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Self-magnetized effects in relativistic cold plasmas due to ponderomotive forces:
Application to relativistic magnetic guiding of light
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Nonlinear equations are derived relevant to describe the propagation of powerful electromagnetic fields
launched within a plasma. The nonlinear generation of self-induced collective electromagnetic perturbations
are obtained with matter lying in the relativistic regime. Our main result is the self-consistent treatment of the
coupled equations between the pump and its self-induced fields. In particular, a mechanism is pointed out for
self-generation of quasistatic magnetic field that is due to the relativistic ponderomotive force. This process is
found to be more efficient to produce quasistatic magnetic fields, as confirmed by recent experiments, as
compared to known effects such as the inverse Faraday effect. As an application, we investigate conditions for
relativistic magnetic guiding of light to occur under the combined action of the self-induced density and
magnetic field.
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INTRODUCTION

The recent achievement of powerful short laser pulses
stimulated a renewal of interest for radiation in the inter
tion with matter driven into relativistic regime. Proposa
have emerged in the context of inertial fusion to use mix
~hybrid! confinement schemes@1#, and also to help trigge
the ignition in inertial confinement fusion by using se
induced transparency and hole boring@2#. The possible effi-
ciency of these proposals relies mainly on the understan
of the mechanisms of propagation of the launched pu
wave in the presence of self-generated magnetic fields. In
case of the hole boring scheme, the pump propagation s
into an initially overdense plasma.

Numerical simulations with particle in cell codes@3,4# in
the overdense case have also confirmed the creation of s
self-generated magnetic fields and their important role. In
study of Ref.@3#, the magnetic field was found to modify th
filamentation process in the self-focusing relativistic case
causing the merging of filaments, thus favoring the guid
of light, while in a second study@4#, the magnetic field seem
to trap a few fast accelerated electrons that further dep
their energy on the bulk electron allowing to heat them e
ciently.

Also in recent experiments with solid targets@5a#, hugeB
fields have been measured around 10–100 MG and h
been also predicted@5b#.

These results and our previous studies@6–7# have moti-
vated a deeper investigation of the mechanisms for s
magnetic-field creation in relativistic plasmas and the stu
of how these fields may influence the generating pu
propagation. This paper is organized as follows. In the fi
part, we write the basic equations together with our work
hypotheses. Then we solve, by a suitable perturbation ex
sion, the relativistic equations of motion for the momentu
~and velocity! and for the associated vorticity. In the seco
part, we compute the generating nonlinear source curr
for the induced-electromagnetic perturbations. Part thre
1063-651X/2001/65~1!/016414~19!/$20.00 65 0164
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devoted to the derivation of thevectorial coupled nonlinear
evolution equations between pump and perturbations. In
four, we select an application from our general set to sh
different regimes for quasistatic self-magnetic fields evo
tion and their importance on the guiding of their pump wav

Our main results in this paper may be summarized
follows. A perturbative treatment is used for finding solutio
of the relativistic equation of motion for momentum and vo
ticity. Section III is derived of coupled evolution equation
for the pump field in the presence of its self-generated m
netic field and of its induced-density perturbations. T
proper evaluation of the couplings require the computat
of the nonlinear source currents.

In the general case, we obtain four nonlinear coup
equations for the pump pulse, the self-induced density
magnetic field and for the vorticityV ~when it does not
vanish!.

This general set of equations depends on various par
eters that are identified. This system generates a high num
of simplified subsets, obtained by taking suitable approxim
tions.

Other nonlinear currents such as harmonics of the pu
currents could be also important source terms in the ov
dense case. However, in this paper we shall restrict mainl
the underdense plasma case.

Next, we point out various relevant mechanisms
magnetic-field creation using a self-consistent approach
the collisionless plasma case. The ponderomotive source
rent term is emphasized, since it turns out to be especi
important. As we shall see in previous studies, the contri
tion of the slow-frequency velocity has been neglected.

In Sec. IV, we investigate one subsystem of the gene
set that we deem to be important. We perform the quasist
approximation~QSA hereafter! for the low-frequency pertur-
bations density~nS or ^n&! and magnetic field~BS or ^B&! and
show that the strongest source of self-inducedBS field comes
here from ponderomotive effects.

The subsequent modification of the pump leads to rela
istic magnetic guiding, i.e., a combination of relativistic se
©2001 The American Physical Society14-1
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focusing ~through nS! and of magnetization~through BS!.
The ponderomotive mechanism forBS generation well ex-
plains, also in the nonrelativistic limit, recent experimen
@8~a!–8~c!# whose interpretation has formerly relied inco
rectly upon the inverse Faraday effect@8d#.

I. PERTURBATIVE SOLUTIONS OF THE EQUATIONS
OF MOTION

We start with the Maxwell equations for light~using a
classical description! and we restrict it to the relativistic hy
drodynamical equations for the plasma in the cold tempe
ture case~i.e., pressure effects are neglected!. Ions are as-
sumed motionless forming a neutralization background. T
plasma is assumed to be a collisionless gas underdense~un-
less specified! that is vpe,v, where vpe is the electron
plasma frequency andv the main pulse frequency. We no
asd5vpe/v their ratio.

We assume the existence of two time scales compa
with the underdense assumption: one scale is associated
the launched electromagnetic wave periodT52p/v and the
other one with the period of the self-induced perturbatio
T5Tp ,Tc ~whereTp52p/vpe, Tc52p/vce are the electron
plasma and cyclotron periods!. These periods should be com
pared with the duration of the pulset ~third time scale!. In
the envelope approximation we can distinguish the short
long pulse cases according, respectively, to the values o
ratios @(t/Tc ,t/Tp),1 or (t/Tc ,t/Tp).1#. We suppose it
is also possible for the splitting of any quantity into fas
~hereafter indexh! and slow-time variable~index ^ &), the
symbol ^ & meaning a time~or a phase! average over the
fast-time scale.

A. Basic equations of motion

We concentrate first on the equations of motion and w
them by introducing the generalized momentumP̃ and its
related vorticityV. The electron charge is notedqe(52e).

VW 5curl~P̃W !, ~1!

P̃W5~PW1qeAW !, ~2!

EW52] tAW 2¹W F, ~3!

BW 5curl~AW !, ~4!

] tP̃
W2VW 3VW 52qe¹W ~m0c2g1F!, ~5!

] tVW 5curl~VW 3VW !, ~6!

VW 5PW /m0g5~P̃W2qeAW !/m0g, ~7!

g[~12V2/c2!21/2 or g2511PW•PW /~m0c!2. ~8!

Splitting the momentum PW into its slow and fast component
we get on the fast time scale
01641
a-

e

le
ith

s

d
he

e

PW5PWh1^PW&,

] tP̃
W

h5VW h3VW h1^VW &3VW h1VW h3^VW &2qe¹W ~m0c2g1F!h ,
~9!

] tVW h5curl ~VW h3VW h1^VW &3VW h1VW h3^VW &), ~10!

and on the slow time scale

] t^P̃
W&5^VW &3^VW &1^VW h3VW h&2¹W ~m0c2^g&1qe^F&!,

~11!

] t^VW &5curl̂ VW &3^VW &1^VW h3VW h&). ~12!

Thus, we have two nonlinear coupled equations for PW
h and

^PW& with Eqs.~9!, ~11!, and two other equations forVW h and

^VW & with ~10!, ~12!, since the velocityVW and the Lorentz
factor g are themselves nonlinear functions of PW .

It is difficult to deal with the full nonlinear case since on
a few specific cases are completely solvable analytically.
shall perform a perturbative treatment into various para
eters, in particular into the energy parameter defined aq
5E/EC , EC5(m0 cv/e) being the Compton electric field
To proceed, we ‘‘linearize’’ the motion~see the precise
meaning below! on the fast-time scale and we keep as far
possible nonlinearities on the slow scale. We wish to stu
the modification of the fast scale by the slow self-induc
perturbations.

Perturbative expansion. Any physical quantityS will be
expanded into a series of powers ofq as follows:

S5 (
l 50

l 51`

S~ l !ql .

B. High-frequency motion

We work with Eqs.~9!–~10! by injecting theq expansion,
but we restrict mainly to the linearized high frequency~hf!
motions here

PWh /m05~gVW h!5^g&VW h1ghVW h1gh^VW &,

PWh
~3!'m0~^g&VW h!~3!1q~qn!n>4.

The linearization of Eq.~9! gives~for Fh50! to orderq ~or

for ^VW &50W ):P̃Wh
(1)50W , to third order inq

] tP̃
W

h'VW h3^VW &, ~13!

a solution of Eq.~13! is ~for PWh and P̃Wh noncolinear!

P̃Wh5UI ^VW &/m0^g&,v~AW h3^VW &!~2qe /m0^g&!, ~14a!

VIh
~3!5UIVJ /m0^g&,v~AW h

~m!!~2qe /m0^g&~n!!um1n53 .
~14b!
4-2
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The operator UI is defined in order to invert the cyclotro
motion of frequencyvC by

2 ivAW 1vW c3AW 5SW :AW 5UIv,vc
~SW)/~2 iv!,

UIv,vc
~SW !5$ IIdi

11/D@ IId'
2~vW c /2 iv!#3 IId'

%SW , ~15!

D51/@12~vc /v!2#, vW c5qeBW /m0 .

We make the same approximations for solving Eq.~10! as
for Eq. ~9!, that is to orderq, we haveVW h

(1)50W , since VW h
(1)

from ~14b! reduces to Eq.~17! below. To third order inq, we
have instead

] tVW h
~3!'curl~VW h

~1!3^VW 2&, ~168!

