
PHYSICAL REVIEW E, VOLUME 65, 016306
Spanwise bifurcation in plane-symmetric sudden-expansion flows
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Present computational investigation reports a steady bifurcation phenomenon for three-dimensional flows
through a plane-symmetric sudden expansion. When the channel aspect ratio exceeds a critical value, the
well-known step height~pitchfork! bifurcation evolves with different symmetry breaking orientations on the
left and right sides of the channel and bifurcates in the spanwise direction. For the channel aspect ratio less
than the critical value, the originally occurring spanwise bifurcation cannot be stably retained and evolves
eventually to a step height bifurcation. Compared to step height bifurcation, the spanwise bifurcation is found
to be more difficult to obtain, because the symmetric flow present on the spanwise symmetry plane is unstable
in two dimensions. For completeness, an extensive analysis of the observed spanwise bifurcation, covering its
transient behavior, dependence on flow Reynolds number, channel aspect ratio, and expansion ratio, is
included.
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I. INTRODUCTION

Laminar flow of an incompressible, Newtonian fluid in
channel with sudden expansion has been the subject of m
previous investigations. The inherent nonlinear flow tran
tion from symmetric states to asymmetric equilibrium sta
with increased Reynolds number in such a simple geom
makes the problem attractive and serves as a first step
wards understanding of a more complex three-dimensio
flow separation usually encountered in many engineering
plications. Experimental investigation into this problem h
been quite plentiful, and we cite a small selection of t
literature here, namely the works of Macagno and Hung@1#,
Durstet al. @2#, Cherdronet al. @3#, Sobey@4#, Latornell and
Pollard@5#, Sobey and Drazin@6#, Fearnet al. @7#, and Durst
et al. @8#. These experimental studies have reported tha
initially symmetric flow in a channel with sudden expansi
about its center line can become asymmetric as the Reyn
number Re is increased beyond a critical value. In the lite
ture, such a symmetry breaking flow phenomenon in sy
metric channels is termed as Coanda effect@9#. The symme-
try breaking phenomenon has been well recognized as b
influenced by the expansion ratio,E, and the aspect ratio,A,
of the channel@3#.

As the flow loses its stability to asymmetric and bifu
cated flows, the increased velocity near one wall can ca
the pressure to decrease near that wall. It is argued that
pressure gradient can sustain flow asymmetry in the symm
ric channel. Cherdronet al. @3# attributed these instabilitie
to step corner disturbances, which can be amplified du
the presence of the shear layer. Sobey@4# experimentally
confirmed the asymmetric disturbance, configured in a v
tex sheet. The already asymmetric flows, which are con
ered to be two-dimensional except for boundary layers on
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sidewall, may evolve and exhibit unsteady behavior and c
sequently three-dimensional effects will be more promin
at a sufficiently higher Reynolds number. Such a flow fina
develops into a fully turbulent asymmetric flow when th
Reynolds number is further increased. The onset of fl
asymmetry is closely tied up with flow bifurcation and inst
bilities. Linear stability analysis is a classical theory used
study the pitchfork bifurcation. Before becoming fully turbu
lent the flow may evolve first into a time periodic Hopf b
furcation@6#. Under certain circumstances, such a bifurcat
can cause a direct entry into oscillating flow motion, witho
going through the intermediate pitchfork bifurcation@10#.
This type of shear instability is often accompanied
Tollmein-Schlichting waves, which are associated w
kelvin-Helmholtz instability. In this study, we shall confin
ourselves to Reynolds numbers that permit only pitchfo
bifurcation, and have no intention to deal with the growt
shedding-decaying flow dynamics.

Apart from experimental studies on this problem, the
exist numerous computational investigations for sudde
expanded flows. Most of the previous Navier-Stokes ana
ses have been carried out in two dimensions. Herewith,
cite some published papers, which may provide adequ
material on the topic. A comprehensive review of the pre
ous works@6–8,10–13# has been presented by Drikakis@14#,
where information on comparison between numerical a
experimental data, investigation of the effect of channel
pansion ratio, and determination of critical Reynolds num
are provided. Allebornet al. @15# applied the continuation
method to study the bifurcation structure and extended
bifurcation picture by computing additional solutio
branches and bifurcation points. Fearnet al. @7# and Durst
et al. @8# suspected that a slight asymmetry~1%! in the chan-
nel geometry could be responsible for the flow asymme
and bifurcation. Recently, Hawa and Rusak@16# found that a
small asymmetry in the channel expansion changes the p
fork bifurcation into two separate branches of equilibriu
states. Hawa and Rusak@17# also provided a physical mecha
nism to explain the transition from symmetric to asymmet
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states and demonstrate the various possibilities of the ev
tion of disturbances. These computational studies could
dict the general trends of previous experimental obse
tions. Recent progress in the development of high sp
computing technique has provided a new impetus for la
size flow simulation. This makes three-dimensional Nav
Stokes flow simulations possible@18–20# and enables us to
examine suddenly expanded flow under the influence of
wall effect. In addition, the flow shows an increasingly e

