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Spanwise bifurcation in plane-symmetric sudden-expansion flows
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Present computational investigation reports a steady bifurcation phenomenon for three-dimensional flows
through a plane-symmetric sudden expansion. When the channel aspect ratio exceeds a critical value, the
well-known step heightpitchfork) bifurcation evolves with different symmetry breaking orientations on the
left and right sides of the channel and bifurcates in the spanwise direction. For the channel aspect ratio less
than the critical value, the originally occurring spanwise bifurcation cannot be stably retained and evolves
eventually to a step height bifurcation. Compared to step height bifurcation, the spanwise bifurcation is found
to be more difficult to obtain, because the symmetric flow present on the spanwise symmetry plane is unstable
in two dimensions. For completeness, an extensive analysis of the observed spanwise bifurcation, covering its
transient behavior, dependence on flow Reynolds number, channel aspect ratio, and expansion ratio, is
included.
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[. INTRODUCTION sidewall, may evolve and exhibit unsteady behavior and con-
sequently three-dimensional effects will be more prominent
Laminar flow of an incompressible, Newtonian fluid in a at a sufficiently higher Reynolds number. Such a flow finally
channel with sudden expansion has been the subject of mamevelops into a fully turbulent asymmetric flow when the
previous investigations. The inherent nonlinear flow transi-Reynolds number is further increased. The onset of flow
tion from symmetric states to asymmetric equilibrium statesasymmetry is closely tied up with flow bifurcation and insta-
with increased Reynolds number in such a simple geometrjilities. Linear stability analysis is a classical theory used to
makes the problem attractive and serves as a first step tgtudy the pitchfork bifurcation. Before becoming fully turbu-
wards understanding of a more complex three-dimensiondént the flow may evolve first into a time periodic Hopf bi-
flow separation usually encountered in many engineering affurcation[6]. Under certain circumstances, such a bifurcation
plications. Experimental investigation into this problem hascan cause a direct entry into oscillating flow motion, without
been quite plentiful, and we cite a small selection of thegoing through the intermediate pitchfork bifurcatiphQ].
literature here, namely the works of Macagno and Hilg  This type of shear instability is often accompanied by
Durstet al.[2], Cherdroret al.[3], Sobey[4], Latornell and  Tollmein-Schlichting waves, which are associated with
Pollard[5], Sobey and Drazif6], Fearnet al.[7], and Durst  kelvin-Helmholtz instability. In this study, we shall confine
et al. [8]. These experimental studies have reported that anurselves to Reynolds numbers that permit only pitchfork
initially symmetric flow in a channel with sudden expansionbifurcation, and have no intention to deal with the growth-
about its center line can become asymmetric as the Reynoldshedding-decaying flow dynamics.
number Re is increased beyond a critical value. In the litera- Apart from experimental studies on this problem, there
ture, such a symmetry breaking flow phenomenon in symexist numerous computational investigations for suddenly
metric channels is termed as Coanda eff8¢t The symme- expanded flows. Most of the previous Navier-Stokes analy-
try breaking phenomenon has been well recognized as beirges have been carried out in two dimensions. Herewith, we
influenced by the expansion ratig, and the aspect rati@, cite some published papers, which may provide adequate
of the channe[3]. material on the topic. A comprehensive review of the previ-
As the flow loses its stability to asymmetric and bifur- ous workg6—8,10—13 has been presented by Drikakist],
cated flows, the increased velocity near one wall can causehere information on comparison between numerical and
the pressure to decrease near that wall. It is argued that théxperimental data, investigation of the effect of channel ex-
pressure gradient can sustain flow asymmetry in the symmepansion ratio, and determination of critical Reynolds number
ric channel. Cherdromet al. [3] attributed these instabilities are provided. Alleborret al. [15] applied the continuation
to step corner disturbances, which can be amplified due tmethod to study the bifurcation structure and extended the
the presence of the shear layer. Solhdy experimentally  bifurcation picture by computing additional solution
confirmed the asymmetric disturbance, configured in a vorbranches and bifurcation points. Featal. [7] and Durst
tex sheet. The already asymmetric flows, which are considet al.[8] suspected that a slight asymmettyo) in the chan-
ered to be two-dimensional except for boundary layers on theel geometry could be responsible for the flow asymmetry
and bifurcation. Recently, Hawa and Ru$4aK] found that a
small asymmetry in the channel expansion changes the pitch-
* Author to whom correspondence should be addressed at Instituferk bifurcation into two separate branches of equilibrium
of Physics, Academia Sinica, Taipei, Taiwan, ROC. FAX: 886-2-states. Hawa and Rusfk7] also provided a physical mecha-
27834187. Email address: phhwang@ccvax.sinica.edu.tw nism to explain the transition from symmetric to asymmetric
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FIG. 1. The geometry and flow condition for the three- FIG. 2. Comparison of bifurcation diagram, based on the veloc-
dimensional analysis of the flow in a plane-symmetric channel withity componentw(x=12.75z=0) for the case ofE=3, with the
sudden expansion rati= 3. numerical and experimental data of Featral. [7].

