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Self-magnetized effects in relativistic cold plasmas due to ponderomotive forces:
Application to relativistic magnetic guiding of light
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Nonlinear equations are derived relevant to describe the propagation of powerful electromagnetic fields
launched within a plasma. The nonlinear generation of self-induced collective electromagnetic perturbations
are obtained with matter lying in the relativistic regime. Our main result is the self-consistent treatment of the
coupled equations between the pump and its self-induced fields. In particular, a mechanism is pointed out for
self-generation of quasistatic magnetic field that is due to the relativistic ponderomotive force. This process is
found to be more efficient to produce quasistatic magnetic fields, as confirmed by recent experiments, as
compared to known effects such as the inverse Faraday effect. As an application, we investigate conditions for
relativistic magnetic guiding of light to occur under the combined action of the self-induced density and
magnetic field.
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INTRODUCTION devoted to the derivation of theectorial coupled nonlinear

evolution equations between pump and perturbations. In part

The recent achievement of powerful short laser pulses hats_)ur, we selgct an applicat_ion from our gene'ral set to show
stimulated a renewal of interest for radiation in the interac-different regimes for quasistatic self-magnetic fields evolu-
tion with matter driven into relativistic regime. Proposals tion and their importance on the guiding of their pump wave.
have emerged in the context of inertial fusion to use mixed Our main results in this paper may be summarized as
(hybrid) confinement schemdd], and also to help trigger follows. A perturbative treatment is used for finding solutions
the ignition in inertial confinement fusion by using self- Of the relativistic equation of motion for momentum and vor-
induced transparency and hole bor{i&. The possible effi- ticity. Section Il is derived of coupled evolution equations

ciency of these proposals relies mainly on the understandin r_the_pump field n the_ presence of s self-generated mag-
of the mechanisms of propagation of the launched pum etic field and of its induced-density perturbations. The

wave in the presence of self-generated magnetic fields. In the OPer eva_luauon of the couplings require the computation
f the nonlinear source currents.

case of the hole boring scheme, the pump propagation starts In the general case, we obtain four nonlinear coupled

into an initially overdense plasma. equations for the pump pulse, the self-induced density and

Numerical simulations with particle in cell codg3,4] in magnetic field and for the vorticitf) (when it does not
the overdense case have also confirmed the creation of Stm%nish.

self-generated magnetic fields and their important role. In the This general set of equations depends on various param-
study of Ref[3], the magnetic field was found to modify the gters that are identified. This system generates a high number

filamentation process in the self-focusing relativistic case bysf simplified subsets, obtained by taking suitable approxima-
causing the merging of filaments, thus favoring the guidingijons.

of light, while in a second studyt], the magnetic field seems  Other nonlinear currents such as harmonics of the pump
to trap a few fast accelerated electrons that further deposiurrents could be also important source terms in the over-
their energy on the bulk electron allowing to heat them effi-dense case. However, in this paper we shall restrict mainly to

ciently. the underdense plasma case.

Also in recent experiments with solid targé&a|, hugeB Next, we point out various relevant mechanisms for
fields have been measured around 10-100 MG and haweagnetic-field creation using a self-consistent approach in
been also predictelbb]. the collisionless plasma case. The ponderomotive source cur-

These results and our previous studiés-7] have moti-  rent term is emphasized, since it turns out to be especially
vated a deeper investigation of the mechanisms for slovimportant. As we shall see in previous studies, the contribu-
magnetic-field creation in relativistic plasmas and the studytion of the slow-frequency velocity has been neglected.
of how these fields may influence the generating pump In Sec. IV, we investigate one subsystem of the general
propagation. This paper is organized as follows. In the firsset that we deem to be important. We perform the quasistatic
part, we write the basic equations together with our workingapproximation(QSA hereafterfor the low-frequency pertur-
hypotheses. Then we solve, by a suitable perturbation expafations densityng or (n)) and magnetic fieldBs or (B)) and
sion, the relativistic equations of motion for the momentumshow that the strongest source of self-induBedield comes
(and velocity and for the associated vorticity. In the secondhere from ponderomotive effects.
part, we compute the generating nonlinear source currents The subsequent modification of the pump leads to relativ-
for the induced-electromagnetic perturbations. Part three istic magnetic guiding, i.e., a combination of relativistic self
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focusing (through ng) and of magnetizatiorithrough Bg). P= |5h+<|3>’

The ponderomotive mechanism f8i generation well ex-

plains, also in the nonrelativistic limit, recent experiments = . . L. - - 5

[8(a)—8(c)] whose interpretation has formerly relied incor- %Ph=VnXQn+ (V)X Qp+ VX (Q) = qeV(mec=y+ ®)y,

rectly upon the inverse Faraday eff¢éd]. ©
. PERTURBATIVE SOLUTIONS OF THE EQUATIONS ddp=curl (VX Qp+(V)XQp+Vpx(Q)), (10

OF MOTION and on the slow time scale

We start with the Maxwell equations for lightising a _
classical descriptionand we restrict it to the relativistic hy- (Py=(VYX(Q)+ (VX Q) = V(Mo y) + qe(P)),
drodynamical equations for the plasma in the cold tempera- (11)
ture case(i.e., pressure effects are neglegteldns are as-
sumed motionless forming a neutralization background. The Q) =curk V) x (Q) + (VX Q). (12)
plasma is assumed to be a collisionless gas underdense
less specified that is wpe<w, where wy, is the electron 1,5 e have two nonlinear coupled equations feraRd
pIasTa frequengy ar)d the main pulse frequency. We note <|5> with Egs. (9), (11), and two other equations f(ﬁh and
as 6= wpe/ w their ratio. J . 2

We assume the existence of two time scales compatible®2) With (10), (12), since the velocityv and the Lorentz
with the underdense assumption: one scale is associated wiftctor y are themselves nonlinear functions of P
the launched electromagnetic wave period 27/ » and the It is difficult to deal with the full nonlinear case since only
other one with the period of the self-induced perturbationsa few specific cases are completely solvable analytically. We
T=T,,T. (WhereT, =27/ wpe, Tc=27/wcare the electron shall perform a perturbative treatment into various param-
plasma and cyclotron periodd hese periods should be com- eters, in particular into the energy parameter defined as
pared with the duration of the pulse(third time scalg In =E/Ec, Ec=(mycw/e) being the Compton electric field.
the envelope approximation we can distinguish the short andio proceed, we ‘“linearize” the motior(see the precise
long pulse cases according, respectively, to the values of theeaning belowon the fast-time scale and we keep as far as
ratios [(7/T.,7/T,)<1 or (7/T.,7/T,)>1]. We suppose it possible nonlinearities on the slow scale. We wish to study
is also possible for the splitting of any quantity into fast- the modification of the fast scale by the slow self-induced
(hereafter indexh) and slow-time variabléindex ( )), the  perturbations.
symbol () meaning a time(or a phasg average over the Perturbative expansiorAny physical quantityS will be

fast-time scale. expanded into a series of powersaés follows:
=40
A. Basic equations of motion S— 2 S(')q'.
=0

We concentrate first on the equations of motion and write
them by introducing the generalized momenti#mand its
related vorticity(). The electron charge is noteg(= —e). B. High-frequency motion
. = We work with Eqs(9)—(10) by injecting theq expansion,
Q=curl(P), (D put we restrict mainly to the linearized high frequer(y)
motions here

P=(P+qcA), 2) i i . .
PalMo=(yVn) =(¥)Vh+ ¥aVht+ vn(V),
E=—-9A-V®, 3 . R
P ~my((y)V) P+ 9(q")n=4.
B=curl(A), (4)

The linearization of Eq(9) gives(for ®,,=0) to orderq (or

2 eoA - 3y = 6)- BN =G : .
aP—Vx O =—q.V(mycy+®), (5) for (Q)=0):PM'=0, to third order inq

aQ=curl(VxQ), (6) IP =V X (D), (13
\7=I3/m0y=(:l5— qe'&)/mo% 7) a solution of Eq(13) is (for I5h andzI% noncolineay
y=(1-V2/c?) "2 or 2=14P.-Bl(m)2.  (8) P= U(si)/m0<y>,w('&h>< (ON(—ae/me(y)), (143
Splitting the momentum to its slow and fast components VY= Uﬁ/mom,w('&(hm))(—%/mo( V™) min=s-
we get on the fast time scale (14b
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The operator Uis defined in order to invert the cyclotron jecting the slow terms in fast equations allows us to make a

motion of frequencywc by closure between high- and low-frequency motipns.
The computation of second-order terms such &S #&hd
—iloA+ o, XA=SA=U,, (9/(-iw), of its time average are described shortly in the next section,

since such a term will contribute to the slow momentum
o 5 o - - - B\ (2 i
Uy (9={Tg + UA[Ty, —(Gc/—10)x T4 }5 (19 (P)® as ponderomotive sources.