FIG. 1. The geometry and flow condition for the thre
dimensional analysis of the flow in a plane-symmetric channel w
sudden expansion ratioE53.
01630
lu-
e-
a-
d
e
-

d

dent three-dimensional nature with increasing Reyno
number. At a higher Reynolds number, the observed th
dimensional effects lead to flow unsteadiness@2–4,7,21#.
Thus the modeling of flows in the third dimension becom
indispensable. On the other hand, two-dimensional assu
tion in the numerical investigations into the suddenly e
panded flow has been experimentally confirmed to be in
propriate@8#.

In a recent computational study Chianget al. @22# ad-

h
FIG. 2. Comparison of bifurcation diagram, based on the vel

ity componentw(x512.75,z50) for the case ofE53, with the
numerical and experimental data of Fearnet al. @7#.
of
f

FIG. 3. Comparison ofu velocity distribution,
at different streamwise locations of the plane
symmetry (y50), with the experimental data o
Fearnet al. @7#. ~a! Re526; ~b! Re560; ~c! Re
5140.
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TABLE I. Grid details in thex andz directions and reattachment lengths for the two-dimensional c
putations withE53 and Re560.

Grid N-dx dx(min,max) N-dz dz(min,max) Reattachment lengths

A 35 ~0.43,22.0! 15 ~0.25,0.58! 21.87 7.09
B 50 ~0.30,15.0! 21 ~0.15,0.43! 21.13 7.23
C 70 ~0.20,11.0! 33 ~0.10,0.26! 20.89 7.35
D 90 ~0.10,9.0! 45 ~0.06,0.20! 20.76 7.34
E 110 ~0.06,8.0! 57 ~0.04,0.18! 20.61 7.34
F 140 ~0.04,5.0! 69 ~0.02,0.16! 20.38 7.32
G 170 ~0.02,4.0! 81 ~0.01,0.15! 20.33 7.32
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ich
dressed the sidewall induced three-dimensional motion
flows through plane-symmetric sudden expansion at R
nolds number Re560, and with expansion ratioE53; and
for the channel aspect ratioA.3.5 flow bifurcations were
observed in the step height direction. At this point it is wo
mentioning that, in a two-dimensional study for flow throu
an expansion, Sobey and Drazin@6# reported the existence o
multivalued solutions and flow bifurcations. For expansi
ratio E52 and Reynolds number Re<11 they observed a
unique steady solution that is stable and symmetric.
higher values of the Reynolds number a pitchfork bifurcat
occurred and there were two stable asymmetric solutio
and one unstable symmetric solution. As Reynolds num
was further increased, they observed four stable asymm
steady solutions, and three unstable steady solutions,
one of which is symmetric. At Reynolds number close to 1
the flow became unsteady with oscillating reattachm
01630
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points, and a Hopf bifurcation occurred. Sobey and Dra
@6# also report that the number of stable/unstable a
symmetric/asymmetric solutions varied with the value
channel expansion ratio. All these observations motivated
to undertake the present study in three dimensions. In a c
ful and extensive computational study we observed that,
sides the well documented symmetry breaking flow bifur
tion in the step height direction~Fig. 4! as observed by the
previous investigator, another class of flow bifurcation~Fig.
5! takes place in the spanwise direction. This observed bi
cation phenomenon~Fig. 5! may be viewed as the spanwis
separation of the two asymmetric two-dimensional solutio
coming together as a symmetric flow at the channel cen
line ~Fig. 17!. To make sure the spanwise bifurcation is re
we conducted several necessary verifications/compariso

The remainder of the paper is divided into five sectio
The next section describes the mathematical model, wh
TABLE II. Grid details in they direction and numerical details@steady run on Pentium III~800 MHz!# for
each three-dimensional computation withE53 and Re560 at different aspect ratioA.

A Grid N-dy dy(min,max)

Iteration number CPU time~h!