states and demonstrate the various possibilities of the evolulent three-dimensional nature with increasing Reynolds
tion of disturbances. These computational studies could prezaumber. At a higher Reynolds number, the observed three-
dict the general trends of previous experimental observadimensional effects lead to flow unsteadinggs-4,7,21.
tions. Recent progress in the development of high speedihus the modeling of flows in the third dimension becomes
computing technique has provided a new impetus for largéndispensable. On the other hand, two-dimensional assump-
size flow simulation. This makes three-dimensional Naviertion in the numerical investigations into the suddenly ex-
Stokes flow simulations possibJ&8—-20 and enables us to panded flow has been experimentally confirmed to be inap-
examine suddenly expanded flow under the influence of engropriate[8].

wall effect. In addition, the flow shows an increasingly evi- In a recent computational study Chiaegal. [22] ad-
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TABLE |. Grid details in thex andz directions and reattachment lengths for the two-dimensional com-
putations withE=3 and Re=60.

Grid N-dx dx(min,max) N-dz dZ min,max) Reattachment lengths
A 35 (0.43,22.0 15 (0.25,0.58 21.87 7.09
B 50 (0.30,15.0 21 (0.15,0.43 21.13 7.23
C 70 (0.20,11.0 33 (0.10,0.26 20.89 7.35
D 90 (0.10,9.0 45 (0.06,0.20 20.76 7.34
E 110 (0.06,8.0 57 (0.04,0.18 20.61 7.34
F 140 (0.04,5.0 69 (0.02,0.16 20.38 7.32
G 170 (0.02,4.0 81 (0.01,0.15 20.33 7.32

dressed the sidewall induced three-dimensional motion fopoints, and a Hopf bifurcation occurred. Sobey and Drazin
flows through plane-symmetric sudden expansion at Rey6] also report that the number of stable/unstable and
nolds number Re60, and with expansion ratiB=3; and  symmetric/asymmetric solutions varied with the value of
for the channel aspect ratida>3.5 flow bifurcations were channel expansion ratio. All these observations motivated us
observed in the step height direction. At this point it is worthto undertake the present study in three dimensions. In a care-
mentioning that, in a two-dimensional study for flow throughful and extensive computational study we observed that, be-
an expansion, Sobey and Drat6] reported the existence of sides the well documented symmetry breaking flow bifurca-
multivalued solutions and flow bifurcations. For expansiontion in the step height directio(Fig. 4) as observed by the
ratio E=2 and Reynolds number Re 1 they observed a previous investigator, another class of flow bifurcatigig.
unique steady solution that is stable and symmetric. Fob) takes place in the spanwise direction. This observed bifur-
higher values of the Reynolds number a pitchfork bifurcationcation phenomeno(Fig. 5 may be viewed as the spanwise
occurred and there were two stable asymmetric solutionseparation of the two asymmetric two-dimensional solutions
and one unstable symmetric solution. As Reynolds numbecoming together as a symmetric flow at the channel center-
was further increased, they observed four stable asymmetrime (Fig. 17). To make sure the spanwise bifurcation is real,
steady solutions, and three unstable steady solutions, onlye conducted several necessary verifications/comparisons.
one of which is symmetric. At Reynolds number close to 100 The remainder of the paper is divided into five sections.
the flow became unsteady with oscillating reattachmenfhe next section describes the mathematical model, which

TABLE II. Grid details in they direction and numerical detailsteady run on Pentium 1800 MH2)] for
each three-dimensional computation w3 and Re=60 at different aspect ratia.

Iteration number CPU timéh)

A Grid N-dy dy(min,max) Mode 1 Mode 2 Mode 1 Mode 2

C 40 (0.10,0.49 3500Y3500° 5.6/5.6
12 C 40 (0.10,1.22 300GY3000° 4.8/4.8
18 C 40 (0.10,2.00 2500714000 4.0/22.4
20 C 40 (0.10,2.36 2500725000 4.0/40.0
21 C 40 (0.10,2.51 2500765000 4.0/104.0
22 C 40 (0.10,2.65 2500 230000 4.0 370.6
24 C 40 (0.10,2.93 2500 90000 4.0 145.0
27 C 44 (0.10,3.04 2500 50000 4.5 90.3
30 C 46 (0.10,3.27 2500 6000¢ 4.7 113.3
36 A 30 (0.25,5.64 1500 250007 0.4 6.9
36 B 40 (0.15,4.44 2000" 300007 1.5 22.5
36 C 50 (0.10,3.70 2500 6000¢ 5.2 125.0
36 D 64 (0.07,3.10 4500 600007 21.3 283.3
36 E 84 (0.04,2.38 9000 100000 85.0 944.4
36 F 100 (0.02,1.73 15006 160006 262.5 2800.0
42 C 56 (0.10,3.88 2500 70006 5.8 161.4
48 C 60 (0.10,4.14 2500 transient 6.0 933.4