A= 1/[1_(6%/(1))2]’ (Bc:%é/mo- C. Low-frequency motion

We use Eqgs(11) and(12), the main hf quadratic source
We make the same approximations for solving Etf) as  terms(of lowest order ing) being the one irﬁ\7h><ﬁh>; with
for Eq. (9), that is to ordem, we have(V=0, since (" the linearized velocity W and &3, given by Eq.(16) we
from (14b) reduces to Eq(17) below. To third order irg, we  have(to fourth order inqg)
have instead

) I (VX Qp) ==V x(Q) = f((a)), (18)
00, ~curl(V{M x (Q?), (161)
] ] Ve =((Vi V)T == ((Fa- V)Vi)], (19
— QP ~curl(fiM < (Q2)) (16)
. - (f)=(0el2){ThX V), (20
W|th ﬁchZVh,
. n F=V(Q)- (A)de)], (21)
Vi (@)= =g A mo((%) )], (17 )
- one recognizes in £myc?V(y)—f) the expansion of
Vilie=a. (—moe?) VI((¥' ) ()]
Here, we have taken the \ielgcnyh\lo the first order onlyl (¥ Y =192+ (2(Q)- ({ &)/ qe) (Mo} 2 (22)
and we have assumed tH#) is of at least second order in
q. .
To go from Eq.(16') to Eq.(16), we also suppose that the [yo={¥(£=0))].

parametew is small enough, implying thdﬁ) remains con-

stant on the fast-time scale, besides the evolutioq(®f (20) and a renormalized velocity,\by Eq. (19) that depends

gives a term that scales similar &aj°. on the hi ; ; o
: gh-frequency displacemeny, in a guiding center
It is easy also to show that the fast part of the Lorentzapproach of the fluid. From E@22), we recover the known
factor vy, term starts ing? at twice the pump frequencye? ;

dthat | les [i f . q nonrelativistic result at lowg for the ponderomotive poten-
and that its next term scales likg at frequencies) and 3o. tial energy, with the pseud@nverse sign as compared to true

Then, the—myc?V y,, expression should be kept in the right- energy “generalized” magnetic energgbecause we use the
hand side(rhs) of Eq. (9b) at the same level than theW expressior(ﬁ)-(,&)/qe instead of<é>.<ﬂ>) given by

x(Q) contribution, but it scales likexg®, with « being a

spatial parameter defined by the ratio of the waveleng moc?((y')— 1) =~[mo(Vi) 221+ (@) - (Q)/qe. (23)

the electric-field gradientLy:a=2amN/L,. These two

terms may be comparable. However, when the gradient igor 4 single particle, there is no induced slow figl) and
applied onyj it vanishes for a transverse pump wave, thusgne recovers the following expression of the energy, if an
one can neglect this contrlbutlorl to tpe motion at the thirdgyiarnal fields, is applied, as

order. The next relevant term if\{) X () is of fifth order

in g. moc?((y')— 1) =[mo(Va™)2/2]+ (i) -By. (24
The solutions from Eqq14) are thus correct approxima- o () = D =[mo(Vy )21+ (i) - Bo @9
tions to third order irg. In general we have an expansion of Note that expression@2)—(24) already hold terms to fourth

thedva[rlfilbles into a triple series of the three paramefess  order ing. Another useful relation is the following:
andé [ 7].

The high-frequencyhf) equation of motion is thus “lin- P )y = 2( T (F)) 4 2V
earized” in the sense that it contains only the slow scale as a {eun(ry>Vp)) =2(=VpV- (F)) +2V; . 25

nonlinear factor and no more the hf terms themselves of th%quation(ZS) is valid for time-averaged periodic variables
same order. L . with zero mean values.

A The computation |s. self -con5|stent because, for exgmple, So far, the ponderomotive term defined by E2Q) de-
(P) to second order irg will depend on terms involving rives from the gradient of a potential only. However, there is
(VY. v My already known to the lowest order @p (Rein-  also a rotationalcurl) contribution to the average pondero-

We have introduced the magnetic momég with Eq.
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motive energy, whose contribution could be important for(11) as a fluid self-consistent equation, with the ponderomo-
magnetic-field generation in the short- but also in the longtive contribution included, by writing Eq33) as
pulse case. _ . . L . .

Relying on the results we have derived elsewHé&e it H((PY)=—qed({A") =V, X{(Q) =V (¢") +{V)X{Q"),

can be shown that the full ponderomotive fourth-order po- (33
tential (ﬁp ,P ) should be considered with, hence, a curl part . .
of the ponderomotive force. For example, in the fluid case (A)Y=(A)+Ap, (343
(labeled with an index) we have a ponderomotive force F <, - .
ae P ® (0)=(0)+qecuri(A,), (34b)
> > N /= 2 o
Fo/Ge=—dAp 1~ VD, . (26) W=moc ((y')~ 1) +qe(P). (35

"is gi by Eq.(22), and using Eq(30 t
The associated self-consistent force should include an addz 's given by Eq.(22), and using Eq(30) we ge

tional term agto fourth order inq) <\7>+(\7>X<ﬁ'>/(iwomo(7>)*§2/(—iwomo<7>)a

- - - - - 36
Fol/Qe=—0Api— V@, ¢ +(V)Xcurl(A,1). (26) %
_ S,=S1—iweme(¥) (V' g—Vy), (37)
By evaluating the average of the fast-fluid moment(#f’) > o (Vo= Vs
to second order, one can find a connecti@hbetween the §2'1= —\7p<(ﬁ)—VY://)
fluid vector ponderomotive potentiélpA and the velocity*\/
defined by Eq(19) as follows: (V)=U, (g (S2,0/(— i womo( 7))
— 2 r\ __ > " =,
AePp,¢=—MmgC (¥ 1), (27) +Uw0’<gr>/m0<y>(V6_V1), (39
GeAp,1=Mo(V)Vr, (28) V= — (A (me( 7)), (39
— G AZ =V D, ~—moc?V((y)— 1)+ (F,™-V)FM). - - -
tAp 1 p,f o€ V({(y)=1)+d((Fh - V) h(;g) Vi=— (V) y) + ddVnynd{y). (39

From Egs.(26') and(29) it can be seen that a curl contribu- 2. | and t components of a vector

tion enters into the ponderomotive force in addition to the  The |ongitudinal(l) and transversalt) components of a
longitudinal part(the gradient of the ponderomotive poten- yector are defined by

tial). This second term in the rhs of EQ9) is generally in

the ratiow with respect to the first one. The nonrelativistic V=V'+Vt,
limit is easily recovered by expanding the Lorentz factor in
powers of ¢/c)?. VIV (V) £0, cur(V)=0,

Now we wish to solve the slow equations of motigii)
and (12) at several levels. This computation is important S Ot >t
since the involved velocities are building the source terms VEV-(V)=0, curV)#0.

responsible for the self-magnetic-field generation processef, exiract these components in the inversion of the cyclotron
and for the self-induced density as well. motion, we make the useful approximations that become ex-
1 General case act for cylindrical geometry and fdi)’ = const; for a given

: vectorS we have the rules
Equation(11) is a nonlinear equation yielding for example

the velocity(V). Its Fourier transform at a frequenay, is (Sx0)'=8xQ, (409
given by Eq.(32)

N N ) (SxQ)'=9xQ. (40b)
B =MV + Vi), (30 Application to the velocity components is given as
(0301~ Uraym o S/ (=Te00) = el AN} (i 7>)’(31) W'=00 g o D' (—iwome(y)),  (4D)
8= (Vpx )~ F(moc( ) +ae( @) (32) (' =ARE) 18X @) womod(7)),
Whereﬁh is given, fpr example, .by Ed16) to third order in ﬁ( = r‘ﬂ [A)+1a)(-), (42)
the slow ime scae. More generaly, we may conder £, (V)'= Dl oi(8 (- ogmo( ).
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<\7>t”{(H(é't)—ié’lx<ﬁ’>/(womoA<'y>)}. (43 . COMPUTATION OF THE NONLINEAR CURRENTS