Mode 1 Mode 2 Mode 1 Mode 2

6 C 40 ~0.10,0.49! 3500a/3500b 5.6/5.6
12 C 40 ~0.10,1.22! 3000a/3000b 4.8/4.8
18 C 40 ~0.10,2.00! 2500a/14000b 4.0/22.4
20 C 40 ~0.10,2.36! 2500a/25000b 4.0/40.0
21 C 40 ~0.10,2.51! 2500a/65000b 4.0/104.0
22 C 40 ~0.10,2.65! 2500a 230000b 4.0 370.6
24 C 40 ~0.10,2.93! 2500a 90000b 4.0 145.0
27 C 44 ~0.10,3.04! 2500a 50000b 4.5 90.3
30 C 46 ~0.10,3.27! 2500a 60000a 4.7 113.3
36 A 30 ~0.25,5.64! 1500a 25000b 0.4 6.9
36 B 40 ~0.15,4.44! 2000a 30000b 1.5 22.5
36 C 50 ~0.10,3.70! 2500a 60000a 5.2 125.0
36 D 64 ~0.07,3.10! 4500a 60000b 21.3 283.3
36 E 84 ~0.04,2.38! 9000a 100000b 85.0 944.4
36 F 100 ~0.02,1.73! 15000a 160000a 262.5 2800.0
42 C 56 ~0.10,3.88! 2500a 70000a 5.8 161.4
48 C 60 ~0.10,4.14! 2500a transient 6.0 933.4

aRepresents solutions withu50 as the initial guess.
bRepresents the perturbed model-1 solution, by using reversed solutions with respect to the planez50 on the
left channel or the right channel, as the initial guess.
6-3
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FIG. 4. Three-dimensional illustration o
mode-1 surface flow topology and pseudostrea
lines on the plane of symmetryy50, for Re
560, A536, andE53.
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Re
represents the conservation laws for mass and momentum
the incompressible fluid flow. This is followed by presen
tion of the numerical model for solving Navier-Stokes equ
tions, subject to proper initial and boundary conditions,
three dimensions. Then we present our results. Proper
has been taken while computing the symmetry breaking
furcation in the spanwise direction. The flow topology e
tracted from three-dimensional data is also depicted. Fin
we make the concluding remarks in Sec. V.

II. MATHEMATICAL MODEL

In this paper we consider the incompressible flow throu
plane symmetric sudden expansions. The symmetrically c
figured channel~Fig. 1! is characterized by an expansio
ratio E ~[3!, which is defined as the ratio of the downstrea
channel height,H, to the upstream channel height,h; and an
aspect ratio,A, which is the ratio of the channel span,B, to
the upstream channel height,h.

The governing momentum and continuity equations
01630
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incompressible flow are cast in the following dimensionle
form:

uI t1uI •¹uI 52¹p1
1

Re
¹2uI , ~1!

¹•uI 50. ~2!

The above set of equations accommodates well-posed in
boundary conditions. This partly explains why the primitiv
variable formulation has advantages over formulations us
the vorticity-based variables@23#. The variables are mad
dimensionless by using 0.5 times the upstream chan
height (h[2), shown schematically in Fig. 1, as the refe
ence length, and 1.5 times the upstream channel mean v
ity (umean[

2
3 ) as the reference velocity, which is prescrib

at the channel entry. Based on these referenced quant
the Reynolds number of the flow is obtained as

5(3
2umean)(

1
2 h)/y, wherey is the kinematic viscosity.
6-4
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FIG. 5. Three-dimensional illustration o
mode-2 surface flow topology and pseudostrea
lines on the plane of symmetryy50, for Re
560, A536, andE53.
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In order to make the above elliptic-parabolic mixed d
ferential equations well posed, we prescribe a uniform vel

ity uI 5( 2
3 ,0,0) at the entry while we prescribe zero gradie

conditions at the opposite end of the channel. The in
length, upstream of the plane of expansion, was chose
60h, while the length of the channel downstream of expa
sion was taken as 80h. According to Fearnet al. @7#, such
streamwise upstream/downstream lengths are sufficien
the flow to develop fully. No-slip boundary conditions a
prescribed on the confining channel walls. In this paper,
consider mainly the steady state assumption, which has b
experimentally confirmed by Fearnet al. @7# for flow with
Re<151. Nevertheless, to obtain additional insights into
panded channel flow, we also conducted transient anal
with flow starting from rest.

III. NUMERICAL MODELING AND VALIDATION

The working equations~1! and~2! were transformed into
their discrete counterparts using a finite volume method
01630
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this study, primitive variables were stored on staggered in
connected grids, each of which signified a representa
primitive variable @24#. Solutions computed on collocate
grids are prone to exhibit pressure wiggles owing to an e
neous treatment of pressure gradient terms. The stagge
mesh can effectively overcome the difficulty in this rega
The grid staggering has additional advantage over nons
gered grids. The reason is that the boundary condition im
mentation for the equation governing the pressure is
known. The transient term is approximated by using a fu
implicit difference scheme.