®Represents solutions with=0 as the initial guess.
bRepresents the perturbed model-1 solution, by using reversed solutions with respect to tlze-flaethe
left channel or the right channel, as the initial guess.
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pseudo streamlines on the symmetry plane (y=0)

FIG. 4. Three-dimensional illustration of
mode-1 surface flow topology and pseudostream-
lines on the plane of symmetry=0, for Re
=60, A=36, andE=3.

z direction grid distribution (Grid—F) in the upper half channel

represents the conservation laws for mass and momentum forcompressible flow are cast in the following dimensionless
the incompressible fluid flow. This is followed by presenta-form:

tion of the numerical model for solving Navier-Stokes equa-

tions, subject to proper initial and boundary conditions, in 1

three dimensions. Then we present our results. Proper care Ui+ u-Vu=—Vp+ — V2, (1)

has been taken while computing the symmetry breaking bi- Re

furcation in the spanwise direction. The flow topology ex-

tracted from three-dimensional data is also depicted. Finally V.u=0. )

we make the concluding remarks in Sec. V.

The above set of equations accommodates well-posed initial/
boundary conditions. This partly explains why the primitive
Il. MATHEMATICAL MODEL variable formulation has advantages over formulations using
In this paper we consider the incompressible flow througHh€ vorticity-based variablef23]. The variables are made
plane symmetric sudden expansions. The symmetrically corflimensionless by using 0.5 times the upstream channel
figured channelFig. 1) is characterized by an expansion Neight =2), shown schematically in Fig. 1, as the refer-
ratio E (=3), which is defined as the ratio of the downstream&nCe length, and 1.5 times the upstream channel mean veloc-
channel heightH, to the upstream channel height,and an 1Y (Umeai=3) @s the reference velocity, which is prescribed
aspect ratioA, which is the ratio of the channel spad, to ~ at the channel entry. Based on these _referen_ced quantities,
the upstream channel heigit, the Reynolds number of the flow is obtained as Re

The governing momentum and continuity equations for=(3uUnea) (3h)/v, wherev is the kinematic viscosity.
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pseudo streamlines on the symmetry plane (y=0)

FIG. 5. Three-dimensional illustration of
mode-2 surface flow topology and pseudostream-
lines on the plane of symmetry=0, for Re
=60, A=36, andE=3.

In order to make the above elliptic-parabolic mixed dif- this study, primitive variables were stored on staggered inter-
ferential equations well posed, we prescribe a uniform veloceonnected grids, each of which signified a representative

ity u=(2,0,0) at the entry while we prescribe zero gradientprimitive variable[24]. Solutions computed on collocated
conditions at the opposite end of the channel. The inle@rids are prone to exhibit pressure wiggles owing to an erro-
length, upstream of the plane of expansion, was chosen d&gous treatment of pressure gradient terms. The staggering
60h, while the length of the channel downstream of expan-mesh can effectively overcome the difficulty in this regard.
sion was taken as 80 According to Fearret al. [7], such  The grid staggering has additional advantage over nonstag-
streamwise upstream/downstream lengths are sufficient fagered grids. The reason is that the boundary condition imple-
the flow to develop fully. No-slip boundary conditions are mentation for the equation governing the pressure is un-
prescribed on the confining channel walls. In this paper, wé&nown. The transient term is approximated by using a fully
consider mainly the steady state assumption, which has begmplicit difference scheme.
experimentally confirmed by Feat al. [7] for flow with Another hurdle in the simulation of fluid flow is the nu-
Re<151. Nevertheless, to obtain additional insights into ex-merical diffusion error. One way to resolve this problem is to
pz_inded chanr]el flow, we also conducted transient analys%sbmy a QUICK discretization schenj@5] to approximate
with flow starting from rest. convection terms in Eq(1). This scheme is regarded as a
refinement of Leonard’s original scherfiz6] and has been
shown to have a stabilizing effect. In addition, the scheme
employed here provides third order spatial accuracy. Spatial
The working equationgl) and (2) were transformed into derivatives other than convective terms in the equations are
their discrete counterparts using a finite volume method. Irapproximated by means of a second order accurate centered