To proceed, we use now the Maxwell equations that are
It could be seen from Eqg¢41)—(43) that the velocity may coupled with the hydrodynamical equations and we imple-
have longitudinal components. These components have begfent the results of Sec. | on the velocities, to find the current
neglected, for example, in a former study about self-sources responsible fg¢n) and(B) generation processes.
magnetic-field generation induced by circularly polarized
pulses[8(d)]. We shall see that these longitudinal velocities A On the fast-time scale
generate a stronger amplitude of the slow-magnetic field than .
the transverse components of the velocity, in particular, in  The velocity \{, being computed on the fast scale, we can
the case of the inverse Faraday effd€E). find the density perturbatiom, by using the continuity equa-

tion and the fast varying curreﬁﬁ as

D. The quasistatic approximation

o o +V-(nV)=
One could make the quasistatic approximati@@SA an+V-(nV)=0, (48)

hereafter that consists in neglecting the slow-time scale
variation (dts=0) in order to describe quasistationary pro-
cesses. The QSA is valid for long enough pulees>1 (see

atnh+ﬁ : (jh/qe)zoa

the envelope approximation sectjorin this limit, we can 3 1de=(M)Vp+np(V)+ V. (49)
derive the following solutions for the slow motion. From Eg.
(33) we have 1. Expansion for density perurbation

N N U S, To first order inqg, by linearizing the continuity equation,
Is(P)=0=(V) =V H{QOXVP IV (449 e find the densityr(V as
Special cases frgm Eq33 areaas fgllowsi A st~ — V. (nViY) + 9(g?),
(a) CaseQ),=0 (subscaseéu)=0 or (i) #0). We have
De_v #(1)
SN - = - ny’~—=V-(ngfy”). (50
(V)=V) X ( Q)= V&' ~0 ' o
. ) ) To third order ing, one should compute the curre»rﬂt\]
with the simple solution
e ang’'==V-(F/ge,
(V)=V,+(Vo), (45)
o F1ge=noViY+ () PVD 4+ ni V)@ + (ny V),
VW'=0 or qe(®)|gs=—mec®((y')—1). (46) (51)

A simple subcase often considered but not self consistent for 6<1

third order inq consists in neglecting Mn Eq. (45) and we ) )

are left with n§13)~—V-(<n>(2>r*§11)+<v)(2)j nitdt+nef )
V)=0 and (®)|qa=—moc?((y')—1). 46 -
(V)=0 and (@)lg=—moc"((y')=1). (49 + f (N (dt) + 9(50%), (51)

Equation(46') appears as a necessary compatibility condi-

tion. with n{! given by Eq.(50). The Eqs.(51) and(51') involve
(b) Caseﬁpg&(j (subcasegi)=0 and (z)#0). In this ~ currents at the frequency harmonics that will be described in

last case, Eq(44) yields the general solution fgiv). Now ~ S€C- IITA.
as a check, we may take the QSA limit from the general case

by letting wo going to zero and from Eqg41)—(43) one B. On the slow-time scale
recovers Eq(44) with S given by Eq.(37). The suitable equation for deriving the potential te(gm)
or (®)) on the slow-time scale is the longitudind)) part of
lim ((V))=(Q")[(Q')|>xS the Maxwell-Ampere equation, see E®&4), instead of the
wg—0 hydrodynamical slow-time continuity equatidtiat is iden-
.. tically satisfied
+ lim (S§=S, /A)/(—iwgmy(y)). (47)

wo—0 curl(B) = po(J3+3y) (52)
However, one cannot yet conclude whetReb’ #0 or not  with
in this limit, and we need a more precise computation, to be _ R
done in the next section. Jy= eodtE,
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(D1de=(MY(V)+(npVp), (53
curl((B)) = uo({H'+(Jn)H,
(I'+(3y'=0. (54)

The slow currentJ) is defined by Eq(53); it is made of two

terms, which ardi) a self-consistent one noted {ﬁ;sc and
(i) a source contribution coming from the average of high-

frequency components noted @k) = Jow
<j>sc/qe:<n><\7>r (558

(30 =Jgow/ o= (NpV). (55b)

Remark In Eqg. (52), we have assumed priori no mag-
netization Mand have identified the magnetic-field B with
the magnetic induction HBut, in general, we should write
the Maxwell-Ampere equation on knd make use of the
relation B= uo(M+H) as for metals. However, for plasmas,

the M term will come out directly from the slow varying
current(see below and Ref§9,10]).

Now, using Eq.(43) for (\7)1 together with Eq(37) for
the longitudinal source ternﬁzs and the prescriptiori40),

PHYSICAL REVIEW E 65 016414

again Eqs(41)—(43) and the above result§6) and(57) for
the potential?’ (valid to the fourth order i), to get

(W' =H[(Vo= V1) + (VX (@) + V") (i wmo( y) ]+ -
+1(1-A)[(Vo— V)
+ (VX ( Q) (i oMo ) 1X () (0oMo( ), (59)
(VYW=H(1+2+3)+ 11— A)(VEX (D)) X(Q')) +-+-

+b{(npVi)| H(M/(1=A)[(Vo— V)|
+(VPX(D)) L (womo(7)+ - +(n)/(1-4)
X (i(Vo=V1)| + (VX (0)), [(@omo(y))]
X(Q ) (womo(¥)) + -+ (O ) (1= A) (womp(¥)®
+[V (Me®(y NI(1= w0l 0p)]

X(Q") (womg(y'))2. (60)

we can get the complete expressions for the potentials and

the velocities at the slow-time scale
Vi’ =a((npVi)j+ (M (Vo= Vi),
+ (VX ( Q) /(i 0omo( )]
+V,(mec?(y')d), (56)
a=(—ed), d=[1-whd(w§(y)].
VW =b{(nyVi)| +()/(1—A)[(Vo—Vy)|
+ (VX (), /(i womo( )]
(L= A)[I(Vo—V)!
+ (VX (Q)) 1 /(womo( )]
X(Q" ) (@omo( YD)} + -+ 7 (Mec*(y"))
X (1=A)/(1- wff ), (57)

b=(—ei€owo)/[ 1~ wid (i y)(1—-A))].

win= 0pd (7)) +(Q")? (mo( y))? (58)
for (Q')/my~ w¢e We get
wLZth wgJ( 7’) + (wce/< 7))2-) (58")

In Eq. (58') appears the relativistic upper-hybrid frequency

3=i(Vo— V) X (O [ wome( y)(1—A)].

2. QSA limit for the slow velocity

It is interesting to take the QSA limit for both slow po-
tential and slow velocities. This limit yields for the potentials
given by Egs(56) and(57) the final results

lim V, ¥’ =0, (613

wg—0

lim V,¥'=V [(moc?y")((Q'))% w2 (myy)?]#0.
wp—0
(61b)

With these expression®1), we may compute in the same
limit the velocity (V) to get

lim (V)=V,+((Q")[(Q")[?)

wOﬂO
XV [(Mee?y ) w2(mey)?]. (62

However, the direct QSA limit has given different results for
the potentialV’’, since we have found it either undetermined
or equal to zero to second order @ But going to fourth
order ing, we see that this limit gives a nonvanishing result.
Thus, one should be cautious about the proper way to handle
this limit. Indeed, the tricky fact here is that the expansion
should be made up to fourth order ¢nin order to find a

for the electron. To Compute the final eXpreSSionS for th%econd_order source term, since in the expressior(\?¢r

slow components of the velocitigd/)* and (V)! we use

for example, with Eq(62), one has to divide by the factor
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(Q') that scales at least like second orderjiro find the QSA limit for the total S!OW currentn this case, we use
General remark Here, we keem priori the total slow the QSA limit as

vorticity () as a function of bot{P) ((V)) and(B) and - <, s R =2

y (1) as a fur HF) ((V)) and(B) (DIae=()(G )X VB I[(D) 2+ 3+ C(n)). (68)
not as a function o{B) only.
Note the compensation of the erm in(J), since it occurs
in both Eq.(62) for (J)s;and in Eq.(63) for (J,) but with the
By performing again they expansion, we may derive a opposite sign. This compensation is only partial in the non-

useful relation for(n,V,) that is valid to second order at QSA case. o o
least ing. To do this, we use the linearized equation for the Now, we may use the explicit result on tNepotential in

hf densityn;,, the definition(19) of V, and the relatio2s) ~ he QSA, to get the slow currents in the final form

3. Perturbative expansion for the nonlinear currents

1o obtan (B1qe= (M) )X T (ae?y' V(o) 3+ E()),
(N DVEDY ~ () curl(BD x Vi) /2— (F(n)O- (7, 1) V(L) (69)
—(n)OV,. 63 (=(3+3,+C(nY),
Using this result(63) for (nh\7h>, we may express the total <‘J5“>:<Jpl>+<‘]Pz>'
slow current(J)=Jgout (Jsc as . ) . , ,
pofdp,) =Ke({M)/Ng){ QX V (Mocy" )/ (Mowyny) 7}
(I)ge=(MUV)=V)+In+C(n)),  (64) (70
3\ 2 3\ © 2. 2
3= curl(W). 65 roldp,) = Ko((M/No{(Q)Y XV (Moc=y")/ (Mowyny) }£71)
with The(nh\7h) current could also be written directly as
M=(ng)~(n){z) (66) (NOVIDY = — (Vng- (VDY —no((V - EL) VD).

