased. This is as expected.
elastic sheets in higher dimensions. Embedding dimensions should have less effect if a sheet is

enclosed volume fraction

B. Effect of embedding dimension on scaling
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(@) (b)

FIG. 15. Two views of a three-dimensional projection of the embedding coordinates for a two-slice from the material coordinates of a
cube with nonparallel disclinations embedded in five dimensions. The material coordinate slice contains one disclination along the edge
marked with the heavy line ifg). It is perpendicular to the other disclination, which is marked with a heavy ling)inThe views were
chosen to show the conelike geometry about the disclination that the plane intersects at a point.

thicker. These behaviors add to our confidence that the scdliguration in terms of a stack of two-sheet embeddings can
ing behavior we report becomes more, not less, distinct abe accurate.
we reduceh. Our simulations verified the formation of ridges in two-
Our derivation of cone scaling was based on very simplesheets in three dimensions and in three-sheets in four dimen-
and well-founded assumptions, so it was not a surprise thations, as witnessed in other studj8s34]. As expected, pla-
cone scaling was so clearly visible in geometries where waar ridge structures spanning the gaps between linear vertex
expected to find it. In all simulations where there was onlystructures ird=4 had the same energy-bearing properties as
one disclination structure in a three-dimensional manifold their three-dimensional equivalents. However, for two-sheets
the observed scaling was consistent with our predictiongn four dimensions and three-sheets in five dimensions we
based on cones. A single line disclination in either four orconsistently found no ridge energy structures, even along
five dimensions produced a cone structure with scaling likevhat appeared to be folds. In FigicY it is apparent that the
that of a simple cone in a two-sheet. In the simulations preelastic sheet deflects slightly into the fourth dimension in
sented in Sec. IX, embeddings in five dimensions produced arder to relieve the strain along the ridge center. The way this
pointlike vertex and energy scaling close to our predictiongidge decreases the strain along its midline shows the essen-
for double-cone scalingwhere there is curvature on the tial difference between embeddingsrafsheets irm+ 1 di-
same order in both material directions perpendicular to thenensions and in all greater dimensions. In the geometric von
cone generatoysThe success of these predictions assures ukarman equations, Ed9), the sources of strain aseimsof
that the cone structure is well understood and that, for theurvatures along different normals. If there is more than one
case of line disclinations, the description of a relaxed connormal direction, then there is the possibility of cancellation

(a)

FIG. 16. Energy condensation maps for three-tori. The tori were made from cubes of XwdB0 lattice sites and with elastic
thicknessesh=1x10"3X (a) and h=2.5x10 *X (b). Image (a) shows a surface of constant bending energy density in the material
coordinate system for a three-torus embedded in four dimensions. In this simulation the initial conditions were chosen to favor a symmetric
relaxed state. Imagé) shows a surface of constant bending energy density for a three-torus embedded in five dimensions. The surfaces
encloses~2.5% volume fraction in(@ and ~2.8% volume fraction inlb). The wireframes represent the edges of the cubes’ material
coordinates.
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(@ 10° : T by conical scaling near verticé#t is notable that, based on
fn..%;_ : stetching x the scaling arguments derived in the Appendix, in the limit of
: very large virial ratios the dominant curvature terms become
increasingly insensitive to the elastic thickness—much like
they are in coneésWe hope to return to this subject in future
research, with the aim to find analytic expressions for the
embedding of a two-sheet with two disclinations in four spa-

tial dimensions and derive the thin limit scaling directly.

N\

109 |

energy density (relative units)

C. New questions raised by this work

0-4
0.001 0.01 0.1

We believe that the detailed structure of the novel point-
enclosed volume fraction like vertices in three-sheets deserves further study. For ex-

(b) 100 I ample, in Sec. IX we touched on the fact that these point

T S?;gg:gg M vertices are loci of folding in all three material directions.