→VW h
~3!'curl~rWh

~1!3^VW ~2!& ! ~16!

with ] trWh5VW h ,

VW h
~1!~q!52qeAW h

~1!/@m0~^g&~0!!#, ~17!

uVW h
~1!u/c[q.

Here, we have taken the velocity Vh to the first order only
and we have assumed that^VW & is of at least second order i
q.

To go from Eq.~168! to Eq.~16!, we also suppose that th
parameterd is small enough, implying that^VW & remains con-
stant on the fast-time scale, besides the evolution of^VW &
gives a term that scales similar todq3.

It is easy also to show that the fast part of the Lore
factor gh term starts inq2 at twice the pump frequency 2v
and that its next term scales likeq3 at frequenciesv and 3v.
Then, the2m0c2¹W gh expression should be kept in the righ
hand side~rhs! of Eq. ~9b! at the same level than the VW

h
(1)

3^VW & contribution, but it scales likeaq3, with a being a
spatial parameter defined by the ratio of the wavelengthl to
the electric-field gradientLe:a52apl/Le . These two
terms may be comparable. However, when the gradien
applied ongh it vanishes for a transverse pump wave, th
one can neglect this contribution to the motion at the th
order. The next relevant term in (^VW &3VW h) is of fifth order
in q.

The solutions from Eqs.~14! are thus correct approxima
tions to third order inq. In general we have an expansion
the variables into a triple series of the three parametersq, a,
andd @7#.

The high-frequency~hf! equation of motion is thus ‘‘lin-
earized’’ in the sense that it contains only the slow scale a
nonlinear factor and no more the hf terms themselves of
same order.

The computation is self consistent because, for exam

^PW& to second order inq will depend on terms involving

^VW h
(1)
•VW h*

(1)& already known to the lowest order inq. ~Rein-
01641
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jecting the slow terms in fast equations allows us to mak
closure between high- and low-frequency motions.!

The computation of second-order terms such as PW
h
(2) and

of its time average are described shortly in the next sect
since such a term will contribute to the slow momentu

^PW& (2) as ponderomotive sources.

C. Low-frequency motion

We use Eqs.~11! and ~12!, the main hf quadratic sourc
terms~of lowest order inq! being the one in̂VW h3VW h&; with
the linearized velocity VW

h
(1) and VW h given by Eq.~16! we

have~to fourth order inq!

^VW h3VW h&52VW r3^VW &2 f ~^mW &!, ~18!

VW r[^~VW h•¹W !rWh&@52^~rWh•¹W !VW h&#, ~19!

^mW &[~qe/2!^rWh3VW h&, ~20!

f [¹W @^VW &•~^mW &/qe!#, ~21!

one recognizes in (2m0c2¹W ^g&2 f ) the expansion of
(2m0c2)¹W @(^g8&(mW )#

^g8&5$g0
21~2^VW &•~^mW &/qe!/~m0c2%1/2, ~22!

@g0[^g~mW 50W !&#.

We have introduced the magnetic moment^mW & with Eq.
~20! and a renormalized velocity VW

r by Eq.~19! that depends
on the high-frequency displacementr h , in a guiding center
approach of the fluid. From Eq.~22!, we recover the known
nonrelativistic result at lowq for the ponderomotive poten
tial energy, with the pseudo~inverse sign as compared to tru
energy! ‘‘generalized’’ magnetic energy~because we use th
expression̂ VW &•^mW &/qe instead of̂ BW &•^mW &! given by

m0c2~^g8&21!'@m0~VW h
~1!!2/2#1^mW &•^VW &/qe . ~23!

For a single particle, there is no induced slow field^BW & and
one recovers the following expression of the energy, if
external fieldB0 is applied, as

m0c2~^g8&21!'@m0~Vh
~1!!2/2#1^mW &•BW 0 . ~24!

Note that expressions~22!–~24! already hold terms to fourth
order inq. Another useful relation is the following:

^curl~rWh3VW h!&52^2VW h¹W •~ rWh!&12VW r . ~25!

Equation~25! is valid for time-averaged periodic variable
with zero mean values.

So far, the ponderomotive term defined by Eq.~22! de-
rives from the gradient of a potential only. However, there
also a rotational~curl! contribution to the average pondero
4-3
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motive energy, whose contribution could be important
magnetic-field generation in the short- but also in the lo
pulse case.

Relying on the results we have derived elsewhere@9#, it
can be shown that the full ponderomotive fourth-order p
tential (AW p ,Fp) should be considered with, hence, a curl p
of the ponderomotive force. For example, in the fluid ca
~labeled with an indexf ! we have a ponderomotive force FW

p
as

FWp /qe52] tAW p, f2¹W Fp, f . ~26!

The associated self-consistent force should include an a
tional term as~to fourth order inq!

FWp /qe52]AW p, f2¹W Fp, f1^VW &3curl~AW p, f !. ~268!

By evaluating the average of the fast-fluid momentum^PWh
(2)&

to second order, one can find a connection@9# between the
fluid vector ponderomotive potential AW

p, f and the velocity VW r
defined by Eq.~19! as follows:

qeFp, f52m0c2~^g8&21!, ~27!

qeAW p, f5m0^g&VW r , ~28!

2] tAW p, f
~2!2¹W Fp, f'2m0c2¹W ~^g&21!1] t^~rWh

~1!
•¹W !PWh

~1!&.
~29!

From Eqs.~268! and~29! it can be seen that a curl contribu
tion enters into the ponderomotive force in addition to t
longitudinal part~the gradient of the ponderomotive pote
tial!. This second term in the rhs of Eq.~29! is generally in
the ratiovt with respect to the first one. The nonrelativist
limit is easily recovered by expanding the Lorentz factor
powers of (v/c)2.

Now we wish to solve the slow equations of motion~11!
and ~12! at several levels. This computation is importa
since the involved velocities are building the source ter
responsible for the self-magnetic-field generation proces
and for the self-induced density as well.

1. General case

Equation~11! is a nonlinear equation yielding for examp
the velocity^VW &. Its Fourier transform at a frequencyv0 is
given by Eq.~31!

^PW&5m0~^VW &^g&1^VW hgh&!, ~30!

^VW &~v!'UI ^V&/m0 ,v0
$SW1 /~2 iv0!2qe^AW &!%/~m0^g&!,

~31!

SW15^VW h3VW h&2¹W ~m0c2^g&1qe^F&!. ~32!

WhereVW h is given, for example, by Eq.~16! to third order in
q for d,1. Here,v0 is an oscillation~for examplevC /g! on
the slow-time scale. More generally, we may consider
01641
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~11! as a fluid self-consistent equation, with the ponderom
tive contribution included, by writing Eq.~33! as

] t~^PW&!52qe] t~^AW 8&2VW r3^VW &2¹W ~c8!1^VW &3^VW 8&,
~33!

^AW 8&[^AW &1AW p , ~34a!

^VW 8&[^VW &1qe curl~AW p!, ~34b!

C8[m0c2~^g8&21!1qe^F&. ~35!

g8 is given by Eq.~22!, and using Eq.~30! we get

^VW &1^VW &3^VW 8&/~ iv0m0^g&!'SW2 /~2 iv0m0^g&!,
~36!

SW25SW2812 iv0m0^g&~VW 802VW 1!, ~37!

SW28152VW r3^VW &2¹W ~c8!,

^VW &5UIv0,^V8&/m0^g&~SW2,1!/~2 iv0m0^g&!

1UIv0,^V8&/m0^g&~VW 082VW 1!, ~38!

VW 08[2qe^AW 8&/~m0^g&!, ~39a!

VW 1[2~^VW &] t^g&1] t^VW hgh&/^g&. ~39b!

2. l and t components of a vector

The longitudinal~l! and transversal~t! components of a
vector are defined by

VW 5VW l1VW t,

VW l :¹W •~VW l !Þ0, curl~VW l !50,

VW t:¹W •~VW t!50, curl~VW t!Þ0.

To extract these components in the inversion of the cyclot
motion, we make the useful approximations that become
act for cylindrical geometry and forV85const; for a given
vectorS, we have the rules

~SW3VW ! l>SW t3VW , ~40a!

~SW3VW ! t>SW l3VW . ~40b!

Application to the velocity components is given as

^VW & l5UI ^V8&/m0^g&,v0
~SW ! l /~2 iv0m0^g&!, ~41!

^VW & l'$HJ ~SW l !2 iSW t3^VW 8&/~v0m0D^g&!%,

HJ ~• ![„~ IJd' /D!1I di…~• !, ~42!

^VW & t5UI ^V8&/m0^g&,v0
~SW8! t/~2 iv0m0^g&,
4-4
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^VW & t'$~H~SW8t!2 iSW8 l3^VW 8&/~v0m0D^g&!%. ~43!

It could be seen from Eqs.~41!–~43! that the velocity may
have longitudinal components. These components have
neglected, for example, in a former study about se
magnetic-field generation induced by circularly polariz
pulses@8~d!#. We shall see that these longitudinal velociti
generate a stronger amplitude of the slow-magnetic field t
the transverse components of the velocity, in particular
the case of the inverse Faraday effect~IFE!.