(72)
CA(Vng)=—(Vng- (FNVIDY —Vngx (i @)/qe. L . .
(Vo)== (Vo- (T HVRT) = Vo X (A1 Ge (67  Hence, itis zero wheVno=0 andV-FM=0. In the rela-
tivistic case, the last term could be nonzero sincés a
Non-QSA limit The fully nonlinear currents are obtained function of position. When 4,,=0 the total slow current
to the required order ig (up to fourth order hepeby using  then reads simply
the expressions Eq&5a and(55b) for the currents{jh> and - N “ ,
3. (DGe=(NY(V, +{Q"yXV (Mec®y") wl(myy)?.
Jslow current The hf densityn,, is computed to a given-
orderk in q with the help Of\é(k), see for example, Egs. We shall comment on these currents in the next section.
(50)—(51b) for n,, and Eqs(14b)—(17) for \7h. Equation(63)
is valid to second order i and may be valid beyond, de- IIl. THE VECTORIAL EVOLUTION EQUATIONS
pending on the structure of the source terms in the continuity A. General case(arbitrary pump pulses)
equation, for example, fan{®).

(73

The equations of motion for Br V have to be completed

(J)s. current One notes thatV) has been calculated in . X .
various caseéwithin or not the QSA approximatigrconsid- by Fhe 'V'aXW.e” and the ﬂu".j equations. We have derived the
various nonlinear currents in Sec. Il and we now look at the

ering the ponderomotive force as given. Thus, the compo- di luti i for th tioknpf
nents of the currents are computeself consistently as far corresponding evolution equations for the generationn

as possible as functions ¢h), <§>' Ah, and of the slow a»md(B) and for the evolution of the pump vector potential
source terms such as the ponderomotive fourth-order poteﬁ\h-

tial (Ap,CI)p) or such as the terrnyh\7h) that are coming
from the time average of the quadratic product of hf compo-
nents of lower order.

The self-consistent current is calculated witf) given Using the Maxwell equations, we get the propagation
by Egs.(59) and(60) in the general case. The slow-induced equation for 4 as

density(n) in (J)s; will be related to the potentiab by the 2. 5
Poisson equatiofsee Sec. I D=dplc A,

1. The evolution equation for the pump pulse vector
potential A,
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D(An) = wod=K3(P/Y)p/(NoGe) = ody =0, (74)
d=ad (na(V)!+ (V) + (Vi)'
L=V (Ap)+a(Dp)/c?. (75)
In the Lorentz gauge
J,=0. (76)

In the Coulomb gaugd,=0, but with V- (A;)=0 and®,
=0.
We assume that an envelope approximationéfplisﬁpos—

sible, consistent with the multitime and space scalings a
sumed initially. This approximation is possible even for short

pulses if the duration of the pulseis long enough as com-
pared to the fast periof, (a condition necesary to define the
fundamental frequency of the pulse it3elfhe vector poten-
tial is written with a fast phaseé;, and a slow complex am-
plitude (5. The amplitudeX ) is itself the product of a
slow modulus and of a slow phagl;, so we get the enve-
lope propagation Eq80)

Ap=8,3 e ez, 77
en=owt—KZ + ¢o(r,z,t)], (78)
So=[3 eiesrzy,
for
(028 w3~ 8'<1,
and for
(0,251KSS) ~ <1,
8 =1 wr)=8l(wper), (79
D(Ap)=D(3&pe '+ [(w?c?—k?)
+2i(kd,+ wlc?9;) ]S e 9., . (80)

A time scale paramete¥’ appears in Eq(79) depending on

wpe. The envelope evolves on the same time scale than

(n) for w,er=1, faster forw,.7<1 (the short-pulse caser
slower forwpem>1 (the long-pulse cageSimilar conditions

on the evolution ofs, are found with respect t6B) by in-
troducing the parametebc7(g, 7 being a typical rising
time for (B). The linear dispersion relation of the initially
unmagnetized plasma is recovered as

D(AD)=uodt or w?=k*c?+k3c2. (81)
The evolution equation for A3) reads

(D+k3+2ikay)SBA=G(3) 8= o) e en

=(KX(n)/no(¥))Ses+R, (82

PHYSICAL REVIEW E 65 016414

9+ dilc=ay . (83)

In Eq. (82), the remainder Rnvolves the vectorial correc-

tions in the current source terms for tﬁg Anvelope evolu-
tion.

Now the resolution of»,ﬁ depends obviously on the de-
gree of resolution chosen for P, andy. For example, in the
plane-wave case the lowest-ordérst order inq) approxi-
mation gives for tranverse variables;,=—q.A;, and the
right-hand sidg(rhs) of Eq. (82) yields a scalar coupling in
(n/ng)An/(y) with R=0. Another presentation of the evo-
lution equations in terms of vorticity could be found in Ref.

4_7] .

Now, we may explain the reIevaFn durrent introduced in
Sec. Il with Eq.(51) to third order ing around the frequency
o of the pump pulse.

Keeping the possible processes of harmonic generation
(to third order in q) It will be important to keep these har-
monic currents in particular for the proper treatment of the
critical (6=1) and overdense plasmag>*1). Hence, we
get

3% ()] g2.0) 19e= [0, @) (V@) (D) T

Y, 3
(YO @D TR ()| )

+32(20)](q2,0) /e (84)
33 (20)| (2,0 /0e
=[niP(d,0) +niP(%20)]- [V (0,0) + VP
X(92,20)' 1} (g3,0)] (85)
I (20 9= {NoVE + (V) @) + () V(Y
+(MPVIDHNIVI) o). (86)

Here, the current arising at the second harmonaco? the
pump frequency contributes to the total current to third order

in g through the terms,(2w) and Vh(Zw), but with an
amplitude depending on the scale parameteasd «.

Neglecting the harmonic terms (to third order in.dn
this situation, the current simplifies since we can drop the
harmonic contributior{85) to the nonlinear current

J (2.0 1a=NViD+ (N{D(V) @)+ (n)@ViD . (87)

Using Eq.(16), we get the current and the pump envelope
evolution as

odd == K3((n)no{ ¥)) Aq— (K3/i wng)[V - (N /{¥)) - Ap]
X(V)Y_ = (K3/(y)) Gw()((l)/mo((y)('&hx (O
[—iw(mo(y))] (88)

with V- (A) =0,
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[D()+ kf,"' 2ikdy]Zea= kg[((”)”‘o( 7>]Uw,<<sz>/mo<y>) (V) (wo)=~[V (MecX y'N(1— i wf)]
X(3&)+ - +k3(Liwng) X QM (womo( ¥))2+Dy(wg).  (62)

X[V-(ng/(y))- 28 (V)2Y).  The D, term in(V)! defined with Eq(62') represents mainly
(89) the non-QSA contribution t(()\7>, while the leading term is
the first one(in the QSA limif.
Equation(89) yields the expression of the vectorial correc- We see that there are various terms participating to the
tion R term of Eq.(82). It shows that the evolution equation creation of(B) in the collisionless plasma case. The magne-
for An(2) has a vectorial charactéimdependently of the tization M through the magnetization currenj Jthe pon-
envelope approximationdue to theHUoperator, except in Eieromotive vector potentiah, (connected to the velocity
specific casegsuch as for pump circular polarization where V,), and the longitudinal ponderomotive force through the
U becomes a scalaiwe may see also the nonlinear coupling term proportional t&v , (') x(ﬁ’} to quote the main terms.
of An(S) with (n) and with(B) through the variablesQ), For a»recent review on mechanisms Igading to the genera-
<Qp>, and(V). tign of (B), see Refg[7,11]. The velocity(V)' contributes to
The velocity term in(\7>t given by Eq.(60) could bring  (A) by both its potential and rotational components and the

components nonparallel to th?ah/uirection adding another description is _self-consispent if we keep the sources plus in-
vectorial character, but in inhomogeneous plasmas only. |ﬁiuced 'germ%m the nonlmgall_r ar;svzﬁrs f‘rf ”:f same orger_ of
the special case of negligible magnetic field and/or vorticity,£XPansion. Une may specialize further tne discussion by in-

- tigating the short- and long-pul , b king th
Eq. (82) describes the coupling betweer and(n) only (for \(/}eSSAI\g:pISr%xinfazogroranr:)t, ong-puise cases, by making the

R.ZO)'. It red_uces o a scalar equation t.h‘_'j‘t .has been Inten- Equation(92) depends on various parameters such as the
sively investigated in the context of relativistic self-focusing .