) R Since the three material directions share only two normals
and are constrained by the boundary conditions that the sheet
be isometric outside the vertex point, it is likely that the
angles each direction folds by can only takiscretesets of
values—not unlike the discretization of disclination angles in
a lattice, but driven purely by spatial geometry for an other-
wise continuous medium. This discetization would probably
be more pronounced in sheets that are not phantom, since

. branched manifolds at vertices add more degrees of freedom.
1% 001 0.01 0.1 Much could also be learned by viewing these new crum-
enclosed volume fraction pling phenomena as a mathematical boundary-layer problem,
since they display several new and intriguing features in this
light. Our problem belongs to the class of variational prob-
lems given by a singularly perturbed energy functiodal

each graph thet+ symbols denote bending energy while the W'th ?ma" parametelh. Ong apprqach to analyzing such
symbols denote stretching energy. Energies are expressed in ar%grlatlonal problems_ is by Identlfylng the bouhdary layers
trary units. Horizontal axes are volume fractidn Graph(a) shows and then determl_nlng the appropr!at? SOI},J“O”S through
local stretching energy densifi and bending energy densif, vs ~ Matched asymptotics. Example of this “local” approach, as
volume fractiond® at or above this energy density from an embed-applied to elastic two-sheets are the analysis of ridges in Ref.
ding in four dimensions. The several plateaus in the high-energ}22] and of the vertices in Ref10].

part of the plot are an artifact of the discrete lattice. They reflectthe A contrasting “global” approach to these problems is
nearly identical geometry of the points on and adjacent to the verthrough the notion of —convergencg44,45. This approach
tices, which make up a measureable fraction of the manifold volcalls for the identification of an appropriate asymptotic en-
ume. Graphb) shows the same quantities as(@ for an embed- ergy £ that gives the energy of a configuration in the
ding in five dimensions. Irfa), the solid line is a power law fit to  — 0 limit. This asymptotic energy functional is called the

the bending energy density in the region between 2.0% and 10%imit of the functional€" ash—0. If the T limit exists, the
volume fraction, with scaling exponent0.87, and the dashed line configuration of the minimizers for a small but nonzéres

is a power law fit to the stretching energy density in the regionthen deduced by finding the minimizers #r and observing
between 2.0% and 6.0% volume fraction, with scaling exponenthat the minimizer for nonzerois close to the minimizer for
—0.88. In(b), the solid line is a power law fit to the bending energy £ . Note that this approach is similar in philosophy to our

d(_etrllsity :_” the regio:%%e;vgeendot.hS%d a”r? ;(I)'.O% volume f:‘"J‘Cti]f?tnarguments in Sec. Il where we deduced the structure of the
With scafing exponent-9.59, and Ihe dashed fine 1S a POWer :aw it /o oy regions forh>0, by considering isometric immer-

. o . 0
to the stretching energy density in the region between 0.5% anéions that are relevant fér=0.

10% volume fraction, with scaling exponent1.02. . ; o
Since these singularly perturbed variational problems

show energy condensation, in the lirhit-0 all the energy
between curvature terms for any given two-dimensional hyconcentrates on to a defect set, which we denot&.bgon-
perplane. On the four-dimensional fold the manifold bubblessequently, the appropriate asymptotic energy should also be
into the extra dimension, creating positive Gaussian curvadefined for singular configurations, and it should depend on
ture that counters the negative Gaussian curvature of thiée defect seB, and the configuration outside. Thus, the
saddle-shaped peak-to-peak ridge profilee, for example, asymptotic energy is given by a function&l =£*[h,u,B].
Fig. 3. We do not assume that the cancellation of lowest-Examples of this type of analysis are the analysis of phase
order terms is perfect, but we showed in Sec. VII A that theseparation in Ref§18,19 and the asymptotic folding energy
stretching energy is diminished so greatly relative to then the context of the blistering of thin filmg25,26,29. In
bending energy that ridgelike scaling is completely maskedoth these cases, the asymptotic energy scales with the small