D. The quasistatic approximation

One could make the quasistatic approximation~QSA
hereafter! that consists in neglecting the slow-time sca
variation (dtS50) in order to describe quasistationary pr
cesses. The QSA is valid for long enough pulsesvt@1 ~see
the envelope approximation section!. In this limit, we can
derive the following solutions for the slow motion. From E
~33! we have

] ts^P̃
W8&'0W⇒^VW &5VW r1^VW 8&3¹W ~C8!/uVW 8u2. ~44!

Special cases from Eq.~33! are as follows:
~a! CaseVW p50W ~subscaseŝmW &50W or ^mW &Þ0W !. We have

~^VW &2VW r !3^VW &2¹W C8'0W

with the simple solution

^VW &5VW r1~¹W w!, ~45!

¹W C850W or qe^F&uq452m0c2~^g8&21!. ~468!

A simple subcase often considered but not self consisten
third order inq consists in neglecting VW

r in Eq. ~45! and we
are left with

^VW &50W and ^F&uq452m0c2~^g8&21!. ~46!

Equation~468! appears as a necessary compatibility con
tion.

~b! CaseVW pÞ0W ~subcaseŝmW &50W and ^mW &Þ0W !. In this
last case, Eq.~44! yields the general solution for̂VW &. Now
as a check, we may take the QSA limit from the general c
by letting v0 going to zero and from Eqs.~41!–~43! one
recovers Eq.~44! with SW given by Eq.~37!.

lim
v0→0

~^VW &!5^VW 8&/u^V8&u23SW

1 lim
v0→0

~SW i2SW' /D!/~2 iv0m0^g&!. ~47!

However, one cannot yet conclude whether¹W C8Þ0W or not
in this limit, and we need a more precise computation, to
done in the next section.
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en
-

n
n

to

i-

e

e

II. COMPUTATION OF THE NONLINEAR CURRENTS

To proceed, we use now the Maxwell equations that
coupled with the hydrodynamical equations and we imp
ment the results of Sec. I on the velocities, to find the curr
sources responsible for^n& and ^B& generation processes.

A. On the fast-time scale

The velocity VW h being computed on the fast scale, we c
find the density perturbationnh by using the continuity equa
tion and the fast varying current JW

h as

] tn1¹W •~nVW !50, ~48!

] tnh1¹W •~JWh /qe!50,

JWh /qe5^n&VW h1nh^VW &1nhVW h . ~49!

1. Expansion for density perurbation

To first order inq, by linearizing the continuity equation
we find the densitynh

(1) as

] tnh
~1!'2¹W •~n0VW h

~1!!1q~q3!,

nh
~1!'2¹W •~n0rWh

~1!!. ~50!

To third order inq, one should compute the current JW
h :

] tnh
~3!52¹W •~JWh

~3!!/qe ,

JWh
~3!/qe5n0VW h

~3!1^n&~2!VW h
~1!1nh

1^VW &~2!1~nhVW h!~3!,
~51!

for d,1

nh
~3!'2¹W •S ^n&~2!rWh

~1!1^VW &~2!E nh
~1!dt1n0rWh

~3!

1E ~nhVW h!~3!~dt!1q~dq3!, ~518!

with nh
(1) given by Eq.~50!. The Eqs.~51! and~518! involve

currents at the frequency harmonics that will be described
Sec. III A.

B. On the slow-time scale

The suitable equation for deriving the potential term~^n&
or ^F&! on the slow-time scale is the longitudinal~1! part of
the Maxwell-Ampere equation, see Eq.~54!, instead of the
hydrodynamical slow-time continuity equation~that is iden-
tically satisfied!

curl~BW !5m0~JW1JWd! ~52!

with

JWd5«0] tEW ,
4-5
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^JW&/qe5^n&^VW &1^nhVW h&, ~53!

curl~^BW &!5m0~^JW& t1^JWd&
t!,

^JW& l1^JWd&
l50. ~54!

The slow current̂JW& is defined by Eq.~53!; it is made of two
terms, which are~i! a self-consistent one noted as^JW&sc and
~ii ! a source contribution coming from the average of hig
frequency components noted as^JWh&5JWslow:

^JW&sc /qe5^n&^VW &, ~55a!

^JWh&5JWslow/qe5^nhVW h&. ~55b!

Remark. In Eq. ~52!, we have assumeda priori no mag-
netization MW and have identified the magnetic-field B wi
the magnetic induction HW . But, in general, we should write
the Maxwell-Ampere equation on HW and make use of the
relation BW 5m0(MW 1HW ) as for metals. However, for plasma
the MW term will come out directly from the slow varying
current~see below and Refs.@9,10#!.

Now, using Eq.~43! for ^VW &1 together with Eq.~37! for
the longitudinal source term SW

2
1 and the prescription~40!,

we can get the complete expressions for the potentials
the velocities at the slow-time scale

¹W iC85a~^nhVW h& i
l 1^n&@~VW 02VW 1! i

l

1~VW r
t 3^VW & i /~ iv0m0^g&!#

1¹W i~m0c2^g8&/d!, ~56!

a5~2e2/d!, d5@12vpe
2 /~v0

2^g&!#.

¹W 'C85b$^nhVW h&'
l 1^n&/~12D!@~VW 02VW 1!'

l

1~VW r3^VW &!' /~ iv0m0^g&!#

1...^n&/~12D!@ i ~VW 02VW 1!'
t

1~VW r
l 3^VW &!' /~v0m0^g&!#

3^VW 8&/~v0m0^g&!%1•••1¹W '~m0c2^g8&!

3~12D!/~12vuh
2 /v0

2!, ~57!

b5~2e2/ i e0v0!/@12vpe
2 /~v0

2^g&~12D!!#.

vuh
2 5vpe

2 /~^g&!1^V8&2/~m0^g&!2 ~58!

for ^V8&/m0'vce, we get

vuh
2 5vpe

2 /^g&1~vce/^g&!2.) ~588!

In Eq. ~588! appears the relativistic upper-hybrid frequen
for the electron. To compute the final expressions for
slow components of the velocitieŝVW &1 and ^VW & t we use
01641
-
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again Eqs.~41!–~43! and the above results~56! and~57! for
the potentialC8 ~valid to the fourth order inq!, to get

^VW & l'H@~VW 02VW 1! l1~VW r
t 3^VW &1¹W C8!/~ iv0m0^g&!#1•••

11/~12D!@~VW 02VW 1! t

1~VW r
l 3^VW &/~ iv0m0^g&!#3^VW 8&!/~v0m0^g&!, ~59!

^VW & t'H~1W 12W 13W !11/~12D!~VW r
t 3^VW &!3^VW 8&)1•••

1b$^nhVW h&'
l 1^n&/~12D!@~VW 02VW 1!'

l

1~VW r
t 3^VW &!' /~ iv0m0^g&1•••1^n&/~12D!

3~ i ~VW 02VW 1!'
t 1~VW r

l 3^VW &!' /~v0m0^g&!#

3^VW 8&/~v0m0^g&!1•••^VW 8&/~12D!~v0m0^g&2

1@¹W '~m0c2^g8&!/~12vuh
2 /v0

2!#

3^VW 8&/~v0m0^g8&!2. ~60!

1W 5~VW 02VW 1! t,

2W 5~VW r
l 3^VW &!/~2 iv0m0^g&!,

3W 5 i ~VW 02VW 1! l3^VW 8&/@v0m0^g&~12D!#.

2. QSA limit for the slow velocity

It is interesting to take the QSA limit for both slow po
tential and slow velocities. This limit yields for the potentia
given by Eqs.~56! and ~57! the final results

lim
v0→0

¹W iC850W , ~61a!

lim
v0→0

¹W 'C85¹W '@~m0c2g8!~^V8&!2/vuh
2 ~m0g!2#Þ0.

~61b!

With these expressions~61!, we may compute in the sam
limit the velocity ^VW & to get

lim
v0→0

^VW &5VW r1~^VW 8&/u^V8&u2!

3¹W '@~m0c2g8!/vuh
2 ~m0g!2#. ~62!

However, the direct QSA limit has given different results f
the potentialC8, since we have found it either undetermine
or equal to zero to second order inq. But going to fourth
order inq, we see that this limit gives a nonvanishing resu
Thus, one should be cautious about the proper way to ha
this limit. Indeed, the tricky fact here is that the expansi
should be made up to fourth order inq in order to find a
second-order source term, since in the expression for^VW &,
for example, with Eq.~62!, one has to divide by the facto
4-6
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(VW 8) that scales at least like second order inq to find the
relevant sources terms to second order in orderq.

General remark. Here, we keepa priori the total slow
vorticity ^VW & as a function of botĥPW& (^VW &) and ^BW & and
not as a function of̂BW & only.

3. Perturbative expansion for the nonlinear currents

By performing again theq expansion, we may derive
useful relation for^nhVW h& that is valid to second order a
least inq. To do this, we use the linearized equation for t
hf densitynh , the definition~19! of VW r and the relation~25!
to obtain

^nh
~1!VW h

~1!&'^n&~0! curl~ rWh
~1!3VW h

~1!!/22~¹W ^n&0
•^ rWh

1!VW h
~1!&

2^n&~0!VW r . ~63!

Using this result~63! for ^nhVW h&, we may express the tota
slow current̂ JW&5JWslow1^JW&sc as

^JW~2!&/qe5^n&~^VW &2VW r !1JWm1CW ~^n&!, ~64!

JWm5curl~MW !. ~65!

with

MW 5^nmW &'^n&^mW & ~66!

CW ~2!~¹W n0!52~¹W n0•^ rWh
~1!!VW h

~1!&2¹W n03^mW ~2!&/qe.
~67!