(RSF hereaftgrstudies. The operatd is often further sim- initial wave polarization, the existence of an efterﬁ@l B
plified by using the paraxial approximation with the replace-magnet'c f'el,d’ the existence of a mggnetlc mo'n"{w'}t, the
ment of the D'AlembertierD by the transverse Laplacian inhomogeneity ofng, the conservation of vorticity or not,
operator of diffractionD— A and so on. We shall investigate in the following a few simple
1

Equations(82) or (89) now have to be coupled with the cases only.
dynamical evolution equations fn) and(B). 3. QSA limit for magnetic field generation
2. The generation equation fo{B) In the QSA limit, the veIOCity<\7> reduces to Eq(62)

In order to study the magnetic-field generation, we derivavith the coefficientD; in (93) going partially to zero with

the evolution equation fofB). We start with the Maxwell- ~ ©0- Thus, the remaining source terms {&) generation are
Ampere equation written on the slow scale as now found as

A((AY)=curkB) = uofge(n)[(Q")
XV (mc?y" ) i (mMoy) 2]+ + po curl(M)

+1£0G:C(V(nY) (93

curl((A))=(B),
curl((B)) = o((I)' = gx(A)/c?. (90)

Using the relationg63) for (n,V,), Eq. (64) for the slow  for
current(j> and for (44) the term G we get the evolution

equation for(A) (or (B)) as (NpVp)#0:

> 11— _ L2 Y
D((A)) = ol (V) ~ 1)+ SV weurciny], OO (el Mo MI= e/ mo L2/ (mo)

(O XV (¥ ) (@uy)?1+ Cingl,
The generating sources include the curﬂ,antr durl(l\7|) that (94)
is associated with a finite magnetization of the medium. ¢,
The time Fourier component ¢f\) at the frequencys,
reads (nyVp)=0:
(— wh/c®= A)(A) (o) = ol e NY((V)' = V) curl(@¢) = —kpot €2((n)/no) [V + (€1 )/ (mo)
+C(V(n))+curl(M)], (92) XV (¥ (@uny)?]+Cing}. (95
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Analysis of the source currentéd/e may now identify the evant current is obtained to fourth ordergnbut the induced
main sources of magnetic-field generation in the underdens@agnetic field could be found with an amplitude at lower
and collisionless plasma from Eq®@4) and (95). There are  order inq.
given by (i) the finite-magnetization Mhat occurs in the Remark. In Ref[14], it was noted that théé) field could
inverse Faraday effect in the case of pulses with ellipticahave two origins, one due to magnetizatitRE) and the
polarization of their electric fieldg12,13; (i) the inhomo-  other due to a ponderomotive origin but in this context, there
geneity ofng through the term Cand(iii ) the self-consistent is first creation of an inducen,, wakefield(to third order in
slow nonlinear current that is split into the two contributions q) and then of gB) field proportional to fourth order ig by
Jp1 and J, [seg Egs(70) and (71)] that are inyolving the  the current(I) = go(nPVD) (see also Ref[15]). Using
possible finite 4 in w,, and throughQ)’ and V; and the  our approach, we shall find a ponderomotive indu¢gy
creation of(B) by the self-consistent current sour¢,, field proportional tay with the self-consistent ponderomotive
corresponding to an incident wave of finite-spatial extensiongeneration mechanism for circularly polarized pulses, while
This last contrlblﬂtlon is coming from the longitudinal pon- the(B) field predicted by the usual IFE scalesigs(see, for
deromotive force f; through the self-consistent term in the example, Refs[8b, 16)).
equation of motion foV) (i.e., by the*Fp,1><<I§) term).

Magnetization currentl,,. This current } arises from a
finite-magnetization Mand leads to the so-called inverse Far-  The induced density is related to the potentiaby the
aday effect (IFE) for circularly or elliptically polarized Poisson equation.
pulses. This effect vanishes for both homogeneous density

4. The generation equation for the slow density)

and pump electromagnetic field. Thet€m comes together (B)'=—V(¢),€0(E)' +(J)' =0, (96)
with J,, in (3,). It brings a finite contribution in the case of 5

inhomogeneous density and also in case of a pump with an (My=ne[1—k, “A((#))/ ¢c], (97)
electrostatic componefithrough a source or an induced den-

sity n,,). For a bounded plasma with &anphysical homo- Be=moC?/(+de),

geneous density, there might be a residual compone(rli)of )

coming from a surface effedBb]. In laser-produced plas- (M=no{1—k, “A(V'/gepc—(¥y'))} (98

mas, the density profile reflects the laser intensity profile

characteristics with large inhomogeneitiesrgf and of §, ~ Where the definitior(35) for ¥ has been used
(I§h) in a transverse direction with respect to propagation for
focused pulses in underdense plasmas. Thus the tevould

be large. The density inhomogeneity is also enhanced by the =LA +A DY)} (99
ponderomotive force in the case of pulse chaneling, since the

total density is to second order ig: (N)—No=(M(@)  In Eq.(99), one has to substitute the expressions @i ("))

+ [ER > (r) . _
In overdense plasmas, additional effects could come frongg(i.?él(;f,(Gil;rgqhiqSéiﬁ)i,rﬁt?.) in the non-QSA or by,

large axial inhomogeneities of both pump and mean density We see thatn) may be modified by the low-frequency

through skin effect$5(b)]). g - S .
( g . $5(0)) 5 _ S . magnetic-field (B) because of their intricate coupling
The self-consistent curredf;. This current J.is split into - g o )
through \Vf andQ,Q’ entering inW' andy’. We can now

the two currents,] and ‘;2. that are of pon_deromotlve ongin compute the density perturbation to relevant second or fourth
(index p). There are nonlinear self-consistent terms comingy yer ing

from the (n)(V) Surrent. B=0 limit. In the case of negligibléB), the equation for
The first term J; is proportional to the vectorial product (n) reduces to Eq(98) without the prime index in¥ and y.

of the ponderomotive magnetic-fierq)B curl(,&p) with the

longitudinal ponderomotive force ,i or V,(mec?y’) as AW’ =V -[a((npVp) +{(nY(—= V)]

seen with Eq(70). We have seen also thétpAs connected

with the transversal part of the fluid ponderomotive force

Fot.

P, — 2 _ _ 2 2
The creation of magnetic field could occur also through a,=—lieqwo/e”, a=1ay(1—wyd(wp(y))]- (100

T term i€ sef Consistont n the sence that  mclades ai"e QSA mits easiy recovered using ESLa. (610 for
' and in the zero magnetic-field case, one recovers the

rectly the(B) field to be computed through the vorticitg)) well-known result
in the vectorial productQ)x V, (moc?y’). This last contri-

(MY (@) =No{1=K [V \V(¥")+V,V, (V)] e

+V-[aa,V(mec®(y))],

bution could be often the strongest source B in practice lim (n)y=ng{1+ k;zA(y))}. (102
(see application belowNote that in aq expansion, the rel- wp—0
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Finite (B) limit. For thenon-QSAlimit; see the dynamical for example to second order
equation forn) below. For the QSAimit, the(n) generation

equation readgto fourth order inq) g2>22i Hi(Z)—(CIe/moW'(noé(pz)/(y)(o)%
lim (n)/no={1—ky’[A, (¥'I0ecbc) — A(y")]} (102")
wo—0
=14k, 2A (Y )= =k, X Q)2 > H@ =~V [a(ng(V )@
I

J02(Mo(¥))2—1)A, ((v'))
+ky 2V, (7)) VA(Q )Y 0l (mo( ¥ )21}
(102 [dret widno) ()Y =—{ae/mo)[ V- (NgEP /()]

With y' given by Eq.(22) and )’ by Egq. (34b in Egs. +<§><S§>,V*(no/<7><o))},
(99—(102. Simplifications may be done by expandifi) to

the relevanig order iny’ and()’. Note also thatn) is not  for an homogeneous density

modified by the low-frequency magnetic field to second or-

—(de/Mo)(EY2e V(N /(7))

der ing, since in the second line of the rhs of E402), we [0+ 05 No)/{7) O UN) D~ (NgAD 2 mg( 1) ).
have for (102")
QY my~ w¢, The QSA limit of Eq.(102"") again gives the resu(L01) for

QY202 (mo( )P~ 1]A, (') @) that is equal tanec? ¢ —1].
D og(me(y) = 1]A, (¥

~—A ’ 2 / 2 + 2/ 2 e A '
L @pd Vil@pd )+ el v L) The zero vorticity casaVhen the total vorticity is initially
X(1+9(gh)]. zero, it is conserved from E@6) and hence, the slow mag-
netic field is given to any order ig by the simple formula

5. Closure equation for the slow vorticity

The nonlinear couplings between, A(n), and(é) through, _ R L R
respectively, the Eqg89)-(94)-(98) are starting at least with qe(B) = —curl((P)—(B)=B,=curl(Ap). (103
fourth order.