X
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FIG. 17. Energy density plots for the three-tori in Fig. 16. The
tori were made from cubes of widtK=80 lattice sites and with
elastic thicknesseb=1x10"3X (a) and h=2.5x10"*X (b). In

016603-22



SINGULARITIES, STRUCTURES, AND SCALING IN . .. PHYSICAL REVIEW B5 016603

(@

© @

FIG. 18. Energy condensation maps for three-cubes with center points of opposite faces attached. The cXbe8Maittce sites wide
and had elastic thickne$s=2.5x 10" *X. Images(a) and (b) show surfaces of constant bending energy density in the material coordinate
system for a three-cube embedded in four dimensions. In this simulation the initial conditions were chosen to favor a symmetric relaxed
state—many stable configurations show pronounced symmetry breaking in one direction. (maged (d) show surfaces of constant
bending energy density for a three-cube embedded in five dimensions. The surfe@emith(c) enclose 0.1% volume fraction while those
in (b) and(d) enclose 1%. The wireframes represent the edges of the cubes’ material coordinates.

parameteth as & ~h“ for a fixed . Also, theI" limit is  orous analysis of thE limit for the elastic energy functional
local, in that the asymptotic energy is given by integrating ain Eq. (6). This analysis will probably involve new ideas and
local energy density over the defect set. This is in sharpechniques.

contrast to the behavior of elastic manifolds. For elastic Finally, current theories of matter and space-time suggest
manifolds, the asymptotic energy depends on two kinds ofdditional relevance for our findings. These theofié§]
defect sets, the strain defect §2tand the curvature defect view the observed properties of matter and space as arising
setK. The exponentr that gives the scaling d* with his  from the embedding of underlying manifolds into higher-
not fixed, but depends on whether or M K. Finally, in  gimensional spaces. Such postulates of higher-dimensional
the case of ridge scaling, we have the following two inter-gnaces giving rise to observed properties date back to Kalu-
esting features. za's[47] demonstration that electromagnetism can be viewed

(1) The width of the boundary layer around the ridge de-aS @ consequence of a fifth spatial dimension. Though our
pends on both the small parameteand the length of the work has explored only the behavior @fsticsheets embed-
ridge X. ded in higher dimensions, many of our results concerfing

(2) The energy of the ridge scales B¥3X!3 and is not qn_dIC are pur_ely ge_ometrical. Since the energetics of elas-
linear in the size of the ridge. Therefore, the asymptotic enliCity are relatively simple our geometric results may gener-

density overk. most general terms, we have demonstrated a circumstance in

which manifold embeddings can give rise to interesting lo-
These features imply that thé limit &, if it exists, is  calized features with a dimesionality distinct from that of the
nonlocal. It is, therefore, very interesting to carry out a rig-manifold and the spadet8].
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@ 10° ey — —rrr TABLE |. Summary of simulational results. The first three col-
_ Rt s?;’c‘ﬂmg . umns list the geometry of the simulated sheet and the spatial and
2 A i P embedding dimensions. The next column lists the dimension of any
2 10 T . M“"""\\ 1 spontaneouwertex structures. The next column tells whether the
E i, \~~§. observed scaling was conelike or ridgelike. The final column tells,
£ 2l ""'ﬁ.,.‘ \ 5 | for the cases where the boundary conditions did not explicitly break
£ 10 .'Njn . N the three-dimensional symmetry of the cube, whether the energy
§ \ X minimum was a symmetric state in the manifold coordinates. The
3 108} \ Y six manifold geometries, in the order presented here, are: two point
% h disclinations in a square sheet, a single line disclination at one cube

face, parallel line disclinations on opposite cube faces, perpendicu-
2001 0.01 ;0 ] = y lar line disclinations on opposite cube faces, toroidal connectivity of

a three-dimensional manifold, and the attachments of the center
points of opposite cube faces to each other.