Another hurdle in the simulation of fluid flow is the nu
merical diffusion error. One way to resolve this problem is
apply a QUICK discretization scheme@25# to approximate
convection terms in Eq.~1!. This scheme is regarded as
refinement of Leonard’s original scheme@26# and has been
shown to have a stabilizing effect. In addition, the sche
employed here provides third order spatial accuracy. Spa
derivatives other than convective terms in the equations
approximated by means of a second order accurate cen
6-5
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FIG. 6. L2-error norm convergence histor
plots for the three-dimensional case with R
560, A536, andE53. ~a! Mode-1 bifurcation;
~b! mode-2 bifurcation.
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scheme. While solvinguI and p from the coupled equation
~1! and ~2!, the absence of pressure term in the continu
equation weakens the discrete system. The segregated
proach of Patankar@27# is a well-known method for over
coming such difficulty. In this study, we employ an equati
for the pressure differencep8 to replace the divergence fre
continuity equation. This replacement of the working equ
tion enables us to apply a semi-implicit iterative algorith
thus reducing the disk storage requirement. In this paper
applied a solution algorithm, which is similar to SIMPLE-
@28#, to solve three momentum equations foruI and one Pois-
son equation for thep8 in a ‘‘predict and correct’’ cyclic
process.

In all the cases investigated, the iterative calculation
primitive variables was terminated, subject to theL2-residual
norm criteria (<10218) set for pressure and velocity. In ad
dition, we ensure that mass fluxqi at each streamwise cros
section satisfyuqi2q0u/q0,10210, whereq0 is the specified
mass flux of the entry flow. The details of the solution alg
rithm implementation and its analytical validation are p
sented in our previous work@22,29#. For the sake of com-
parison of the present result with the experimen
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l

measurements of Fearnet al. @7#, we conducted computa
tions for the flow, and an excellent agreement was achie
~Figs. 2 and Fig. 3!. To ensure that the computed solutio
represent the real flow physics, we conducted a series of
independence tests, the details are listed in Table I. The g
mainly employed in this study are gridC and gridF, which
ensure that the size of the eddy captured remained inde
dent of mesh size. To extract a realistic flow feature,
performed calculations in the full domain of the physic
problem schematically shown in Fig. 1. Nonuniform gri
were used, with finer grids clustered near the step and in
vicinity of nonslip walls. Six grids of different resolution
were considered and shown in detail in Table I and Table
including the CPU used on a Pentium III~800 Mhz!.

IV. RESULT AND DISCUSSION

Discussion of the results is organized as follows. We s
with presenting the flow topology to give a global picture
the three-dimensional flow development in the expand
channel. We then assert that a symmetry breaking bifurca
of the flow takes place at Re560 in a channel withE53. In
6-6
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FIG. 7. Lines of reattachment on the chann
roof and floor for two bifurcation modes of asym
metric solutions. The flow condition used is R
560, A536, andE53.
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addition to our previous study@22#, we found that the flow
bifurcation occurs, not only in the step height direction, bu
bifurcates also in the spanwise direction. Extensive num
cal verifications have been made to ascertain that the
served spanwise symmetry breaking solution is not of
merical origin. To this end, we conduct a lengthy tim
accurate transient calculation. Having confirmed
01630
t
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existence of two modes of symmetry breaking flow in t
suddenly expanded channel, it is natural to provide a crit
value of the aspect ratio, below which no flow asymme
may be expected to exist in the spanwise direction. Furth
more, we have also conducted a parametric study on va
tions of Re andE to show and establish the fact that th
symmetry breaking bifurcation in the spanwise direction i
g
at
FIG. 8. Plots of the streamwise velocity~u!
profiles along the spanwise direction, showin
two bifurcation modes of solutions computed
Re560, A536, and E53. ~a! y50.3B; ~b! y
50; ~c! y520.3B.
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FIG. 9. ~Color! Illustration of spiraling particles warping the vortical core lines in the mode-2 bifurcated flows for Re560 and withA
536 andE53.
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general phenomenon of the plane symmetric sudden ex
sion flows.

A. Flow topology

To effectively obtain a profound understanding of t
three-dimensional character of the flow structure, one m
resort to the topology of limiting streamlines@30# or skin
friction lines@31# in order to extract meaningful flow physic
from an enormous amount of computed data. In this pa
limiting streamlines, which are by definition streamlin
passing very close to the solid wall, are chosen to depict
flow structure. The limiting streamlines are known to diver
from lines of reattachment@32#, and the converse of lines o
reattachment is lines of separation. While approaching
lines of separation, neighboring streamlines tend to c
verge. By marking use of the kinematic nature of limitin
streamlines, we classify singular nodes, foci, and sadd
These topological singular points supplemented with lines
separation and reattachment, as plotted in Fig. 4 for the
height bifurcation flow at Re560 in a channel withE53 and
01630
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A536, can depict the three-dimensional flow structure, a
thus provide us with additional flow details as illustrated
our previous paper@22#.

Symmetry breaking flows bifurcated in the step heig
direction, as shown in Fig. 4, can have two orientations.
the primary stream bends towards the channel roof, a la
eddy is seen on the channel floor. On the other hand, a l
eddy is seen on the channel roof, provided the prim
stream is bent towards the channel floor. In the present st
we report that the two orientations of the step height sy
metry breaking bifurcation flow can coexist in the channel
shown in Fig. 1.