Dynamical equation for slow density). Another way to  In this case, it is convenient to work with a closed nonlinear
derive the equation fofn) generation is obtained directly in equation, for example, oR that is valid to all orders i
the time domain by starting from the basic equations of Sed.7,17].
Il. By taking the time derivative of the continuity equation ~ The nonzero vorticity caséf we consider rather that the

for (n) and substituting the value Qf7> from the equation of initial conditions for the pump onset are sugudden versus

motion, we can write adiabatic turning on of the pumghat they bring vorticity
perturbations, we need to solve another equation for the
[+ @ (/1) K(m) (slow) vorticity.

For example, we may write
=W+ Wyt Ws—(0e/mo) V- (B, /(7)) (102) (Q)/my=({we) + curk )V, [ + curl( 88,)/mo].

N . . i, N (104
(V=) (mVnl(7),Ep==V(dy),

A i A If to second orderq we may neglect 6P,=(P)
Wi(dp) == V- [3((m){V) +(m (V) y) —mo()V,, we are left with

+ i Vi)/(7)] ()Mo= ({we) +curl((Y)V,). (105

Wy (V)= —=(de/Mo)E-V(no/(¥)) =V -[No({V")- V) A simpler assumption is merely to take the vorticf§)/mq

X(<7><\7/>)/< W1, to be equal the<l§> to lowest consisten(second order imy).
Closure problen}7,9]. In fact, taking the time average of

Eq. (1) for the vorticity leads to a compatibility condition

that implies anonlineay differential equatior{on the spatial

variable™) on () itself when(P) is expressed as a function

W3((B))=—(de/mg)V - [No/{¥)({V') X ((B)+B,)].

In the limit (B)=0, the remaining dynamical equation for

(n) is obtained to a given orden as of (B) andﬁof(ﬁ). This equation could be truncated by
, expanding(P) in powers ofg and provides a corresponding
[z+ wpd (M) {y)(n)™ =8, relation for(Q) at a given order.
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Generally, we may write this compatibility condition on ~ With these simplifications, the following results are ob-

<§> as tained, after choosing the incoming pump vector potential
expression:
(Q)/mo— = curkP)/mo=curl({V){y) +<7th>)-106 A, n=Aq( e, et){sin (F,1)&,+\ cose(F,1)&,]}
(106 108
In the QSA limit, the compatibility condition is simplified @(T,1) =kz— wt+ po(T,1),
into

N==1 (right or left polarization.
The Coulomb gauge condition imposes

. I Ao( €T, et)sin(@) ]+ dy[ Ag(eT,et)cod @) ] =0,
XV (¥ (05t (Q'Img)?y).  (107) (109

(Q)mgy— @¢=curl({ yVp)) +curl(y(V, +cX( Q' Y/ mgy)

To be self consistent, one should add, in fact the evolution U=~ 7"(KQ")|/mo) 1 g, (110
equation for(P), thus also including the dependence(®)
of ()((P)) and of (Q)((B),(P)). So we have, in general,

four coupled nonlinear equations fak, , (n), (B), and(P)  The U operator reduces here to a scalar, yielding a scalar
or (Q>- But,'|f one keepsaonly. the source tern(s?h(}) € equation for A(S) instead of the vectorial contribution in
glecting the induced onegJ)s) in a non-self-consistent ap- (3% () for arbitrary pulse polarization.

proach(setting(V)=0 without reliable justification as it is With the choice of the simplest vorticity closure assuming
often done, one is left with three coupled closed differentialthat ()’ reduces tanyw., we have

equations only for 4, (n), and(B).

7 =11 = \(Q")|/mow( 7). (111

n=1U(1-Nwglwvy). (112

B. Special case of circularly polarized pulses An approximate solution is readily obtained by solving for
, , ) the velocity using & perturbation.
Solution of the equation of motion
In the case of a circularly polarized transverse pulse with EL = Eo(ef,et){cos{ e(T,t)]e+ N sio(T 1) 18y},
a wave vector directed along tleaxis the self-generated

magnetic field lies also along (to lowest order in second Eo=(Ag/w), (113
order g) assuming axisymmetry. The symmetry of the par-

ticles trajectories allows the system to remain “integrable” V{3 (w)~(cqn'/y)[ - (sing)&+\ cod ¢)&,],
because the helicitfcombination of the translation and ro- (114
tation motion$ is conserved. This case of a transverse circu-

lar wave propagating along B well known, except that here N3 (w)~— V- (ngf 3+ ()@

(B) is an induced nonlinear function of the pump field. The s , . (2)3(1)
situation with an external magnetic fieT(;}, Bias been studied ~V.(non'Ty)(cd/ )+ V- (n)

in detail [18], where explicit results for trajectories of elec- (115
trons in terms of elliptic functions were derived. The con- .. .

figuration with circular pulses has been studied in the contexHefe 5,p reduces tgsince \41]>< Bﬁl): 0)

of autoresonanc¢l9] useful for particle acceleration and . .

also for electron cyclotron heating, when the phase-matching Fo=— m0<(V1 () ﬁ)], (116
condition is realized: ./ y~w). However, the studies are

generally restricted to a single particle in given waves, ne-  F = —(myc2/2)(5'q/»){V. (7'q)+\7'q(— dyeoly
glecting the collective and self-induced effects on the pump

wave (medium polarization effects Staying far away from +dxpoly)}, (117
the resonance conditionw(/yw<1), since the induced

magnetic- fielo( B) will be found smaller than the magnetic- by using the gauge condition’ - (G, €'¢) =0, we get condii-

field B, of the incident wave, we try rather to keep the self-10NS on the slow phase, as
consistent collective effects.
dypo=—0xEq/Eq, dypo=dyEq/Eg,

For the circular polarization case, the velocity ¢ par-

allel t9 th% n”!agnetic-field Bof the wgve, thus the nonlline:.ﬂ ,Ep: — (Mo (7' a2V (7' D)+ A5’V ()}

term \;, X By, in the Lorentz force vanishes at least until third (118
order ing. Second, the Lorentz factaris a constant in time, .

to second order imj. An alternative but similar form for Fis also
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Fp=—(mMoC?)V , () +{(VpX Qy), (119
(VaX Qpy~ =V, x(Q")+ V- (@) (Q')),

using Eq.(19) for V,, with (Q")I(Q)IZ

\7r=—c2<n'q/2wy>><‘

Noy(n'aly)+(n'ly)dy(q) ]
—Nox(n'aly)—(n'ly)d(q)

: (120

- mo(\7r><<§,>: —moc’ (N(Q') 7' al2wy")

[0x(77’q/7)+>\(77’/7)r9x(Q)] {éx]
dy(n'aly)+N(n'ly)d,(q) &
(122

The two equivalent form&l16) and(119) for IEp, allow us to
double check the explicit result, E(L18).

Thus, the general evolution equations far (&), and(B)

in the case of circularly polarized pulses are the following:

[D(-)+2ikdy]Sea= ki (7'(N)/Ngy—1)S&s
+[V((N)0)/7)- SEAIV)Y Vi wng},
(122
curl &e— (moGe/Mo)M]=(—)K2c((N)/ng)[ ((Q")/mg)
XV, (¥ (0uwy)2]+CIng},
(123
V@' ~aV (mec(y' ) (1—- wid (0¥(y))], (1243

V”"‘I,’ =0 fOT (?Z'y, = O,

V, W ~b[(VIX (D)), /(i woMo( ¥)) +..{n)i/(1—A)(V,

=V X(Q")(0omo( y))]+ . .. V. (mec*(y"))
X(1—A)/(1— 02/ wd), (124b

<n>:n0(l+k’;2A(L)¢)), (125)

Uedp/(— o) =VW'I(—dc) = (¥ —1),

V. [Aed!(— de)1=B(wo) + YV, (¥ ) (wied Y 0= wlp)].
(126)

(VY@ in Eq. (122 is still given by Eqs(60) and by Eq(62)
in the QSA limit.

One notes that Eq125) relating(n) and the potential is
already a quasistatic equatigeven if the potentialp re-
mains a function of the slow-frequenay,). We have to
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expand explicitly the equations mand we have still to deal

with the closure problem case sin¢B) enters(to at least
fourth ordey in yandy’ and(to at least second orden the

expressions of) and(}’.