IIl. NUMERICAL MODELING AND VALIDATION
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scheme. While solving and p from the coupled equations measurements of Feaet al. [7], we conducted computa-
(1) and (2), the absence of pressure term in the continuitylions for the flqw, and an excellent agreement was ach_|eved
equation weakens the discrete system. The segregated dpi9s- 2 and Fig. B To ensure that the computed solutions
proach of Patankai27] is a well-known method for over- epresent the real flow physics, we conducted a series of grid
coming such difficulty. In this study, we employ an equationlndf_ependence tesj[s, the details are listed in Tf_:\ble l. T_he grids
for the pressure differenqe’ to replace the divergence free Mainly employed in this study are grid and gridF, which
continuity equation. This replacement of the working equa-ensure that the size of the eddy captured remained indepen-
tion enables us to apply a semi-implicit iterative algorithm,dent of mesh size. To extract a realistic flow feature, we
thus reducing the disk storage requirement. In this paper, wleérformed calculations in the full domain of the physical
applied a solution algorithm, which is similar to SIMPLE-C Problem schematically shown in Fig. 1. Nonuniform grids
[28], to solve three momentum equations @oand one Pois- Were used, W|th_f|ner grids _clust_ered near the step anq in the
son equation for the' in a “predict and correct” cyclic vicinity of _nonshp walls. Six _grlds qf.dn‘ferent resolutions
process. were (;onS|dered and shown in detgll in Table | and Table II,
In all the cases investigated, the iterative calculation ofncluding the CPU used on a Pentium (800 Mh2.
primitive variables was terminated, subject to theresidual
norm criteria 109 set for pressure and velocity. In ad-
dition, we ensure that mass flux at each streamwise cross
section satisfyfq; — qo|/qo<<10 1%, whereqq is the specified Discussion of the results is organized as follows. We start
mass flux of the entry flow. The details of the solution algo-with presenting the flow topology to give a global picture of
rithm implementation and its analytical validation are pre-the three-dimensional flow development in the expanded
sented in our previous work2,29. For the sake of com- channel. We then assert that a symmetry breaking bifurcation
parison of the present result with the experimentalof the flow takes place at Re60 in a channel witlE=3. In

IV. RESULT AND DISCUSSION
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FIG. 7. Lines of reattachment on the channel
roof and floor for two bifurcation modes of asym-
metric solutions. The flow condition used is Re
=60, A=36, andE=3.

addition to our previous study22], we found that the flow existence of two modes of symmetry breaking flow in the
bifurcation occurs, not only in the step height direction, but itsuddenly expanded channel, it is natural to provide a critical
bifurcates also in the spanwise direction. Extensive numerivalue of the aspect ratio, below which no flow asymmetry
cal verifications have been made to ascertain that the obmay be expected to exist in the spanwise direction. Further-
served spanwise symmetry breaking solution is not of numore, we have also conducted a parametric study on varia-
merical origin. To this end, we conduct a lengthy time-tions of Re andE to show and establish the fact that the
accurate transient calculation. Having confirmed thesymmetry breaking bifurcation in the spanwise direction is a
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FIG. 8. Plots of the streamwise velocity)
profiles along the spanwise direction, showing
two bifurcation modes of solutions computed at
Re=60, A=36, andE=3. (a) y=0.3B; (b) y
=0; (c) y=—0.3B.
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FIG. 9. (Color) lllustration of spiraling particles warping the vortical core lines in the mode-2 bifurcated flows fe6®and withA
=36 andE=3.

general phenomenon of the plane symmetric sudden expaé= 36, can depict the three-dimensional flow structure, and
sion flows. thus provide us with additional flow details as illustrated in
our previous pap€i22].

Symmetry breaking flows bifurcated in the step height
direction, as shown in Fig. 4, can have two orientations. As

To effectively obtain a profound understanding of thethe primary stream bends towards the channel roof, a large
three-dimensional character of the flow structure, one magddy is seen on the channel floor. On the other hand, a large
resort to the topology of limiting streamling80] or skin  eddy is seen on the channel roof, provided the primary
friction lines[31] in order to extract meaningful flow physics stream is bent towards the channel floor. In the present study,
from an enormous amount of computed data. In this papewe report that the two orientations of the step height sym-

limiting streamlines, which are by definition streamlines metry breaking bifurcation flow can coexist in the channel as
passing very close to the solid wall, are chosen to depict thenown in Fig. 1.

flow structure. The limiting streamlines are known to diverge
from lines of reattachmeriB2], and the converse of lines of
reattachment is lines of separation. While approaching the
lines of separation, neighboring streamlines tend to con- Results obtained from the present study, for flow with
verge. By marking use of the kinematic nature of limiting Re=60 in a channel wittE=3 andA=36, show the pres-
streamlines, we classify singular nodes, foci, and saddlegnce of two possible modes of pitchfork bifurcation. One is
These topological singular points supplemented with lines oghown in Fig. 4, and the other, which was not seen in our
separation and reattachment, as plotted in Fig. 4 for the stgprevious study[22], is depicted in Fig. 5. In the following
height bifurcation flow at Re60 in a channel witlie=3 and  discussion of the results, we refer to the solution that is