Non-QSA limit. The fully nonlinear currents are obtaine
to the required order inq ~up to fourth order here! by using
the expressions Eqs.~55a! and~55b! for the currentŝJWh& and

^JW&.
JW slow current. The hf densitynh is computed to a given

order k in q with the help of VW h
(k), see for example, Eqs

~50!–~51b! for nh and Eqs.~14b!–~17! for VW h . Equation~63!
is valid to second order inq and may be valid beyond, de
pending on the structure of the source terms in the contin
equation, for example, fornh

(3) .

^JW&sc current. One notes that̂VW & has been calculated i
various cases~within or not the QSA approximation! consid-
ering the ponderomotive force as given. Thus, the com
nents of the currents are computed~self consistently! as far
as possible as functions of^n&, ^BW &, AW h, and of the slow
source terms such as the ponderomotive fourth-order po
tial (AW p ,Fp) or such as the term̂ghVW h& that are coming
from the time average of the quadratic product of hf com
nents of lower order.

The self-consistent current is calculated with^VW & given
by Eqs.~59! and~60! in the general case. The slow-induce
density^n& in ^JW&sc will be related to the potentialF by the
Poisson equation~see Sec. III!.
01641
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QSA limit for the total slow current. In this case, we use
the result~62! on ^VW & to write the total slow current̂JW& in
the QSA limit as

^JW&/qe5^n&^VW 8&3¹W C8/u^VW &u21JWm1CW ~^n&!. ~68!

Note the compensation of the VW
r term in ^JW&, since it occurs

in both Eq.~62! for ^JW&sc and in Eq.~63! for ^JWh& but with the
opposite sign. This compensation is only partial in the no
QSA case.

Now, we may use the explicit result on theC potential in
the QSA, to get the slow currents in the final form

^JW&/qe5^n&^VW 8&3¹W '~m0c2g8!/vuh
2 ~m0g!21JWm1CW ~^n&!,

~69!

^JW&5^JWsc&1JWm1CW ~^n&!,

^JWsc&5^JWp1
&1^JWp2

&,

m0^JWp1
&5kp

2~^n&/n0!$VW p3¹W '~m0c2g8!/~m0vuhg!2%
~70!

m0^JWp2
&5kp

2~^n&/n0$^VW &3¹W '~m0c2g8!/~m0vuhg!2%.
~71!

The ^nhVW h& current could also be written directly as

^nh
~1!VW h

~1!&52~¹W n0•^ rWh
~1!!VW h

~1!&2n0^~¹W • rWh
~1!!VW h

~1!&.
~72!

Hence, it is zero when¹W n050W and ¹W • rWh
(1)50. In the rela-

tivistic case, the last term could be nonzero sinceg is a
function of position. When JW

slow50W the total slow current
then reads simply

^JW&/qe5^n&~VW r1^VW 8&3¹W '~m0c2g8!/vuh
2 ~m0g!2.

~73!

We shall comment on these currents in the next section.

III. THE VECTORIAL EVOLUTION EQUATIONS

A. General case„arbitrary pump pulses…

The equations of motion for PW or VW have to be completed
by the Maxwell and the fluid equations. We have derived
various nonlinear currents in Sec. II and we now look at
corresponding evolution equations for the generation of^n&

and ^BW & and for the evolution of the pump vector potenti
AW h .

1. The evolution equation for the pump pulse vector
potential A¢ h

Using the Maxwell equations, we get the propagati
equation for AW h as

D[] t2
2 /c22D,
4-7
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D~AW h!5m0JW5kp
2~nPW /g!h /~n0qe!5m0JWh

t 2JWa , ~74!

JWh
t 5qe@~nh^VW & t1^n&VW h

t !1~nhVW h! t#,

JWa5¹W •~AW h!1] t~Fh!/c2. ~75!

In the Lorentz gauge

JWa50W . ~76!

In the Coulomb gaugeJWa50W , but with ¹W •(AW h)50 andFh
50.

We assume that an envelope approximation for AW
h is pos-

sible, consistent with the multitime and space scalings
sumed initially. This approximation is possible even for sh
pulses if the duration of the pulset is long enough as com
pared to the fast periodTh ~a condition necesary to define th
fundamental frequency of the pulse itself!. The vector poten-
tial is written with a fast phasefh and a slow complex am
plitude S (s) . The amplitudeS (s) is itself the product of a
slow modulus and of a slow phasefS , so we get the enve
lope propagation Eq.~80!

AW h5êASse
2 iw~h!~r ,z,t !, ~77!

wh5vt2kz@1w0~r ,z,t !#, ~78!

Ss5uSsue2 iws~r ,z,t !,

for

~] tS
s/vSs!'d8<1,

and for

~]zS
s/kSs!'a i<1,

d851/~vt!5d/~vpet!, ~79!

D~AW h!5D~SêA!e2 iw1@~v2/c22k2!

12i ~k]z1v/c2] t!#Se2 iwêA . ~80!

A time scale parameterd8 appears in Eq.~79! depending on
vpet. The envelopeS evolves on the same time scale th
^n& for vpet51, faster forvpet,1 ~the short-pulse case! or
slower forvpet.1 ~the long-pulse case!. Similar conditions
on the evolution ofS are found with respect tôBW & by in-
troducing the parametervCt^BW &, t^BW & being a typical rising
time for ^BW &. The linear dispersion relation of the initiall
unmagnetized plasma is recovered as

D~AW h
1!5m0JWh

~1!t or v25k2c21kp
2c2. ~81!

The evolution equation for AW
h(S) reads

~D1kp
212ik]V!SêA[G~S!êA5m0~JWh!e1 iwh

5~kp
2^n&/n0^g&!SêA1RW , ~82!
01641
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]z1] t /c[]V . ~83!

In Eq. ~82!, the remainder RW involves the vectorial correc
tions in the current source terms for the AW

h envelope evolu-
tion.

Now the resolution of AW
h depends obviously on the de

gree of resolution chosen forn, PW , andg. For example, in the
plane-wave case the lowest-order~first order inq! approxi-
mation gives for tranverse variables: PW

h52qeAW h and the
right-hand side~rhs! of Eq. ~82! yields a scalar coupling in
(n/n0)AW h /^g& with RW 50. Another presentation of the evo
lution equations in terms of vorticity could be found in Re
@7#.

Now, we may explain the relevant JW
h current introduced in

Sec. II with Eq.~51! to third order inq around the frequency
v of the pump pulse.

Keeping the possible processes of harmonic genera
(to third order in q). It will be important to keep these har
monic currents in particular for the proper treatment of t
critical (d51) and overdense plasmas (d.1). Hence, we
get

JWh
t~3!

~v!u~q3,v! /qe5@nh
~1!~q,v!^VW ~2!&~q2!# t

1@^n&~0!1~2!VW h
t~1!1~3!~v!#u~q3,v!

1JWh
t~3!~2v!u~q3,v! /qe , ~84!

JWh
t~3!$~2v!u~q3,v! /qe

5@nh
~1!~q,v!1nh

~2!~q2,2v!#•@VW h
~1!~q,v!1VW h

~2!

3~q2,2v! t#} u~q3,v!], ~85!

JWh
t~3!u~q3,v! /qe5$n0VW h

~3!1~nh
~1!^VW &~2!!1^n&~2!VW h

~1!

1~nh
~2!Vh

~1!1nh
~1!VW h

~2!!%u~q3,v! . ~86!

Here, the current arising at the second harmonic 2v of the
pump frequency contributes to the total current to third or
in q through the termsnh(2v) and VW h(2v), but with an
amplitude depending on the scale parametersd anda.

Neglecting the harmonic terms (to third order in q!. In
this situation, the current simplifies since we can drop
harmonic contribution~85! to the nonlinear current

JWh
t u~q3,v! /q'n0VW h

~3!1~nh
~1!^VW &~2!!1^n&~2!VW h

~1! . ~87!

Using Eq.~16!, we get the current and the pump envelo
evolution as

m0JWh
~3!52kp

2~^n&/n0^g&!AW n2~kp
2/ ivn0!@¹W •~n0 /^g&!•AW h#

3^VW &~2,t !...2~kp
2/^g&!UIv0^V&/m0~^g&~AW h3^VW &!/

@2 iv~m0^g&!# ~88!

with ¹W •(AW h)50,
4-8
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@D~ .!1kp
212ik]V#SêA5kp

2@~^n&/n0^g&#UIv,~^V&/m0^g&!

3~SêA!1•••1kp
2~1/ivn0!

3@¹W •~n0 /^g&!•SêA#^VW &~2,t !!.

~89!

Equation~89! yields the expression of the vectorial corre
tion RW term of Eq.~82!. It shows that the evolution equatio
for AW h(S) has a vectorial character~independently of the
envelope approximation! due to the UI operator, except in
specific cases~such as for pump circular polarization whe
UI becomes a scalar!. We may see also the nonlinear couplin
of AW h(S) with ^n& and with ^BW & through the variableŝVW &,
^VW p&, and^VW &.

The velocity term in̂ VW & t given by Eq.~60! could bring
components nonparallel to the AW

h direction adding anothe
vectorial character, but in inhomogeneous plasmas only
the special case of negligible magnetic field and/or vortic
Eq. ~82! describes the coupling between AW

h and^n& only ~for
R50!. It reduces to a scalar equation that has been in
sively investigated in the context of relativistic self-focusi
~RSF hereafter! studies. The operatorD is often further sim-
plified by using the paraxial approximation with the replac
ment of the D’AlembertienD by the transverse Laplacia
operator of diffraction:D→D' .