B. Two stable modes of symmetry breaking bifurcation

Results obtained from the present study, for flow w
Re560 in a channel withE53 andA536, show the pres-
ence of two possible modes of pitchfork bifurcation. One
shown in Fig. 4, and the other, which was not seen in
previous study@22#, is depicted in Fig. 5. In the following
discussion of the results, we refer to the solution that
6-8
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asymmetric in the step height~z! direction but is symmetric
in the spanwise~y! direction as the mode-1 solution~Fig. 4!.
The mode-2 solution is defined as being asymmetric in b
y andz directions~Fig. 5!.

As the flow evolved to exhibit mode-1 bifurcation featu
as shown in Fig. 4, the lines of reattachment on the chan
roof and floor remained relatively invariant in the spanw
direction, with the exception in regions near the two sid
walls. Unlike the mode-1 bifurcated flow, considerable d
crepancy in the flow nature between the two halves of
channel withy,0 ~the right half of the channel! and y.0
~the left half of the channel! was observed in the mode-
bifurcation. The lines of reattachment on channel roof a
floor for the flow evolving into the mode-2 symmetry
breaking pattern is shown in Fig. 5. In mode-2 bifurcati
the eddy size at the roof became larger than that at the c
nel floor in the left-half channel (y.0), while the opposite
trend of eddy size is found in other half channel (y,0) for
the case withA536. On the plane of symmetryy50 as
shown in Fig. 5, the reattachment lengths at the channel
and floor are identical. Hence on the symmetry planey50,
the mode-2 bifurcated flow is symmetric in the step hei
direction. Also noteworthy is the flow topology on the le
sidewall, whose orientation is antisymmetric to that on
right sidewall as shown in Fig. 5.

FIG. 10. Comparison of the lines of reattachment, for mod
and mode-2 bifurcations, representing the grid independence
solutions were obtained by using the QUICK scheme at Re560 and
with A536 andE53.
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To show thaty andz direction symmetry breaking flows
are indeed stable, we provide the history of convergence
haviors@Fig. 6~a!# for flows evolving via mode-1 bifurcation
and via mode-2 bifurcation@Fig. 6~b!#. For both cases
twelve orders of magnitude of theL2-error norms have been
reduced foruI andp. Besides iteration residuals set as low
10218, the present calculation requires the relative differen
of mass fluxes between inlet plane and other arbitrary cho
cross flow planes be less than 10213. It may be noted that the
error reduction rate is much slower while approaching
convergent mode-2 solution. To be more precise, it ta
roughly ten times iteration number to obtain a converg
mode-2 asymmetric solution than that needed to obtain
convergent mode-1 asymmetric solution. Moreover, comp
ing mode-2 bifurcation is rather a difficult task~we shall
explain this behavior in another section!. As a further check,
whether the two modes of bifurcated flows are numerica
stable, we perturbed both flows randomly by altering th
values by an amount of 10 to 20 percentages and contin
the calculations. The solutions obtained under stringent c
vergence criteria mentioned earlier reproduced the solutio
as shown schematically in Figs. 4 and 5, for mode-1 a
mode-2 bifurcation solutions, respectively. It suffices to
sert that more than one symmetry-breaking bifurcation
possible for the channel flow under investigation.

1
ll

FIG. 11. Comparison of the lines of reattachment, for mod
and mode-2 bifurcations, representing the scheme independe
All solutions were obtained on gridC at Re560 and withA524
andE53.
6-9



-
he

CHIANG, SHEU, HWANG, AND SAU PHYSICAL REVIEW E65 016306
FIG. 12. The mode-1 time evolving reattach
ment lengths on the channel roof and floor of t
plane of symmetryy50. The flow condition used
is Re560, A548, andE53.
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C. Bifurcation natures

To provide a clear picture indicating the difference in t
pologies in two bifurcation modes in the channel flow, in F
7 we plot the spanwise distributions of reattachment leng
on the channel floor and the channel roof. It is interesting
observe that the reattachment lines in mode-2 bifurcation
not only confined between the lines of reattachment~at chan-
nel roof and channel floor! for mode-1 bifurcation, but they
also conserve the streamwise extension. In the span
range 0.2B<y<0.5B ~the left side!, the mode-2 bifurcation
is exactly the same as the mode-1 bifurcation. Thus th
exists a good agreement between the streamwise velo
profiles on the planey50.3B for two modes of solution
plotted in Fig. 8~a!. Also, in the opposite spanwise rang
20.5B<y<20.2B ~the right side!, the mode-2 bifurcation
is just the same as the other orientation of the mode-1 bi
cation. Thus, the streamwise velocity profiles of two mod
on the planesy520.3B shown in Fig. 8~c! are antisymmet-
ric with respect to the planez50. In the core region~Fig. 7!,
highlighted in the window block with spanwise length 0.4B,
mode-2 flow tends to become symmetric while remain
bounded by the different orientations of step height bifur
tions on the left and right sides. The profile of the reatta
ment length on the channel floor is antisymmetric to that
the channel roof in spanwise core regionuyu<0.2B
01630
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(57.2h) for the mode-2 bifurcation flows. These antisym
metric reattachment line profiles, which evolved via mode
bifurcation, have az symmetry profile, which is nearly the
same as the unstable solution computed from the t
dimensional analysis, at the symmetry planey50, and is
shown in Fig. 8~b!. It shows that the mode-2 asymmetr
solutions are the different orientations of mode-1 asymme
solutions on the left and right sides of the channel, resp
tively, with a symmetric solution on the symmetry planey
50. That means there coexist two stable solutions and
unstable solution of two-dimensional flow in the sudden
expanded channel.