A. Flow topology

B. Two stable modes of symmetry breaking bifurcation

016306-8
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FIG. 10. Comparison of the lines of reattachment, for mode-1 FIG. 11. Comparison of the lines of reattachment, for mode-1
and mode-2 bifurcations, representing the grid independence. ARNd mode-2 bifurcations, representing the scheme independence.
solutions were obtained by using the QUICK scheme at&&and  All solutions were obtained on gri€ at Re=60 and withA=24
with A=36 andE=3. andE=3.

asymmetric in the step heigk) direction but is symmetric To show thaty and z direction symmetry breaking flows
in the spanwisdy) direction as the mode-1 solutidRig. 4). are indeed stable, we provide the history of convergence be-
The mode-2 solution is defined as being asymmetric in bottaviors|Fig. 6(a)] for flows evolving via mode-1 bifurcation,
y andz directions(Fig. 5). and via mode-2 bifurcatiofFig. 6(b)]. For both cases,

As the flow evolved to exhibit mode-1 bifurcation feature twelve orders of magnitude of ths,-error norms have been
as shown in Fig. 4, the lines of reattachment on the channekduced foru andp. Besides iteration residuals set as low as
roof and floor remained relatively invariant in the spanwise10™ 8 the present calculation requires the relative difference
direction, with the exception in regions near the two side-of mass fluxes between inlet plane and other arbitrary chosen
walls. Unlike the mode-1 bifurcated flow, considerable dis-cross flow planes be less than18 It may be noted that the
crepancy in the flow nature between the two halves of therror reduction rate is much slower while approaching the
channel withy<<0 (the right half of the channplandy>0  convergent mode-2 solution. To be more precise, it takes
(the left half of the channglwas observed in the mode-2 roughly ten times iteration number to obtain a convergent
bifurcation. The lines of reattachment on channel roof andnode-2 asymmetric solution than that needed to obtain the
floor for the flow evolving into the mode-2 symmetry- convergent mode-1 asymmetric solution. Moreover, comput-
breaking pattern is shown in Fig. 5. In mode-2 bifurcationing mode-2 bifurcation is rather a difficult tagkve shall
the eddy size at the roof became larger than that at the chaexplain this behavior in another sectjoAs a further check,
nel floor in the left-half channely(>0), while the opposite whether the two modes of bifurcated flows are numerically
trend of eddy size is found in other half channgk{0) for  stable, we perturbed both flows randomly by altering their
the case withA=36. On the plane of symmetry=0 as values by an amount of 10 to 20 percentages and continued
shown in Fig. 5, the reattachment lengths at the channel roahe calculations. The solutions obtained under stringent con-
and floor are identical. Hence on the symmetry plgsed,  vergence criteria mentioned earlier reproduced the solutions,
the mode-2 bifurcated flow is symmetric in the step heightas shown schematically in Figs. 4 and 5, for mode-1 and
direction. Also noteworthy is the flow topology on the left mode-2 bifurcation solutions, respectively. It suffices to as-
sidewall, whose orientation is antisymmetric to that on thesert that more than one symmetry-breaking bifurcation is
right sidewall as shown in Fig. 5. possible for the channel flow under investigation.
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C. Bifurcation natures (=7.2n) for the mode-2 bifurcation flows. These antisym-

To provide a clear picture indicating the difference in to- metric r_eattachment line profiles, which evolved via mode-2
pologies in two bifurcation modes in the channel flow, in Fig. bifurcation, have & symmetry profile, which is nearly the
7 we plot the spanwise distributions of reattachment length§ame as the unstable solution computed from the two-
on the channel floor and the channel roof. It is interesting tgdimensional analysis, at the symmetry plaype 0, and is
observe that the reattachment lines in mode-2 bifurcation arshown in Fig. 8b). It shows that the mode-2 asymmetric
not only confined between the lines of reattachnfahthan-  solutions are the different orientations of mode-1 asymmetric
nel roof and channel flopifor mode-1 bifurcation, but they solutions on the left and right sides of the channel, respec-
also conserve the streamwise extension. In the spanwigdesely, with a symmetric solution on the symmetry plaype
range 0.B<y=<0.5B (the left side, the mode-2 bifurcation =0. That means there coexist two stable solutions and an
is exactly the same as the mode-1 bifurcation. Thus therenstable solution of two-dimensional flow in the suddenly
exists a good agreement between the streamwise velocigxpanded channel.
profiles on the plang/=0.3B for two modes of solution One way of exhibiting the three-dimensional flow nature
plotted in Fig. &a). Also, in the opposite spanwise range is to trace the path of particles originating from the spiral
—0.8B<y=<—0.2B (the right sidg, the mode-2 bifurcation focal points on the sidewalls. The sidewall boundary layer
is just the same as the other orientation of the mode-1 bifurimposes shear resistance on the primary motion of fluid par-
cation. Thus, the streamwise velocity profiles of two modesticles immediately behind the step. This results in a spanwise
on the planey= —0.3B shown in Fig. &) are antisymmet- pressure gradient and, in turn, an increasingly large spanwise
ric with respect to the plane=0. In the core regiofiFig. 7),  velocity component. This non zero spanwise velocity causes
highlighted in the window block with spanwise lengthB,4 particles, as shown in Fig. 9 indicating the mode-2 flow bi-
mode-2 flow tends to become symmetric while remainingfurcation, to wrap spirally around the vortical core while
bounded by the different orientations of step height bifurcafroceeding towards the symmetry playre 0.
tions on the left and right sides. The profile of the reattach- Prior to turning to the next section, it is important to es-
ment length on the channel floor is antisymmetric to that ortablish that the mode-2 bifurcation is physically realistic for
the channel roof in spanwise core regidy|<0.28  the channel flow with R&60 andE=3. For this reason, we
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once again present evidence that shows the predicted tweansient calculation at Re50. Given the initially quiescent
modes of bifurcation solutions are independent of grids useflow condition, we solved the time dependent elliptic-