IV. NUMERICAL SOLUTION OF A SIMPLIFIED SYSTEM
IN THE CASE OF CIRCULAR POLARIZATION

We solve numerically the relevant evolution equations im-
posing a simple compatibility closure condition for the aver-
aged vorticity in this section on a simple case.

A. Physical motivation

In the process of RSF that is described by the two coupled

scalar Eqs(122) and(125) for Ah and(n), the self-generated
magnetic field could play an important role. More precisely,
we have shown theoretically] the simultaneous occurrence
of RSF and of electron confinement within the light beam

due to(B), a situation leading to an intense electron photon
interaction and to possible relativistic magnetic guiding of
light. While it has been shown numericallg,4] that relativ-

istic filamentation of light could be prevented by thé)

field. In effect,(B) induces a coalescence or a merging of
otherwise diverging filaments towards the central part of the
light beam leading to magnetic guiding of light.

By undertaking a numerical simulation, we wish to em-
phasize these physical arguments as an application. Also, we

can predicta priori a lowering of the threshold powéf Hor
the RSF process together with a modification of the cavita-
tion threshold(cavitation is defined by the locally spatial

vanishing of the total densitin presence of théB) field.

B. The simplified system

We are restricted here to the homogeneous plasma case
only. We start from our general set of nonlinear coupled
equations in the case of circular polarization as given in Sec.
IIIB. We add simplifications by considering the QSA limit
and in the case of an initially homogeneous plasma. We are
restricted again to axisymmetric solutions in this application.
In this case, we are left with a scalar equation for the enve-
lope X as

[D()+2ikay ]S =K (7' ()/ngy) —1}%. (127
Using the paraxial approximatidD(.)—A | ], we take the
stationary limit for>. It is an additional hypothesis that dif-
fers from the QSA limit, see the parame#r, that is, we set
d,~0. The equation fok becomes simpler,

ALy (2)=K{ (7' (n)/ngy—1)}3. (129
The other remaining equations are on the slow gyrofre-
quencyw. and on the potentiap.

In cylindrical geometry &, ,&,,&,) with variables func-
tion of r only, d,=0,

Oc=wc(r)e,, curllag)=(1/r)d (rw.)éy,
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curl[ & — (oG /M)M]-8y=H o) -8, (129 di(rwg)/r~{—N(wpe/ @)?[d(r 7' ?0? y*]/2r}
i, - . H{—wld, (Y Y)(1+ 02l 03dy)
S0 = J[{ D N wMoIX [V (¥) i 0, {mod(y)iniate ‘*’pe’”ug&
+((Q)/mg)?/ 1} (130

c=wc/
w.=w:/w.

The magnetization Mand velocityv are given by the ex-

pressions In the rhs of Eq(138) the first term enclosed in curly brack-

ets is the IFE effect withouh, density gradient, while the
second term enclosed in curly brackets is thiessedpon-

deromotive source term coming from the currept. e

V,-8,= — (2" wy) o (7'l y) + (7' 19) (). have neglected here the contribution ofBeurl(A,) that
(132 enters in the currenty]
o _ The complete set of equations is composed(ipfEqQ.
The closurg problem for vorticity is solved by setting to sec-(139); (i) Eq. (128 for (3); (iii) Eq. (135 for (®); (iv)
ond order inq:(Q')=(Q)=mow. (133. relation (125 betweenn and® (or ¥'); and (v) the chosen
It consists of neglecting the Aor V, contribution to the  ¢losure(133 O~0'~myw, .

slow-magnetic field since In the Appendix, simple analytical formulas fc;rSE?are
given in the nonfeedback case whemndX are considered
as fixed functions of only.

M= e(—mow/2uee)(5%0%7'?)12y%8,, (13D

0> (2) wgy=curl(V,):(Q) 2 /my= w,

7'~1*(w./wy), (133

C. Simple estimates for(B) strength from Eq. (138
The <l§) amplitudes are strongly pulse model-dependent
(shape of the pulse, duration, intensity, focalizing parameter
Kpro.ro being the electric-field transverse gradient length
We can make the following estimates from E#§38):

(PY®~ 9V, ~0 (but (V) and V; are both=0 prior to this
final assumptiohn
Then, the magnetization factey’ reduces to

n'=1+Now:/wy). (139

(B)/ B wilw, Be=(mgwle)

The equation for the potential reads magnetizatiorM contribution dominant

V() (= o)~ —V(L>(~y’)/(1+(Q’/wpemo)z(/zyl)éSa ol o~ (wpel 0)?(I141)1(1+1/15), (139
. _ density gradient terrﬂ(ﬁno) dominant
or by using theg expansion
) A A wcl o=~ (wpel ©)?12(1/1)I(1+1/1;), (139)
V(= d)(@H)=V (¥ ) (@) +(Q"? y)(g?) _ , ,
ponderomotive sourcéircular casg dominant
v N g2 2,
V(¥ N (wpdMo) wel =29 w0, d 0) wo}{1+[1(r =0)/1J}*2
(135h
—{1+[I(r)/1]"3, (1403
For the Lorentz factors, we have
—|wel 0| <2Y( wpel wo){1+[1(0)/1 ]}, (140D
Ygs=[1+(n'D)*1"*=~[1+(5'|2)a°]"% (1363
—|oc! | <{(@pel wo)[1(0)/1]}Y2 (14009
Yg={1ta®+2 g7 0 /o(n]}%  (136b

Where we have used in Eql409 the approximation for

Y =1+ (7' )+ 2(0) - 67 qec’] ™,
(1373

Y lqe={(1+ %) +2x g% e/ (Y)]+ (AP wcl20) 2
(1370

The final radial equation for the axiéIZBieId generation is,

y:y=(1+9%)Y?% Eq. (140D is taken in the ultrarelativistic
limit of (1409 and (1409 is an upper bound fo(B)| in the

classical limit(there are conditions connecting the param-
etersk,ro and l/l;, see, for example, Ref20] and therein
One finds with Eq(139 the usual[(B)| dependence i
while Eq. (1400 gives a law inq and Eq.(140b a g*? law.
Numerical  application  for kgro=10, W/l;=1, ng

in the paraxial and stationary approximations for the pulse=10"°cm™, A=1 um, wpel 0o=1/4, we find |<I§>|

electric field

=60 MG.
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D. The numerical procedure

We solve the systeri) to (v) above, with the following
boundary conditions: lim,,w.=0, lim,_,.®=0, lim,_ >
=0, and lim_..4,2=0. We choose a second-order Runge-
Kutta finite-difference scheme integrating inward from an
outer radiug 4, for which the previous conditions hold. An
asymptotic connection at=r,,, is provided in order to
match the vacuum solution for the electric figlok vector
potentia) with the running3 profile for r <r ..

The vacuum solution could be chosen assuming a radia
Gaussian profile fo& as an initial condition. Another con-
dition consists of regularizing the solutionrat 0 by impos-
ing d2(0)/dr=0 and the vanishing & at infinity [21]. The
parameters) (energy strengthandk,r, (initial beam radius
normalized are fixed atr =r 4 With the initial Gaussian
condition S (1 ) =ge “'”, with p=kpr as a normalized
variable.

In another simulation we use as an initial condition is the
asymptotic formula fo&: 3 (pna)=0q€ “P/(xp)Y2 This last
expression comes from the modified Bessel function
(g)Ko(kp) verifying the differential equatiorffrom Eq.
(128] A,,3—(1-0)3=0, with 0<o<1, k*=1-0.