One way of exhibiting the three-dimensional flow natu
is to trace the path of particles originating from the spi
focal points on the sidewalls. The sidewall boundary lay
imposes shear resistance on the primary motion of fluid p
ticles immediately behind the step. This results in a spanw
pressure gradient and, in turn, an increasingly large span
velocity component. This non zero spanwise velocity cau
particles, as shown in Fig. 9 indicating the mode-2 flow
furcation, to wrap spirally around the vortical core whi
proceeding towards the symmetry planey50.

Prior to turning to the next section, it is important to e
tablish that the mode-2 bifurcation is physically realistic f
the channel flow with Re560 andE53. For this reason, we
6-10
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FIG. 13. The mode-2 time evolving reattach
ment lengths on the channel roof and floor
planesy520.3B, 0, and 0.3B. The flow condi-
tion used is Re560, A548, andE53.
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once again present evidence that shows the predicted
modes of bifurcation solutions are independent of grids u
and the discretization schemes adopted. To demonstrate
our predicted symmetry breaking phenomena are indep
dent of the grid used, we conducted calculations on six g
of different mesh resolutions shown in Table II to solve t
problem forA536, and the computed modes of bifurcatio
are shown in Fig. 10. We also employed five different co
vection discretization schemes, of first order to third ord
accuracy, respectively, to solve the problem forA524 on
grid C. Figure 11 shows that the physical behavior rema
the same and has no dependence on the schemes chose
above grid independent and scheme independent tests c
that the presently predicted two modes of bifurcation p
nomena are real and physical, and not generated due to
computational inadequacy.

D. Transient analysis

To study the temporal evolution of the two modes of
furcation for the plane symmetric sudden expansion flo
we conducted also the time consuming three-dimensio
01630
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transient calculation at Re560. Given the initially quiescen
flow condition, we solved the time dependent ellipti
parabolic Navier-Stokes equations in the channel withE
53 andA548.

When the flow evolves to form the symmetry breaki
mode-1 bifurcation in the step height direction, the nature
bifurcation is invariant along the spanwise direction. In F
12 we plot the mode-1 time varying reattachment lengths
the channel roof/floor on the plane of symmetryy50. The
flow retains symmetry in the step height direction during
,t,t1 of the flow development. During the period, the ed
sizes on the channel roof/floor remained equal while gett
increased linearly to reach a local maximum value; that i
two-dimensional unstable symmetric solution. Since t
flow cannot be stably retained, the flow starts exhibiti
symmetry breaking bifurcation att5t1 . Afterwards, the bi-
furcation period is categorized into two stages, a slow bif
cating period and a fast breaking period. In the process,
lengths of reattachment varied and the floor eddy size
creased by 25% and the roof eddy size decreased by a
55% of the symmetric value att5t1 . By t;103, the bifur-
6-11
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cated flow has reached its steady state. It may be noted
Fig. 4 that the mode-1 solution has another orientation.
A536, Fig. 4 shows the eddy size on the floor is smaller th
the eddy size on the channel roof, and therefore exhibi
reverse orientation of mode-1 bifurcation compared to
case withA548, as shown in Fig. 12.

The transient behavior of the mode-2 symmetry break
bifurcation is shown in Fig. 13. The reattachment lengths
the planesy520.3B, 0, and 0.3B, increased/decreased a
the way up to their asymptotic values. For purposes of co
pleteness, we also plot the distribution of lines of reatta
ment on the channel roof/floor att570, 400, 500, 600, 1000
and 20 000 in the same figure. Similar to mode-1 flow bif
cation, up to timet;t1 the flow shows the unstable symme
ric structure, which cannot be stably retained. Afterwar
flow gradually loses stability and evolves eventually to
bifurcation first through a slowly evolving process and th
at a much faster process in a relatively short time peri
During t1,t,t2 the formation of step height symmetr
breaking bifurcation, the mode-1 flow~Fig. 12! remained
symmetric~i.e., with unanimous orientation! along the span-
wise direction, but maintained opposite orientation in the
and the right channel for mode-2 flow~Fig. 13!. Figure 13
also shows the evolution of spanwise bifurcation via s
height bifurcation, and the formation of large eddy at t
right channel roof and left channel floor. The converse p