and the discretization schemes adopted. To demonstrate tr}t’?’érabolic Navier-Stokes equations in the channel Vith
our predicted symmetry breaking phenomena are indepen=3 gngA=48.

dent of the grid used, we conducted calculations on six grids \yhen the flow evolves to form the symmetry breaking

of different mesh resolutions shown in Table Il to _solve _themode-l bifurcation in the step height direction, the nature of
problem for_A=_36, and the computed mod_es Of_ bifurcation bifurcation is invariant along the spanwise direction. In Fig.
vecton cicretzation schemes, of fire order to third orderi2 e POt the mode-1 time varying reattachment lengths on

. ' the channel roof/floor on the plane of symmeyry 0. The
accuracy, respectively, to solve the problem for24 on

grid C. Figure 11 shows that the physical behavior remains],cIOW retains symmetry in the step height direction during 0

the same and has no dependence on the schemes chosen. 'ﬁﬂte<t1 of the flow development. During the period, the eddy

above grid independent and scheme independent tests certﬁfes on the channel roof/floor remained equal while getting

that the presently predicted two modes of bifurcation phe. creased linearly to reach a local maximum value; that is a
nomena gre realyarF\)d hvsical and not generated duetF:)atwo-dimensional unstable symmetric solution. Since this

: . phy ' 9 Hdw cannot be stably retained, the flow starts exhibiting
computational inadequacy.

symmetry breaking bifurcation at=t,. Afterwards, the bi-
furcation period is categorized into two stages, a slow bifur-
cating period and a fast breaking period. In the process, the

To study the temporal evolution of the two modes of bi-lengths of reattachment varied and the floor eddy size in-
furcation for the plane symmetric sudden expansion flowsgreased by 25% and the roof eddy size decreased by about
we conducted also the time consuming three-dimensiond#5% of the symmetric value at=t,. By t~10°, the bifur-

D. Transient analysis

016306-11



CHIANG, SHEU, HWANG, AND SAU PHYSICAL REVIEW EG65 016306

(Grid—-C) nomenon was observed in Fig. 5. To be explicit, for 36
(Fig. 5 the eddy size at the roof became smaller than the
eddy size at the channel floor in the right channel, and the
opposite trend of the eddy size is observed in the left chan-
B nel. This means the mode-2 bifurcation, similar to the
mode-1 bifurcation, can have two orientations. The evolving
process of spanwise symmetry breaking via step height bi-
B furcation, as shown in Fig. 13 for the case w48, can
be clearly observed from the movement of the lines of reat-
tachment on the roof/floor during the perioe: 70—21000.
B Therefore, the mode-2 bifurcation, where flow bifurcates in
spanwise direction, evolves from different orientations of
step height bifurcations at the left and right sides of the chan-
N nel separately. At a time roughly equal to*1@node-2 flow
(Fig. 13 has almost reached the steady state solution, with
the exception in the spanwise core regify|<0.15
- (=7.2h) where flow still undergoes a fairly slowly evolving
process in an antisymmetric sense. The slow convergence of
points “e” and “ E” shown in Fig. 13 may suggest that there
L is another time scale related to spanwise lengths and veloci-
ties. The spanwise core flows duribg 10°~10* complete
the whole evolution proceg§ig. 13, and the flow became
symmetric in the step height direction on the plane of sym-
metryy=0.
" The much slower convergence schematic in Fitp) @nd
the slow temporal evolution shown in Fig. 13 reveals that
0 5 10 15 20 25 30 mode-2 flow is difficult to obtain, compared to the mode-1
X axis flow. One physically meaningful reason for such difficulty is
the coexistence of symmetric solution g0 and the anti-
FIG. 14. Comparison of lines of reattachment of mode-2 bifur-symmetric solutions foy>0 andy<0. The symmetric flow
cation on the chgnnel roof and floor, at-R&0 andE= 3, for dif- on the symmetry plang=0 is unstable in the sense that
ferent aspect ratiod=22, 24, 27, 30, 36, 42, and 48. such a symmetric solution is impossible to obtain from the