When there is electron cavitatigm)=0 and following 0.0 ) , ) ,
the prescription of Ref[21], we solve then the equation 0.0 1.0 2.0 3.0 4.0 5.0
A,,3+ 0% =0, whose solution isd)Jo(c*?p). The choice

o/5,

of the boundary conditions is, however, very important when "
dealing with nonlinear equations. FIG. 1. Electric-fieldS (normalized to the Compton electric-
o _ field ) radial profile for Bs=0, parameters arg=1, kro=1,
E. The results and physical discussion 5=0.1 and for various values af subcritical, around critical and

There are three regimes reminiscent of the RSF unmags_upercritical, see text for the choice of initial conditions.
netized proces®* being the threshold power for R$E2], _ _ o
depending on the rati®/P* <1, =1 or >1 as subcritical, density radial profiles in the three cagelsr*>1,=1or<1,
critical, and overcritical regimes, with a given paramefer Without Bs and using the asymptotic value for the solution in
ranging from low-density<1 to dense plasma&=1. Ko.-

To computeP* more precisely we have the known result ~ Note that the electric-field profile is modifigthcreased
[22] for B=0, P* =P,/ and from the dispersion relation by cavitation near =0 and also outwards by the edge con-

(see, also[21]) dition when increasing the value &f. The electric-field pro-
file is only slightly modified here since tHg; field is weak,
N2=(kC/w)2~1+w,2)/w2*y(q), and so is the density profile, as compared to the unmagne-

tized case. However, in Figs. 3—5, we show the density pro-
file in the case of various magnetic fields, first taking into
account the total magnetic sourcégerms | and 1) in Eq.
(138. We define term | as the nonself-consistent source
In this last equation, we see thaf' (P*) is a decreasing (NSC) obtained considering the inverse Faraday effect only,
function of g. Whereas for the finitéB) field using the dis- while term Il corresponds to the self-consisté8C) mag-
persion relation in the magnetized case, we have an estimaretic source computed in this paper. We see apparently no

o~1y(q), y(q)~(1+q?%2)*2 (141

of o as difference between the three situations with dominant NSC,
SC, or (NSC-SC) sources priori. In Figs. 6—8 are plotted
N2=(kc/w)2~1+(wglwzy)[ll(l—)\wclwy)], the magnetic fields profiles in these three cases for the three

selected values of above, around, and below the critical
value o*. Here, the difference between the different
o=nlvy,7(0,0c). (142 induced-magnetic fields becomes more obvious. Note that
the total (NSC-SC) source gives &8 field that is not
Thus, if w, is strong,» is high, and the threshold power both merely the sum of the two cas€SC, NSG because of the
for self focusing(and for cavitation should be reduce@ nonlinear dependence of the sources termsdn
priori. For a review on the RSF process in the unmagnetized To enhance the different magnetic sources contributions
case, see Ref§23]. more clearly,(see also the Appendixwe show in Fig. 9 the
Figures 1 and 2 show, respectively, the electric-field andnagnetic-field profile using a fixed Gaussiarprofile solv-
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1.5 : . . : : ——
1.0
08 r h
5
< /\
£ =
\%
Q 0.6 F 1
\Y
| 04 4
02 r b
T0.0 1.0 2.0 3.0 4.0 0.0 . ‘
’ . 1.0
p 0.0 0.5
. . . P
FIG. 2. Density(n)/n, radial profile for the same parameters
and o values than in Fig. 1. FIG. 3. Same conditions as in Fig. 2 for density for o
=0.95 (above cavitation thresholdout with different magnetic
ing Eq. (139 for B, and for(n) through the potential equa- sources:- — — (total w¢), - - - - (w from NSC term only,— —

tion. In Fig. 10, we select a case with strong®y (8 is  (@c from SC term only.
increasegdand in Fig. 11, we show the corresponding density
profile with the tendency oB, to prevent the cavitation of wave propagation by the mechanigstill uncleay of “self-
(n). induced transparency” the interaction between the pump
Our main numerical conclusions afi¢ a lowering of the  wave and the quasistatic figld is believed to play a crucial
threshold power withw, for RSF and(ii) a decrease of the rgle.
cavitation forn and a limitation of the maximum intensity in Our formalism has to be extended to investigate more
the dug channel that remains partially matter filled, hencegpecifically the non-QSA limit and also the pump nonlinear
confinement of matter is expected and the light beam repropagation in the overdense plasma situation by keeping the
mains well self focused in the presence of magnetic effectssuitable fast-source currents at the pump harmonic frequen-
cies. These studies deserve future work.
V. MAIN CONCLUSIONS

We have given an extended theory of magnetic-field self APPENDIX: SELE-MAGNETIC FIELD GENERATION:

generation in relativistic cold fluid plasmas. Performing this SIMPLE ANALYTICAL SOLUTIONS IN VARIOUS
study relies first on the evaluation of the relevant current LIMITING CASES

sources. We have derived vectorial equations coupling the ) o . )

pump electromagnetic pulse with its self-induced collective The main approximation here is to consider that the pump

fluctuations of density and of magnetic field. We have se€lectric field remains fixetho feedback (_)f perturbations, not _

lected an important application leading to magnetic guiding© be confused with the nonself-consistent case, see main

of light in the case of underdense plasmas, extending thtexd.

description of the relativistic self-focusing process to the

self-magnetized case. The undertaken numerical simulations

have allowed us to see the effects of every nonlinear source

contribution to the generation of quasistatic magnetic field. ~ We start from the generation equation for quasistatic mag-
The influence of the self-generat&dfield on the propa- netic field to find

gation of the pump is believed to be important and various  Since curl@.)~curl(M),V - (&) =0:6.~M

indications in recent experiments and numerical studies are _ R

confirming this point. Especially in overdense plasmas with (0c/w)=(moge/Myw)M, for V(ng)=0,

1. Magnetization M dominant (inverse Faraday effecj
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0.0 ! t
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FIG. 4. Same conditions as in Fig. 3 foyfor ¢=0.90 (around

cavitation thresholdalways with the different magnetic fields.

1.5

<n> /ng

0.0 :
0.0

1.0

P

FIG. 5. Same conditions than in Fig. 3 forfor o=0.85(under
cavitation thresholdalways with the different magnetic fields.
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FIG. 7. Magnetic-field radial profile
=0.9.

4.0 5.0

P

FIG. 6. Magnetic fieldnormalized to frequencw) radial pro-
file with the three possible sources as in Fig. 3, dor0.9.
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0.003 T

0.002

0.001

We/w

0.000

-0.001

-0.002 -

-0.003 ' ' :
0.0 0.5 1.0 1.5 2.0

p

FIG. 8. Magnetic-field radial profile as in Fig. 7 but with
=0.85.

(&c]w)=2(pole/Myw)M, for V(ng)#0,
(o] w)=(wid20%) (7' ?q% ¥?),

(0P 0)~ 0% (w5d20%)(177).

2. Ponderomotive term(in F,X(V}) dominant

With the choice of closure hel@'/my=w.+ (2w,

(1), (rwg)~— wﬁe(<n>/no){(wc+ 20e)[d (¥')]11y)

X [wgevo-l- (we+ chp)zl v1},
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0.040 T

0.030

2
$ 0.020
0.010 +
0.000 L .
0.0 1.0 2.0 3.0
p
Total B field
---- SC B field
——~ NSC B field

FIG. 9. Magnetic-field radial profile, with same parameters as in
Fig. 1, but with a fixed Gaussian electric-field radial profile.

(1) for wi<whey,

(1), (roe)~ —w[d(y") ]/ v~ —wd ()],
(wclwg)=[vir1/y(r)r] with proper choice of constants
Y1 .

(2) for wg> wpey,

0.100 7 .

0.060 !
|

3
to orderg?, for w>2wc. 3
For the general cag&sC)
0.020 |
di(roc/w)/r=~—{(wpel @)X{(2)d:[Nor (¥'17)?2]?)/nor}
~{(wcd (¥ 0y)(1+ 0l whey)}
-0.020 : : :
For the sub case where the second term enclosed in curl 0 05 1.0 1.5 20

brackets is dominaniGC 2

di(rog/w)r~—{[wd (¥ 0yll(1+ o w5y},

and special subcases

—— SC term alone
— - Non SC term alone
---- Bothterms

FIG. 10. Magnetic-field radial profile, same conditions as in Fig.
9, but with 6=0.4.
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For GC 2, there is no simple solutideee numerical so-
lution). For an expansion in?, by taking y=const in the

2.0 z ‘ 1 . with w(r=0)=0.
|
| denominator:

d(r o) (1+ 02 05v0) (o)~ —[d (y") y]~—dIn(y),

; / 112
wcz(wpe/r)(zf —r2d,(In ' )/rmc)dr) ,
0

<n>[ng

r
or [rwcyllrly(r)wc]:ex;{f rzdr(rwc)zdrIZwSe).
0

Comparison of terms

(1) foroZ<wiey (wc/wei/[(0(M) wc]=1/(?r)

0.05 1.05 2.05 3.05
) X (8%0%12y%);  (2) forwZ> wiy,
——- Total magn}etk': field r
—— No magnetic field wE/wg(M)zz[(wng2( 52q2/2,y/)2]( jo err(,y/)dr) )
FIG. 11. Effect of totaBs on the density profile for conditions
in Fig. 10. Remark The solutions are found above in the nonfeed-
back case only, i.e., fa¥ and y are given as fixed functions
(1/r)<9r(rwc)~—wsedr(Y')/wm of r, and are assumed to be independenwef When the
) 2 magnetic coupling is set on, we hayé2 (r,w.) w.,r) and
_ Ir zf —r2d.(y)dr| the. sollut|ons forBg could be obtained only numerically,
o= (wpe )( 0 ") ) which is the purpose of Sec. IV.
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