Equations~82! or ~89! now have to be coupled with th
dynamical evolution equations for^n& and ^B&.

2. The generation equation forŠB¢ ‹

In order to study the magnetic-field generation, we der
the evolution equation for̂BW &. We start with the Maxwell-
Ampere equation written on the slow scale as

curl~^AW &!5^BW &,

curl~^BW &!5m0~^JW&! t2] t2
2 ^AW &/c2. ~90!

Using the relations~63! for ^nhVW h&, Eq. ~64! for the slow
current ^JW& and for ~44! the term CW , we get the evolution
equation for̂ AW & ~or ^BW &! as

D~^AW &!5m0@qe~^n&^VW & t2VW r
t !1CW ~¹^n&!1curl~MW !#.

~91!

The generating sources include the current JW
m5curl(MW ) that

is associated with a finite magnetization of the medium.
The time Fourier component of^AW & at the frequencyv0

reads

~2v0
2/c22D!^AW &~v0!5m0@qe^n&~^VW & t2VW r

t !

1CW ~¹^n&!1curl~MW !#, ~92!
01641
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^VW & t~v0!'@¹'~m0c2^g8&!/~12vuh
2 /v0

2!#

3^VW 8&/~v0m0^g&!21DW 1~v0!. ~628!

The DW 1 term in^VW & t defined with Eq.~628! represents mainly
the non-QSA contribution tôVW &, while the leading term is
the first one~in the QSA limit!.

We see that there are various terms participating to
creation of^BW & in the collisionless plasma case. The magn
tization MW through the magnetization current JW

m , the pon-
deromotive vector potentialAW p ~connected to the velocity
VW r!, and the longitudinal ponderomotive force through t
term proportional to¹W '(g8)3^VW 8& to quote the main terms

For a recent review on mechanisms leading to the gen
tion of ^BW &, see Refs.@7,11#. The velocity^VW & t contributes to

^AW & by both its potential and rotational components and
description is self-consistent if we keep the sources plus
duced terms in the nonlinear answers at the same orde
expansion. One may specialize further the discussion by
vestigating the short- and long-pulse cases, by making
QSA approximation or not.

Equation~92! depends on various parameters such as
initial wave polarization, the existence of an externalW

0
magnetic field, the existence of a magnetic moment^mW &, the
inhomogeneity ofn0 , the conservation of vorticity or not
and so on. We shall investigate in the following a few simp
cases only.

3. QSA limit for magnetic field generation

In the QSA limit, the velocity^VW & reduces to Eq.~62!
with the coefficientD1 in ~93! going partially to zero with
v0 . Thus, the remaining source terms for^BW & generation are
now found as

D~^AW &!5curl̂ BW &5m0$qe^n&@^VW 8&

3¹W '~m0c2g8!/vuh
2 ~m0g!2#%1•••1m0 curl~MW !

1m0qeCW ~¹^n&! ~93!

for

^nhVW h&Þ0W :

curl@vW c2~m0qe /m0!MW #52kp
2$c2~^n&/n0!@^VW 8&/~m0!

3¹W '~g8!/~vuhg!2#1CW /n0%,

~94!

for

^nhVW h&50W :

curl~vW c!52kpo
2 $c2~^n&/n0!@VW r1^VW 8&/~m0!

3¹W '~g8!/~vuhg!2#1CW /n0%. ~95!
4-9
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Analysis of the source currents. We may now identify the
main sources of magnetic-field generation in the underde
and collisionless plasma from Eqs.~94! and ~95!. There are
given by ~i! the finite-magnetization MW that occurs in the
inverse Faraday effect in the case of pulses with ellipti
polarization of their electric fields@12,13#; ~ii ! the inhomo-
geneity ofn0 through the term CW ; and~iii ! the self-consisten
slow nonlinear current that is split into the two contributio
JWp1 and JWp2 @see Eqs.~70! and ~71!# that are involving the
possible finite AW p in vuh and throughV8 and VW r and the
creation of ^BW & by the self-consistent current source^J&p1
corresponding to an incident wave of finite-spatial extensi
This last contribution is coming from the longitudinal po
deromotive force FW

p,1 through the self-consistent term in th
equation of motion for̂ VW & ~i.e., by the FWp,13^BW & term!.

Magnetization currentJWm . This current JW
m arises from a

finite-magnetization MW and leads to the so-called inverse Fa
aday effect ~IFE! for circularly or elliptically polarized
pulses. This effect vanishes for both homogeneous den
and pump electromagnetic field. The CW term comes togethe
with JWm in ^JWh&. It brings a finite contribution in the case o
inhomogeneous density and also in case of a pump with
electrostatic component~through a source or an induced de
sity nh!. For a bounded plasma with an~unphysical! homo-
geneous density, there might be a residual component of^BW &
coming from a surface effect@8b#. In laser-produced plas
mas, the density profile reflects the laser intensity pro
characteristics with large inhomogeneities ofn0 and of EW h

(BW h) in a transverse direction with respect to propagation
focused pulses in underdense plasmas. Thus the term CW could
be large. The density inhomogeneity is also enhanced by
ponderomotive force in the case of pulse chaneling, since
total density is to second order inq: ^n& tot2n05^n&(q2)
1••• .

In overdense plasmas, additional effects could come fr
large axial inhomogeneities of both pump and mean den
~through skin effects@5~b!#!.

The self-consistent currentJWsc. This current JW
sc is split into

the two currents JW
p1 and JWp2 that are of ponderomotive origin

~index p!. There are nonlinear self-consistent terms com
from the ^n&^VW & current.

The first term JW
p1 is proportional to the vectorial produc

of the ponderomotive magnetic-field BW
p5curl(AW p) with the

longitudinal ponderomotive force FW
p,1 or ¹W '(m0c2g8) as

seen with Eq.~70!. We have seen also that AW
p is connected

with the transversal part of the fluid ponderomotive for
FWp,t .

The creation of magnetic field could occur also throu
the current JW

p2 , which is again of a ponderomotive origin
This term is self consistent in the sense that it includes
rectly the^BW & field to be computed through the vorticity^V&

in the vectorial product̂VW &3¹W '(m0c2g8). This last contri-
bution could be often the strongest source of^BW & in practice
~see application below!. Note that in aq expansion, the rel-
01641
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evant current is obtained to fourth order inq, but the induced
magnetic field could be found with an amplitude at low
order inq.

Remark. In Ref.@14#, it was noted that thêBW & field could
have two origins, one due to magnetization~IFE! and the
other due to a ponderomotive origin but in this context, th
is first creation of an inducednh wakefield~to third order in
q! and then of âBW & field proportional to fourth order inq by
the current̂ JWh

(4)&5qe^nh
(3)VW h

(1)& ~see also Ref.@15#!. Using

our approach, we shall find a ponderomotive induced^BW &
field proportional toq with the self-consistent ponderomotiv
generation mechanism for circularly polarized pulses, wh
the ^BW & field predicted by the usual IFE scales asq2 ~see, for
example, Refs.@8b, 16#!.

4. The generation equation for the slow densityknl

The induced density is related to the potentialf by the
Poisson equation.

^EW & l52¹W ^f&,e0] t^EW & l1^JW& l50, ~96!

^n&5n0@12kp
22D~^f&!/fc#, ~97!

fc5m0c2/~1qe!,

^n&5n0$12kp
22D~C8/qefc2^g8&!%. ~98!

Where the definition~35! for C8 has been used

^n&~v0!5n0$12kp
22@¹ i¹ i~C8!1¹'¹'~C8!#/qefc

2@~D i1D'!^g8&#%. ~99!

In Eq. ~99!, one has to substitute the expressions of¹W i(C (8))
and ¹W '(C (8)) from Eqs. ~56!,~57! in the non-QSA or by,
Eqs.~61a!,~61b! in the QSA limit.

We see that̂ n& may be modified by the low-frequenc
magnetic-field ^BW & because of their intricate couplin
through VW r andVW ,VW 8 entering inC8 andg8. We can now
compute the density perturbation to relevant second or fo
order inq.

B50 limit. In the case of negligiblêBW &, the equation for
^n& reduces to Eq.~98! without the prime index inC andg.

DC85¹W •@a~^nhVW h&1^n&~2VW 1!!#

1¹W •@aa2¹~m0c2^g&!#,

a252 i e0v0 /e2, a51/@a2~12vpe
2 /~v0

2^g&!#. ~100!

The QSA limit is easily recovered using Eqs.~61a!, ~61b! for
c8 and in the zero magnetic-field case, one recovers
well-known result

lim
v0→0

^n&5n0$11kp
22D^g&!%. ~101!
4-10
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Finite ^BW & limit. For thenon-QSA limit; see the dynamica
equation for̂ n& below. For the QSAlimit, the^n& generation
equation reads~to fourth order inq!

lim
v0→0

^n&/n05$12kp
22@D'~C8/qefc!2D^g8&#%

511kp
22D i^g8&2•••2kp

22^V8&2

/vuh
2 ~m0^g&!221)D'~^g8&!

1kp
22¹'~^g8&!•¹'$@^V8&2/vuh

2 ~m0^g8&!2#%.

~102!