. two-dimensional analysis.
cated flow has reached its steady state. It may be noted from y

Fig. 4 that the mode-1 solution has another orientation. For
A= 36, Fig. 4 shows the eddy size on the floor is smaller than
the eddy size on the channel roof, and therefore exhibits a The flow features with aspect ratids=36 andA=48,
reverse orientation of mode-1 bifurcation compared to thgpresented in Fig. 7 and Fig. 13, respectively, reveal that the
case withA=48, as shown in Fig. 12. appearance of mode-2 bifurcation requires long enough
The transient behavior of the mode-2 symmetry breakingpanwise core length for evolving from two different orien-
bifurcation is shown in Fig. 13. The reattachment lengths oriations of step height bifurcation. Therefore it will exist at a
the planesy=—0.3B, 0, and 0.8, increased/decreased all critical aspect raticA;, and forA>A; we can obtain sym-
the way up to their asymptotic values. For purposes of commetry breaking bifurcation in the spanwise direction. In the
pleteness, we also plot the distribution of lines of reattachpresent study, we varied the aspect ratio in the range of 6
ment on the channel roof/floor & 70, 400, 500, 600, 1000, <A=<48 and examined carefully the computed results in the
and 20000 in the same figure. Similar to mode-1 flow bifur-spanwise direction foE=3 and Re=60.
cation, up to timeé~t, the flow shows the unstable symmet- It has been found that the two modes of symmetry break-
ric structure, which cannot be stably retained. Afterwardsjng bifurcation with initial guessi=0 can be obtained pro-
flow gradually loses stability and evolves eventually to avided that aspect rati6=30. For aspect ratio8<<30, only
bifurcation first through a slowly evolving process and thenmode-1 symmetry breaking bifurcation takes plawéh ini-
at a much faster process in a relatively short time periodtial guessu=0), but not the mode-2 solution. Upon pertur-
During t;<t<t, the formation of step height symmetry bation of the computed mode-1 solution, by using the re-
breaking bifurcation, the mode-1 floWFig. 12 remained versed solutions with respect to the plarxe0 on the left or
symmetric(i.e., with unanimous orientatigralong the span- the right channel, and using them as the initial guess and
wise direction, but maintained opposite orientation in the leftproceeding the calculation, the flow evolves into the stable
and the right channel for mode-2 flo@#fig. 13. Figure 13 mode-2 bifurcation for aspect ratiod=27, 24, and 22,
also shows the evolution of spanwise bifurcation via stepvhereas they go back to their mode-1 form eventually for
height bifurcation, and the formation of large eddy at thelower values of the aspect ratids=21, 20, 18, 12, and 6.
right channel roof and left channel floor. The converse pheBased on the calculation details in Table II, we found that the

48

24 36
=60
ength of
he sidewall

o

panwise core lengt
needed for connecting two different orientations of

12
step height bifurcations at the left and right sides

3 and Re

y axis
0
22h

-12

the mode—2 bifurcation
cannot be retained if A<=21

-24
for the case of E

-48

E. Critical aspect ratio for spanwise bifurcation
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pair (D,d), (E,e), and (F,f) are reattachment points on
o the channel (rloof,floor) at planes y/B= -0.3, 0.0, and 0.3
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approaching an unstable symmetric solution
2) evolving to show the step height & spanwise bifurcations
(3) the mode-2 bifurcation cannot be stably retained
(4) rapidly approaching steady state mode-1 asymmetric sol.
10 10° 108 ot 10° FIG. 15. Time evolving reattachment lengths
time t (in logarithmic manner) on the channel roof and floor, on planes
y=-0.3B, 0, and 0.8, showing the spanwise
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critical value of the aspect ratio .= 21 for mode-2 bifur- Re=60 in a channel wittE=3, we conducted the transient
cation to occur in a channel with=3 and Reynolds number calculations starting withu(x,t=0)=0, and then perturbed
Re=60. In the experiment Fearet al. [7] considered the the processas mentioned aboyatt=10 and proceeded the
case with aspect ratio 24 but observed no spanwise symmeemputation. We plot in Fig. 15 the computed reattachment
try breaking bifurcation for Reynolds numbers up to 140. Forlength on the channel roof and floor against time on the
A= 24 being located near the critical regidg=21, the ap- planesy=-0.38, 0, and 0.B. This bifurcation diagram
pearance of the mode-2 bifurcation may require a suitabl@/so shows the same evolving process as observed in the
perturbation of the flow. Moreover, we found that the critical channel withA=48 (Fig. 13. The flow evolves first to pro-
aspect ratio for the occurrence of the mode-2 bifurcation igluce the symmetric solution, which cannot be stably re-
also dependent on flow Reynolds numbers. Our computatioffined. This is followed by a slowly and then a rapidly evolv-
results show that no mode-2 bifurcation can be stably reld processes to produce the mode-2 symmetry breaking
tained for cases with =24 and 27, and Re140. This par- bifurcation. The mode-2 bifurcated flow did not reach a