FIG. 14. Comparison of lines of reattachment of mode-2 bif
cation on the channel roof and floor, at Re560 andE53, for dif-
ferent aspect ratiosA522, 24, 27, 30, 36, 42, and 48.
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nomenon was observed in Fig. 5. To be explicit, forA536
~Fig. 5! the eddy size at the roof became smaller than
eddy size at the channel floor in the right channel, and
opposite trend of the eddy size is observed in the left ch
nel. This means the mode-2 bifurcation, similar to t
mode-1 bifurcation, can have two orientations. The evolv
process of spanwise symmetry breaking via step height
furcation, as shown in Fig. 13 for the case withA548, can
be clearly observed from the movement of the lines of re
tachment on the roof/floor during the periodt570– 1000.
Therefore, the mode-2 bifurcation, where flow bifurcates
spanwise direction, evolves from different orientations
step height bifurcations at the left and right sides of the ch
nel separately. At a time roughly equal to 103, mode-2 flow
~Fig. 13! has almost reached the steady state solution, w
the exception in the spanwise core regionuyu<0.15B
(57.2h) where flow still undergoes a fairly slowly evolvin
process in an antisymmetric sense. The slow convergenc
points ‘‘e’’ and ‘‘ E’’ shown in Fig. 13 may suggest that ther
is another time scale related to spanwise lengths and ve
ties. The spanwise core flows duringt5103;104 complete
the whole evolution process~Fig. 13!, and the flow became
symmetric in the step height direction on the plane of sy
metry y50.

The much slower convergence schematic in Fig. 6~b! and
the slow temporal evolution shown in Fig. 13 reveals th
mode-2 flow is difficult to obtain, compared to the mode
flow. One physically meaningful reason for such difficulty
the coexistence of symmetric solution ony50 and the anti-
symmetric solutions fory.0 andy,0. The symmetric flow
on the symmetry planey50 is unstable in the sense th
such a symmetric solution is impossible to obtain from t
two-dimensional analysis.

E. Critical aspect ratio for spanwise bifurcation

The flow features with aspect ratiosA536 andA548,
presented in Fig. 7 and Fig. 13, respectively, reveal that
appearance of mode-2 bifurcation requires long eno
spanwise core length for evolving from two different orie
tations of step height bifurcation. Therefore it will exist at
critical aspect ratioAc , and forA.Ac we can obtain sym-
metry breaking bifurcation in the spanwise direction. In t
present study, we varied the aspect ratio in the range o
<A<48 and examined carefully the computed results in
spanwise direction forE53 and Re560.

It has been found that the two modes of symmetry bre
ing bifurcation with initial guessuI 50 can be obtained pro
vided that aspect ratioA>30. For aspect ratiosA,30, only
mode-1 symmetry breaking bifurcation takes place~with ini-
tial guessuI 50!, but not the mode-2 solution. Upon pertu
bation of the computed mode-1 solution, by using the
versed solutions with respect to the planez50 on the left or
the right channel, and using them as the initial guess
proceeding the calculation, the flow evolves into the sta
mode-2 bifurcation for aspect ratiosA527, 24, and 22,
whereas they go back to their mode-1 form eventually
lower values of the aspect ratiosA521, 20, 18, 12, and 6
Based on the calculation details in Table II, we found that

-
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FIG. 15. Time evolving reattachment length
on the channel roof and floor, on plane
y520.3B, 0, and 0.3B, showing the spanwise
bifurcation may not be retained forA521. The
flow condition used is Re560 andE53.
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critical value of the aspect ratio isAc521 for mode-2 bifur-
cation to occur in a channel withE53 and Reynolds numbe
Re560. In the experiment Fearnet al. @7# considered the
case with aspect ratio 24 but observed no spanwise sym
try breaking bifurcation for Reynolds numbers up to 140. F
A524 being located near the critical regionAc521, the ap-
pearance of the mode-2 bifurcation may require a suita
perturbation of the flow. Moreover, we found that the critic
aspect ratio for the occurrence of the mode-2 bifurcation
also dependent on flow Reynolds numbers. Our computa
results show that no mode-2 bifurcation can be stably
tained for cases withA524 and 27, and Re5140. This par-
tially explains why Fearnet al. @7# missed the mode-2 bifur
cation.