With g8 given by Eq.~22! and V8 by Eq. ~34b! in Eqs.
~99!–~102!. Simplifications may be done by expanding^P& to
the relevantq order ing8 andV8. Note also that̂n& is not
modified by the low-frequency magnetic field to second
der in q, since in the second line of the rhs of Eq.~102!, we
have for

^V8&/m0'vc ,

@^V8&2/vuh
2 ~m0^g&!221#D'~g8!

'2D'~g8!~vpe
2 /g!/@~vpe

2 /g!1vc
2/g2#→•••2D'@~g8!

3~11q~q4!#.

The nonlinear couplings between AW
h , ^n&, and^BW & through,

respectively, the Eqs.~89!-~94!-~98! are starting at least with
fourth order.

Dynamical equation for slow density^n&. Another way to
derive the equation for̂n& generation is obtained directly i
the time domain by starting from the basic equations of S
II. By taking the time derivative of the continuity equatio
for ^n& and substituting the value of^VW & from the equation of
motion, we can write

@] t
s
21vpe

2 ~^n&!/^g&#^n&

5W11W21W32~qe /m0!¹W •~n0EW p /^g&!, ~1028!

^VW 8&[^VW &1^ghVW h&/^g&,EW p[2¹W ~Fp!,

W1~] t!52¹W •@] t~^n&!^VW &1^n&~^VW &] t^g&

1] t^ghVW h&!/^g&#

W2~¹!52~qe /m0!EW•¹W ~n0 /^g&!2¹W •@n0~^VW 8&•¹W !

3~^g&^VW 8&!/^g&!],

W3~^BW &!52~qe /m0!¹W •@n0 /^g&~^VW 8&3~^BW &1BW p!#.

In the limit ^BW &50W , the remaining dynamical equation fo
^n& is obtained to a given orderm as

@] t21vpe
2 ~^n&!/^g&#^n&~m!5S~m!,
01641
-

c.

for example to second order inq

S~2!5(
i

Hi
~2!2~qe /m0!¹W •~n0EW p

~2!/^g&~0!!,

~10288!

(
i

Hi
~2!52¹W •@] t~n0!^VW ~8!&~2!#

2~qe /m0!^EW &sc
2
•¹W ~n0 /^g&~0!!

@] t21vpe
2 ~n0!/^g&#^n&~2!52$qe /m0!@¹•~n0EW p

~2!/^g&~0!#

1^EW &sc
~2!
•¹W ~n0 /^g&~0!!%,

for an homogeneous densityn0

@] t21vpe
2 ~n0!/^g&~0!#^n&~2!'~n0DFp

~2!/m0^g&~0!!.
~102888!

The QSA limit of Eq.~102888! again gives the result~101! for
Fp

(2) that is equal tom0c2@g (2)21#.

5. Closure equation for the slow vorticity

The zero vorticity case. When the total vorticity is initially
zero, it is conserved from Eq.~6! and hence, the slow mag
netic field is given to any order inq by the simple formula

qe^BW &52curl~^PW&→^BW &5BW p5curl~AW p!. ~103!

In this case, it is convenient to work with a closed nonline
equation, for example, onP that is valid to all orders inq
@7,17#.

The nonzero vorticity case. If we consider rather that the
initial conditions for the pump onset are such~sudden versus
adiabatic turning on of the pump! that they bring vorticity
perturbations, we need to solve another equation for
~slow! vorticity.

For example, we may write

^VW &/m05~^vc&1curl̂ g&VW r !@1curl~dPW r !/m0#.
~104!

If to second order q we may neglect dPW r5^PW&
2m0^g&VW r , we are left with

^VW &/m05~^vc&1curl~^g&VW r !. ~105!

A simpler assumption is merely to take the vorticity^VW &/m0

to be equal toqe^BW & to lowest consistent~second order inq!.
Closure problem@7,9#. In fact, taking the time average o

Eq. ~1! for the vorticity leads to a compatibility condition
that implies a~nonlinear! differential equation~on the spatial
variable rW! on ^VW & itself when^PW& is expressed as a functio
of ^BW & and of ^VW &. This equation could be truncated b
expandinĝ PW& in powers ofq and provides a correspondin
relation for ^VW & at a given order.
4-11
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Generally, we may write this compatibility condition o

^VW & as

^VW &/m02vW c5curl̂ PW&/m05curl~^VW &^g&1^ghVW h&!.
~106!

In the QSA limit, the compatibility condition is simplified
into

^VW &/m02vW c5curl~^ghVW h&!1curl~g~VW r1c2^VW 8&/m0g!

3¹W '~g8!/...~vpe
2 1~V8/m0!2/g!. ~107!

To be self consistent, one should add, in fact the evolu
equation for̂ PW&, thus also including the dependence in^PW&
of ^g&(^PW&) and of ^VW &(^BW &,^PW&). So we have, in genera
four coupled nonlinear equations forAW h , ^n&, ^BW &, and^PW&
or ^VW &. But, if one keeps only the source terms (^JWh&) ne-
glecting the induced ones (^JW&sc) in a non-self-consistent ap
proach~setting^VW &50W without reliable justification!, as it is
often done, one is left with three coupled closed differen
equations only for AW

h , ^n&, and^BW &.

B. Special case of circularly polarized pulses

Solution of the equation of motion

In the case of a circularly polarized transverse pulse w
a wave vector directed along thez axis the self-generate
magnetic field lies also alongz ~to lowest order in second
order q! assuming axisymmetry. The symmetry of the p
ticles trajectories allows the system to remain ‘‘integrab
because the helicity~combination of the translation and ro
tation motions! is conserved. This case of a transverse cir
lar wave propagating along BW is well known, except that here

^BW & is an induced nonlinear function of the pump field. T
situation with an external magnetic field BW

0 has been studied
in detail @18#, where explicit results for trajectories of ele
trons in terms of elliptic functions were derived. The co
figuration with circular pulses has been studied in the con
of autoresonance@19# useful for particle acceleration an
also for electron cyclotron heating, when the phase-match
condition is realized: (vc /g'v). However, the studies ar
generally restricted to a single particle in given waves,
glecting the collective and self-induced effects on the pu
wave ~medium polarization effects!. Staying far away from
the resonance condition (vc /gv!1), since the induced
magnetic-field̂ BW & will be found smaller than the magnetic
field BW h of the incident wave, we try rather to keep the se
consistent collective effects.

For the circular polarization case, the velocity VW
h is par-

allel to the magnetic-field BW
h of the wave, thus the nonlinea

term VW h3BW h in the Lorentz force vanishes at least until thi
order inq. Second, the Lorentz factorg is a constant in time,
to second order inq.
01641
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With these simplifications, the following results are o
tained, after choosing the incoming pump vector poten
expression:

AW'h5AW 0~erW,et !$sin@w~ rW,t !êx1l cosw~ rW,t !êy#%
~108!

w~ rW,t !5kz2vt1w0~ rW,t !,

l561 ~right or left polarization!.
The Coulomb gauge condition imposes

]x@A0~e rW,et !sin~w!#1]y@A0~« rW,«t !cos~w!#50,
~109!

UI'h8~ u^V8&u/m0! IJd , ~110!

h~8!51/~12lu^VW 8&u/m0v^g&!. ~111!

The UI operator reduces here to a scalar, yielding a sc
equation for AW h(S) instead of the vectorial contribution in
~SW 3V! for arbitrary pulse polarization.

With the choice of the simplest vorticity closure assumi
that V8 reduces tom0vc , we have

h51/~12lv0 /vg!. ~112!

An approximate solution is readily obtained by solving f
the velocity using aq perturbation.

EW'5EW 0~e rW,et !$cos@w~ rW,t !#êx1l sin@w~ rW,t !#êy%,

E05~A0 /v!, ~113!

VW h
~113!~v!'~cqh8/g!@2~sinw!êx1l cos~w!êy#,

~114!

nh
~113!~v!'2¹W •~n0rWh

~113!1^n&~2!rWh
~1!!

'¹W '~n0h8/g!~cq/v!1¹W •~^n&~2!rWh
~1!!,

~115!

Here FWp,p reduces to~since VW h
13BW h

(1)50W )

FWp52m0^~VW h
1
•¹W !@~g!VW h

1&#, ~116!

FWp52~m0c2/2!~h8q/g!$¹W '~h8q!1lh8q~2]yw0êx

1]xw0êy!%, ~117!

by using the gauge condition:¹̇W •(qW'eiw)50, we get condi-
tions on the slow phasew0 as

]yw052]xE0 /E0 , ]xw05]yE0 /E0 ,

FWp52~m0c2!~h8q/2g!$¹W '~h8q!1lh8¹W '~q!%.
~118!

An alternative but similar form for FW
p is also
4-12
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FWp52~m0c2!¹W '~g!1^VW h3VW h&, ~119!

^VW h3VW h&'2VW r3^VW 8&1¹W •~^mW &•^VW 8&!,

using Eq.~19! for VW r , with ^VW 8&i^VW &izW

VW r52c2~h8q/2vg!3H l]y(h8q/g)1(h8/g)]y~q!

2l]x~h8q/g!2~h8/g!]x~q!
J

3H êx

êy
J , ~120!

2m0S VW r3^VW 8&52m0c2~l^V8&h8q/2vg8!

3 H ]x~h8q/g!1l~h8/g!]x~q!

]y~h8q/g!1l~h8/g!]y~q!J 3 H êx

êy
J .

~121!

The two equivalent forms~116! and~119! for FWp , allow us to
double check the explicit result, Eq.~118!.