enclosed volume fraction

b 100 T T T T
( l S?;gg:gg * Vertex Spontaneous
[2) H i
'§ o .\R'\'\w*m P Geometry m d Dimension Scaling asymmetry
2 "”“‘m.%‘ Two sharp bends 2 3 n/a ridge n/a
° P \\\\ 2 4 n/a cone n/a
> 102 T N Isolated disclinations 3 4 n/a cone n/a
2 o, N ? 3 5 n/a cone n/a
S, *% | disclinations 3 4 n/a ridge n/a
g 0T o 3 5 n/a cone n/a
° "\\ 1 disclinations 3 4 1 ridge n/a
10 . 3 5 n/a cone n/a
0.001 0.01 0.1 Torus 3 4 1 ridge no
enclosed volume fraction 3 5 0 cone yes
. . . Bow 3 4 1 ridge no
FIG. 19. Energy density plot for the elastic cubes with center 3 5 0 cone yes

points of opposite faces attached pictured in Fig. 18. The cubes
were X=80 lattice sites wide and had elastic thicknass0.001X.

In each graph the- symbols denote bending energy while the = i\, 1avities in a field may interact at long range. To explore

symbols denote stretching energy. Energies are expressed in a“rlﬂ]rther the conditions and forms of this interaction seems
trary units. Horizontal axes are volume fractién Graph(a) shows worthwhile

local stretching energy densif; and bending energy density, vs
volume fractiond at or above this energy density from an embed-
ding in four dimensions. Grapib) shows the same quantities from ACKNOWLEDGMENTS

an embedding in five dimensions. (8), the solid line is a power 4 o ;thors would like to thank Bob Geroch, L. Mahade-
law fit to the bending energy density in the region between 3.0%
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law fit to the stretching energy density in the region between 0.2%
and 2.0% volume fraction, with scaling exponent..26. APPENDIX: DERIVATION OF VIRIAL RELATION

CONCLUSION Here we derive the relation between the energy scaling
exponents and the virial ratio of bending to stretching ener-
In this paper, we have found two important results forgies on an elastic ridge. This derivation is a generalization of
crumpled sheets. First, we have shown that if the spatiahe derivation presented in Ré23].
dimensiond is greater thanm+ 1, the stretching elastic en- We assume for simplicity that on a ridge, the elastic bend-
ergy condenses onto vertex structures, while for the speciq,hg energy is dominated by the contribution of the main cur-
cased=m+1 it condenses onto ridges as well. Second, weyature accross the ridge, and this curvature is approximately
have provided evidence that whelr<2m the strain defect constant for the entire length of the ridge with a typical value
set in a crumpled sheet has dimension at least-2l—1.  C. For a simple ridge of lengtX in a two-dimensional mani-
For higher-dimensional manifolds witlm>3, one may fold, the ridge curvature is significant in a band of width
imagine further forms of energy condensation as the embed=1/C transverse to the ridge, so the total bending energy of
ding dimension increases. Such manifolds could reveal furthe ridge is approximately
ther surprises, as the present study did. Like gauge fields,
elastic manifolds have revealed distinctive ways in which £~ uh?C?wX=uh?CX, (A1)
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where u is the elastic modulus of the material ahds the
thickness.

PHYSICAL REVIEW B5 016603

E~ uX[h?C+ X 2eCc(2atl)], (A4)

If we assume that the ridge has a single dominant compd¥e may now find the minimum energy balance by setting the

nent of strain that also extends for a typical widttand has
typical valuey, then the total stretching energy of the ridge
is
E~uy*wX=uy?XIC. (A2)
We can write the total elastic energy along the ridge as
E~uX[h?C+y?C™1]. (A3)

Now, if we make a scaling ansatz,~(XC)™ ¢, the en-
ergy becomes

derivatived&/dC equal to zero:
h?— (2a+1)X 2eC~(?«*2)=0 (A5)

=C~X"*(h/x)~ 1)
(AB)

=y~ (h/X)/(e* 1),
(A7)

From the first of the above equations, it is clear that the virial
ratio is related tax by &=(2a+1)&;.
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