For seven different investigated cases withA.Ac , we
plot in Fig. 14 the lines of reattachment on the channel r
and floor for flows evolving to mode-2 bifurcated solution.
is surprising to observe that the lines of reattachment fall i
the same line and have no functional dependence onA in the
spanwise core region ofuyu<9h. To further justify the sta-
bility of the mode-2 flow for the critical aspect ratio 21 an
01630
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Re560 in a channel withE53, we conducted the transien
calculations starting withuI (xI ,t50)50, and then perturbed
the process~as mentioned above! at t510 and proceeded th
computation. We plot in Fig. 15 the computed reattachm
length on the channel roof and floor against time on
planesy520.3B, 0, and 0.3B. This bifurcation diagram
also shows the same evolving process as observed in
channel withA548 ~Fig. 13!. The flow evolves first to pro-
duce the symmetric solution, which cannot be stably
tained. This is followed by a slowly and then a rapidly evol
ing processes to produce the mode-2 symmetry brea
bifurcation. The mode-2 bifurcated flow did not reach
steady state untilt;23104. During the time periodt
527200– 28200 the flow quickly approached towards
mode-1 solution. In the process, the right channel flow
versed its symmetry breaking orientation, and became
same as the left channel flow.

F. Parametric study on Reynolds number and expansion ratio

It has been observed that the two modes of symme
breaking flows can be stably retained for the flow at Re
6-13
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FIG. 16. Limiting streamlines on the chann
roof/floor and pseudostreamlines on plan
y520.3B, 0, and 0.3B showing the mode-2
bifurcation. The flow condition used is Re5100,
A536, andE53.
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nolds number Re560 in the channel with expansion rat
E53. To confirm that such a multiple bifurcation is not
particular case but a general phenomenon, we vary Reyn
number Re and expansion ratioE subsequently to study the
effects on the bifurcation nature of the flow in the sudde
expanded channel.

We carried out calculations on gridF in a channel with
A536 and E53 at three different Reynolds numbers R
580, 100, and 120. The results show that mode-1
mode-2 solutions are possible to obtain at these Reyn
numbers and can both reach their respective steady stat
lutions. We plot in Fig. 16 the roof/floor flow topologies an
pseudostreamlines on planesy520.3B, 0, and 0.3B for
mode-2 bifurcation at Re5100. One noteworthy feature o
this channel flow is the formation of a third eddy in th
spanwisey planes. What is more important to note from t
developed flow at this higher Reynolds number is the co
plexity of the flow topology~Fig. 16!. On the channel roof
and floor, limiting streamlines manifest themselves by sho
ing additional lines of separation, which connect lines
reattachment at the saddle point. The complexity in flow
pology shows that three-dimensional flow behavior prev
in the channel. Such a flow pattern, in the spanwise c
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region, is not due to the sidewall effect, but is rather p
duced by internal affairs. The flow topology on the roof a
the floor as observed from Fig. 16 show that the notion of
pitchfork takes on a whole different meaning here.

According to the two-dimensional result of Drikakis@14#,
the critical Reynolds numbers, above which the flow sta
bifurcating, are 108 and 26.5 forE52 and E54, respec-
tively. Just to have a feeling in three dimensions, we carr
out calculations on grid C in a channel withA536 and
(E,Re!5(2,125) and ~4, 40!. In addition to the two-
dimensionally predicted mode-1 bifurcation in the st
height direction, mode-2 solutions are also observed, and
graphically shown in Fig. 17.

V. CONCLUDING REMARKS

In the present paper, we have explored the existence
second mode of bifurcation in a plane-symmetric chan
with sudden expansion. Consideration has been given to
tablish the presence of Coanda phenomenon in both the
height and spanwise directions. Through this detailed
merical study, it is found that two modes of symmetry brea
ing flow can be stably retained in the geometrically symm
6-14
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FIG. 17. Three-dimensional plot of the su
face flow topology showing the mode-2 bifurca
tion. ~a! Re5125, A536, and E52; ~b! Re
540, A536, andE54.
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1 is
ric channel. The step height bifurcation~mode-1!, which
exists in two-dimensional flow, can also have a spanw
~mode-2! counterpart. Moreover, both mode-1 and mode
bifurcations can have two orientations. Reattachment li
for the mode-2 flow have a streamwise extension, wh
connects and coincides with the two different orientations
mode-1 flow on the left and right sides. Results indicate t
two stable asymmetric solutions and one unstable symm
solution are coexisting in the mode-2 flow. Besides
steady state analysis, transient behavior of the flow has b
studied. Compared to mode-1 bifurcation, the mode-2 bi
cation is more difficult to obtain, due to the unstable flo
symmetry at the spanwise symmetry plane. For chan
flows with aspect ratio less than the critical value, i.e.,A
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<Ac , the originally occurring mode-2 bifurcation cannot b
stably retained and will evolve into mode-1 bifurcation eve
tually. Parametric studies on Reynolds numbers and cha
expansion ratios were also conducted to improve our un
standing about the three-dimensional nature of the sudd
expanded channel flows.
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