Thus, the general evolution equations for AW , ^n&, and^BW &
in the case of circularly polarized pulses are the followin

@D~• !12ik]V#SêA5kpo
2 $~h8^n&/n0g21!SêA

1@¹W ~^n&~0! /g!•SêA#^VW &~2,t !/ ivn0%,

~122!

curl@vW c2~m0qe /m0!MW #5~2 !kpo
2 $c2~^n&/n0!@~^VW 8&/m0!

3¹W '~g8!/~vuhg!2#1CW /n0%,

~123!

¹ iC8'a¹ i~m0c2^g8&/~12vpe
2 /~v0

2^g&!#, ~124a!

¹ iC850 for ]zg850,

¹'C8'b@~VW r
t 3^VW &!' /~ iv0m0^g&!1...^n& i /~12D!~V0

2V1!'
t 3^VW 8&/~v0m0^g&!#1 . . . ¹'~m0c2^g8&!

3~12D!/~12vuh
2 /v0

2!, ~124b!

^n&5n0~11kp
22D~' !f!, ~125!

qef/~2fc!5C8/~2fc!2~g821!,

¹'@qef/~2fc!#5B~v0!1¹'~g8!~vpeo
2 /g@v0

22vuh
2 !#.

~126!

^VW & (2) in Eq. ~122! is still given by Eqs.~60! and by Eq.~62!
in the QSA limit.

One notes that Eq.~125! relating ^n& and the potential is
already a quasistatic equation~even if the potentialf re-
mains a function of the slow-frequencyv0!. We have to
01641
expand explicitly the equations inq and we have still to dea
with the closure problem case since^PW& enters~to at least
fourth order! in g andg8 and~to at least second order! in the
expressions ofVW andVW 8.

IV. NUMERICAL SOLUTION OF A SIMPLIFIED SYSTEM
IN THE CASE OF CIRCULAR POLARIZATION

We solve numerically the relevant evolution equations i
posing a simple compatibility closure condition for the ave
aged vorticity in this section on a simple case.

A. Physical motivation

In the process of RSF that is described by the two coup
scalar Eqs.~122! and~125! for AW h and^n&, the self-generated
magnetic field could play an important role. More precise
we have shown theoretically@7# the simultaneous occurrenc
of RSF and of electron confinement within the light bea
due to^BW &, a situation leading to an intense electron phot
interaction and to possible relativistic magnetic guiding
light. While it has been shown numerically@3,4# that relativ-
istic filamentation of light could be prevented by the^BW &
field. In effect, ^BW & induces a coalescence or a merging
otherwise diverging filaments towards the central part of
light beam leading to magnetic guiding of light.

By undertaking a numerical simulation, we wish to em
phasize these physical arguments as an application. Also
can predicta priori a lowering of the threshold power PW* for
the RSF process together with a modification of the cav
tion threshold~cavitation is defined by the locally spatia
vanishing of the total density! in presence of thêBW & field.

B. The simplified system

We are restricted here to the homogeneous plasma
only. We start from our general set of nonlinear coupl
equations in the case of circular polarization as given in S
IIIB. We add simplifications by considering the QSA lim
and in the case of an initially homogeneous plasma. We
restricted again to axisymmetric solutions in this applicatio
In this case, we are left with a scalar equation for the en
lope S as

@D~ .!12ik]V#S'kpo
2 $~h8^n&/n0g!21%S. ~127!

Using the paraxial approximation@D(.)→D'#, we take the
stationary limit forS. It is an additional hypothesis that dif
fers from the QSA limit, see the parameterd8, that is, we set
]v'0. The equation forS becomes simpler,

D'~rr !~S!'kpo
2 $~h8^n&/n0g21!%S. ~128!

The other remaining equations are on the slow gyrof
quencyvc and on the potentialf.

In cylindrical geometry (êr ,êu ,êz) with variables func-
tion of r only, ]u50,

vW c5vc~r !êz , curl~vW c!5~1/r !] r~rvc!eW u ,
4-13
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curl@vW 2~m0qe /m0!MW #•êu5SW~vc!•êu , ~129!

SW~vc!5kpo
2 $@^VW 8&~vc!/m0#3@¹W '~g8!#/g@vpe

2

1~^VW 8&/m0!2/g#%. ~130!

The magnetization MW and velocity VW r are given by the ex-
pressions

MW 5e~2m0v/2m0e!~d2q2h82!/2g2êz , ~131!

VW r•êu52~c2qh8!/vg)$l] r~h8q/g!1~h8/g!] r~q!%.
~132!

The closure problem for vorticity is solved by setting to se
ond order inq:^V8&5^V&5m0vc ~133!.

It consists of neglecting the AW
p or VW r contribution to the

slow-magnetic field since

vc@~2!vcp'curl~Vr !:^VW 8&~2!/m0'vc ,

h8'16~vc /vg!, ~133!

^P& (2);gVr'0 ~but ^VW & and VW r are bothÞ0W prior to this
final assumption!.
Then, the magnetization factorh8 reduces to

h8'11l~vc /vg!. ~134!

The equation for the potential reads

¹W ~' !~f!/~2fc!'2¹W ~' !~g8!/~11~VW 8/vpem0!2~ /g!,
~135a!

or by using theq expansion

¹W ~' !~f!/~2fc!~q4!'¹W ~' !~g8!~q4!1~VW 82/g!~q2!

3¹W ~' !~g~8!!~q2!/~vpem0!2.

~135b!

For the Lorentz factors, we have

guq45@11~h8q!2#1/2'@11~h8uq2!q2#1/2, ~136a!

guq4'$11q212lq2@vc /v~g!#%1/2, ~136b!

g~8!uq45@11~h8q!212^uW &~2!
•vW c

~2!/qec
2#1/2,

~137a!

g8uq4'$~11q2!12lq2@vc /v~g!#1~q2vc/2v!%1/2.
~137b!

The final radial equation for the axial BW
z field generation is,

in the paraxial and stationary approximations for the pu
electric field
01641
-

e

dr~rvc8!/r'$2l~vpe/v!2@dr~rh82q2/g2#/2r %

1$2vc8dr~g8!/g!/~11vc
2/vpe

2 /g!%

~138!

vc85vc /v.

In the rhs of Eq.~138! the first term enclosed in curly brack
ets is the IFE effect withoutn0 density gradient, while the
second term enclosed in curly brackets is thedressedpon-
deromotive source term coming from the current JW

p2
. We

have neglected here the contribution of BW
p5curl(AW p) that

enters in the current JW
p1

.
The complete set of equations is composed of~i! Eq.

~138!; ~ii ! Eq. ~128! for ~S!; ~iii ! Eq. ~135b! for ~F!; ~iv!
relation ~125! betweenn andF ~or C8!; and ~v! the chosen
closure~133! VW 'VW 8'm0vc .

In the Appendix, simple analytical formulas for BW
S are

given in the nonfeedback case wheng andS are considered
as fixed functions ofr only.

C. Simple estimates forŠB¢ ‹ strength from Eq. „138…

The ^BW & amplitudes are strongly pulse model-depend
~shape of the pulse, duration, intensity, focalizing parame
kpr 0 ,r 0 being the electric-field transverse gradient lengt!.
We can make the following estimates from Eq.~138!:

^BW z&/BW c⇔vc /v, Bc5~m0v/e!

magnetizationM contribution dominant

vc /v'~vpe/v!2~ I/4Ic!/~11I/I c!, ~139!

density gradient termC(¹W n0) dominant

vc /v'~vpe/v!2/2~ I/I c!/~11I/I c!, ~1398!

ponderomotive source~circular case! dominant

vc /v521/2@vpe~0!/v0#$11@ I ~r 50!/I c#%
1/2

2$11@ I ~r !/I c#
1/2%1/2, ~140a!

→uvc /vu,21/2~vpe/v0!$11@ I ~0!/I c#%
1/4, ~140b!

→uvc /vu,$~vpe/v0!@ I ~0!/I c#%
1/2. ~140c!

Where we have used in Eq.~140a! the approximation for
g:g5(11q2)1/2; Eq. ~140b! is taken in the ultrarelativistic
limit of ~140a! and~140c! is an upper bound foru^BW &u in the
classical limit ~there are conditions connecting the para
eterskpr 0 and I/Ic , see, for example, Ref.@20# and therein!.
One finds with Eq.~139! the usualu^BW &u dependence inq2

while Eq. ~140c! gives a law inq and Eq.~140b! a q1/2 law.
Numerical application for kpr 0510, I/Ic51, n0

51019 cm23, l51 mm, vpe/v051/4, we find u^BW &u
560 MG.
4-14
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D. The numerical procedure

We solve the system~i! to ~v! above, with the following
boundary conditions: limr→`vc50, limr→`F50, limr→`S
50, and limr→`] rS50. We choose a second-order Rung
Kutta finite-difference scheme integrating inward from
outer radiusr max for which the previous conditions hold. A
asymptotic connection atr 5r max is provided in order to
match the vacuum solution for the electric field~or vector
potential! with the runningS profile for r ,r max.

The vacuum solution could be chosen assuming a ra
Gaussian profile forS as an initial condition. Another con
dition consists of regularizing the solution atr 50 by impos-
ing dS(0)/dr50 and the vanishing ofS at infinity @21#. The
parametersq ~energy strength! andkpr o ~initial beam radius
normalized! are fixed atr 5r max with the initial Gaussian
conditionS(r max)5qe2(r/kpr0)2, with r5kpr as a normalized
variable.