; ; ; o e Steady state untit~2x10* During the time periodt
ggili)c/mexplams why Fearet al.[7] missed the mode-2 bifur =27200-28200 the flow quickly approached towards the

. . . mode-1 solution. In the process, the right channel flow re-
For seven different investigated cases wik»A;, we . . ” ;
plot in Fig. 14 the lines of reattachment on the channel rooiyersed its symmetry breaking orientation, and became the
. : . same as the left channel flow.
and floor for flows evolving to mode-2 bifurcated solution. It

is surprising to observe that the lines of reattachment fall into _ _ _
the same line and have no functional dependencé ionthe F. Parametric study on Reynolds number and expansion ratio

spanwise core region df|<9h. To further justify the sta- It has been observed that the two modes of symmetry
bility of the mode-2 flow for the critical aspect ratio 21 and breaking flows can be stably retained for the flow at Rey-
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FIG. 16. Limiting streamlines on the channel
roof/ffloor and pseudostreamlines on planes
y=-0.3B, 0, and 0.B showing the mode-2
bifurcation. The flow condition used is R4.00,
A=36, andE=3.
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nolds number Re60 in the channel with expansion ratio region, is not due to the sidewall effect, but is rather pro-
E=3. To confirm that such a multiple bifurcation is not a duced by internal affairs. The flow topology on the roof and
particular case but a general phenomenon, we vary Reyno|dge floor as observed from Fig. 16 show thfe\t the notion of the
number Re and expansion raficsubsequently to study their Pitchfork takes on a whole different meaning here.
effects on the bifurcation nature of the flow in the suddenly According to the two-dimensional result of DrikaKs4],
expanded channel. the critical Reynolds numbers, above which the flow starts
We carried out calculations on grigl in a channel with ~ bifurcating, are 108 and 26.5 fd&f=2 and E=4, respec-
A=36 andE=3 at three different Reynolds numbers Re tively. Just to have a feeling in three dimensions, we carried
=80, 100, and 120. The results show that mode-1 an@ut calculations on grid C in a channel with=36 and
mode-2 solutions are possible to obtain at these Reynold$,R&=(2,125) and (4, 40. In addition to the two-
numbers and can both reach their respective steady state g§mensionally predicted mode-1 bifurcation in the step
lutions. We plot in Fig. 16 the roof/floor flow topologies and height direction, mode-2 solutions are also observed, and are
pseudostreamlines on plangs- —0.38, 0, and 0.8 for  graphically shown in Fig. 17.
mode-2 bifurcation at Re100. One noteworthy feature of
this channel flow is the formation of a third eddy in the V. CONCLUDING REMARKS
spanwisey planes. What is more important to note from the
developed flow at this higher Reynolds number is the com- In the present paper, we have explored the existence of a
plexity of the flow topology(Fig. 16. On the channel roof second mode of bifurcation in a plane-symmetric channel
and floor, limiting streamlines manifest themselves by showwith sudden expansion. Consideration has been given to es-
ing additional lines of separation, which connect lines oftablish the presence of Coanda phenomenon in both the step
reattachment at the saddle point. The complexity in flow to-height and spanwise directions. Through this detailed nu-
pology shows that three-dimensional flow behavior prevailamerical study, it is found that two modes of symmetry break-
in the channel. Such a flow pattern, in the spanwise coréng flow can be stably retained in the geometrically symmet-
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FIG. 17. Three-dimensional plot of the sur-
face flow topology showing the mode-2 bifurca-
tion. (a) Re=125, A=36, andE=2; (b) Re
=40,A=36, andE=4.

ric channel. The step height bifurcatigmode-), which  <A., the originally occurring mode-2 bifurcation cannot be
exists in two-dimensional flow, can also have a spanwis&tably retained and will evolve into mode-1 bifurcation even-
(mode-2 counterpart. Moreover, both mode-1 and mode-2tually. Parametric studies on Reynolds numbers and channel
bifurcations can have two orientations. Reattachment linegxpansion ratios were also conducted to improve our under-
for the mode-2 flow have a streamwise extension, whichstanding about the three-dimensional nature of the suddenly
connects and coincides with the two different orientations ofxpanded channel flows.

mode-1 flow on the left and right sides. Results indicate that

two stable asymmetric solutions and one unstable symmetric

solution are coexisting in .the modg-z flow. Besides the ACKNOWLEDGMENTS
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