In another simulation we use as an initial condition is t
asymptotic formula forS: S(rmax)5qe2(kr)/(kr)1/2. This last
expression comes from the modified Bessel funct
(q)K0(kr) verifying the differential equation@from Eq.
~128!# DrrS2(12s)S50, with 0,s,1, k2512s.

When there is electron cavitation̂n&50 and following
the prescription of Ref.@21#, we solve then the equatio
DrrS1sS50, whose solution is (q)J0(s1/2r). The choice
of the boundary conditions is, however, very important wh
dealing with nonlinear equations.

E. The results and physical discussion

There are three regimes reminiscent of the RSF unm
netized process,P* being the threshold power for RSF@22#,
depending on the ratioP/P* ,1, 51 or .1 as subcritical,
critical, and overcritical regimes, with a given parameted
ranging from low-densityd!1 to dense plasmasd51.

To computeP* more precisely we have the known resu
@22# for BW 50W , P* 5P0 /d2 and from the dispersion relatio
~see, also,@21#!

N25~kc/v!2'11vp
2/v2g~q!,

s'1/g~q!, g~q!'~11q2/2!1/2. ~141!

In this last equation, we see thats* (P* ) is a decreasing
function of q. Whereas for the finitêBW & field using the dis-
persion relation in the magnetized case, we have an estim
of s as

N25~kc/v!2'11~vp
2/v2g!@1/~12lvc /vg!#,

s'h/g,g~q,vc!. ~142!

Thus, ifvc is strong,h is high, and the threshold power bo
for self focusing~and for cavitation! should be reduceda
priori . For a review on the RSF process in the unmagneti
case, see Refs.@23#.

Figures 1 and 2 show, respectively, the electric-field a
01641
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density radial profiles in the three casess/s* .1,51 or ,1,
without Bs and using the asymptotic value for the solution
K0 .

Note that the electric-field profile is modified~increased
by cavitation nearr 50 and also outwards by the edge co
dition when increasing the value ofk!. The electric-field pro-
file is only slightly modified here since theBs field is weak,
and so is the density profile, as compared to the unmag
tized case. However, in Figs. 3–5, we show the density p
file in the case of various magnetic fields, first taking in
account the total magnetic sources~terms I and II! in Eq.
~138!. We define term I as the nonself-consistent sou
~NSC! obtained considering the inverse Faraday effect on
while term II corresponds to the self-consistent~SC! mag-
netic source computed in this paper. We see apparently
difference between the three situations with dominant NS
SC, or (NSC1SC) sourcesa priori. In Figs. 6–8 are plotted
the magnetic fields profiles in these three cases for the t
selected values ofs above, around, and below the critic
value s* . Here, the difference between the differe
induced-magnetic fields becomes more obvious. Note
the total (NSC1SC) source gives aBs field that is not
merely the sum of the two cases~SC, NSC! because of the
nonlinear dependence of the sources terms invc .

To enhance the different magnetic sources contributi
more clearly,~see also the Appendix!, we show in Fig. 9 the
magnetic-field profile using a fixed GaussianS profile solv-

FIG. 1. Electric-fieldS ~normalized to the Compton electric

field Sc! radial profile for BW S50W , parameters areq51, kpr 051,
d50.1 and for various values ofs subcritical, around critical and
supercritical, see text for the choice of initial conditions.
4-15
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ing Eq. ~138! for Bs and for ^n& through the potential equa
tion. In Fig. 10, we select a case with strongerBs ~d is
increased! and in Fig. 11, we show the corresponding dens
profile with the tendency ofBs to prevent the cavitation o
^n&.

Our main numerical conclusions are~i! a lowering of the
threshold power withvc for RSF and~ii ! a decrease of the
cavitation forn and a limitation of the maximum intensity i
the dug channel that remains partially matter filled, hen
confinement of matter is expected and the light beam
mains well self focused in the presence of magnetic effe

V. MAIN CONCLUSIONS

We have given an extended theory of magnetic-field s
generation in relativistic cold fluid plasmas. Performing th
study relies first on the evaluation of the relevant curr
sources. We have derived vectorial equations coupling
pump electromagnetic pulse with its self-induced collect
fluctuations of density and of magnetic field. We have
lected an important application leading to magnetic guid
of light in the case of underdense plasmas, extending
description of the relativistic self-focusing process to t
self-magnetized case. The undertaken numerical simulat
have allowed us to see the effects of every nonlinear so
contribution to the generation of quasistatic magnetic fie

The influence of the self-generatedB field on the propa-
gation of the pump is believed to be important and vario
indications in recent experiments and numerical studies
confirming this point. Especially in overdense plasmas w

FIG. 2. Density^n&/n0 radial profile for the same paramete
ands values than in Fig. 1.
01641
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wave propagation by the mechanism~still unclear! of ‘‘self-
induced transparency’’ the interaction between the pum
wave and the quasistatic BW field is believed to play a crucial
role.

Our formalism has to be extended to investigate mor
specifically the non-QSA limit and also the pump nonlinea
propagation in the overdense plasma situation by keeping t
suitable fast-source currents at the pump harmonic freque
cies. These studies deserve future work.

APPENDIX: SELF-MAGNETIC FIELD GENERATION:
SIMPLE ANALYTICAL SOLUTIONS IN VARIOUS

LIMITING CASES

The main approximation here is to consider that the pum
electric field remains fixed~no feedback of perturbations, not
to be confused with the nonself-consistent case, see ma
text!.

1. Magnetization M dominant „inverse Faraday effect…

We start from the generation equation for quasistatic ma
netic field to find

Since curl(vW c)'curl(MW ),¹W •(vW c)50:vW c'MW ,

~vW c /v!5~m0qe /m0v!MW , for ¹W ~n0!50,

FIG. 3. Same conditions as in Fig. 2 for densityn, for s
50.95 ~above cavitation threshold! but with different magnetic
sources: ~total vc!, • • • • ~vc from NSC term only!,
~vc from SC term only!.
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FIG. 4. Same conditions as in Fig. 3 forn, for s50.90 ~around
cavitation threshold! always with the different magnetic fields.

FIG. 5. Same conditions than in Fig. 3 forn, for s50.85~under
cavitation threshold! always with the different magnetic fields.
01641
FIG. 6. Magnetic field~normalized to frequencyv! radial pro-
file with the three possible sources as in Fig. 3, fors50.9.

FIG. 7. Magnetic-field radial profile as in Fig. 6 but withs
50.9.
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~vW c /v!52~m0qe /m0v!MW , for ¹W ~n0!Þ0W ,

~vc /v!5~vpe
2 /2v2!~h82q2/g2!,

~vc
~2!/v!'q2~vpe

2 /2v2!~ /g2!.

2. Ponderomotive term„in F¢ pÃŠV¢ ‹… dominant

With the choice of closure hereV8/m05vc1(2vcp),

~1/r !] r~rvc!'2vpe
2 ~^n&/n0!$~vc12vcp!@dr~g8!#/g!

3@vpe,0
2 1~vc12vcp!

2/g#%,

to orderq2, for vc@2vcp.
For the general case~GC!

dr~rvc /v!/r'2$~vpe/v!2$~2!dr@n0r ~g8/g!2uSu2#/n0r %

2$~vcdr~g8!/vg!/~11vc
2/vpe

2 g!%

For the sub case where the second term enclosed in c
brackets is dominant~GC 2!

dr~rvc /v!/r'2$@vcdr~g8!/vg#/~11vc
2/vpe

2 g!%,

and special subcases

FIG. 8. Magnetic-field radial profile as in Fig. 7 but withs
50.85.
01641
rly

~1! for vc
2!vpe

2 g,

~1/r !] r~rvc!'2vc@dr~g8!#/g'2vc@dr~g!#/g,

(vc /vcl)5@g1r 1 /g(r )r # with proper choice of constant
g1,r 1 ,
~2! for vc

2@vpe
2 g,

FIG. 9. Magnetic-field radial profile, with same parameters as
Fig. 1, but with a fixed Gaussian electric-field radial profile.

FIG. 10. Magnetic-field radial profile, same conditions as in F
9, but withd50.4.
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~1/r !] r~rvc!'2vpe
2 dr~g8!/vc ,

vc5~vpe/r !S 2E
0

r

2r 2dr~g8!dr D 1/2

,

FIG. 11. Effect of totalBs on the density profile for conditions
in Fig. 10.
.

.

on

01641
with vc(r 50)50.
For GC 2, there is no simple solution~see numerical so-

lution!. For an expansion inq2, by taking g5const in the
denominator:

dr~rvc!~11vc
2/vpe

2 g0!/~vcr !'2@dr~g8!/g#'2d ln~g!,

vc5~vpe/r !S 2E
0

r

2r 2dr~ ln g~8!/rvc!dr D 1/2

,

or @rvcg1 /r 1g~r !vc#5expS E
0

r

r 22dr~rvc!
2dr/2vpe

2 D .

Comparison of terms.

~1! forvc
2!vpe

2 g ~vc /vc1/@~vc~M !/vc#51/~g~2!r !

3~d2q2/2g2!; ~2! forvc
2@vpe

2 g,

vc
2/vc

2~M !52[~vpe
2 /r 2~d2q2/2g8!2#S E

0

r

r 2dr~g8!dr D .

Remark. The solutions are found above in the nonfee
back case only, i.e., forS andg are given as fixed functions
of r, and are assumed to be independent ofvc . When the
magnetic coupling is set on, we haveg(S(r ,vc)vc ,r ) and
the solutions forBs could be obtained only numerically
which is the purpose of Sec. IV.
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