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Transverse electrokinetic and microfluidic effects in micropatterned channels:
Lubrication analysis for slab geometries

Armand Ajdari*
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Off-diagonal~transverse! effects in micropatterned geometries are predicted and analyzed within the general
frame of linear-response theory, relating applied pressure gradient and electric field to flow and electric current.
These effects could contribute to the design of pumps, mixers, or flow detectors. Shape and charge-density
modulations are proposed as a means to obtain sizeable transverse effects, as demonstrated by focusing on
simple geometries and using the lubrication approximation.
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I. INTRODUCTION

The development of microfluidic devices and studies
prompted the quest for various strategies to achieve pum
in microgeometries@1–7#. Pressure-driven flows is the firs
obvious possibility, with the inconvenience of important Ta
lor dispersion due to the parabolic flow profiles@8#. Electro-
osmosis has been proposed and developed as a way to
erate almost perfect plug flows, thereby reducing dispers
in various devices, which results in limited dilution o
samples, and processability for separation purposes@7#. This
solution implies relatively high voltages applied between
ends of the channels.

In this paper, micropatterned channels are proposed
way to generate a large class of effects using pressure g
ents or electric fields. In particular, various off-diagonal
fects may be obtained in which a cause along one direc
leads to a measurable or useful effect in a perpendicula
rection. These effects could be exploited for the realizat
of transverse pumps, mixers, flow detectors, etc. A propo
pattern is the periodic modulation of the shape of the ch
nels, which may be improved by a combined modulation
the surface charge density.~in line with an earlier study tha
dealt with transverse electro-osmosis on such surfaces@9#!.
The aim is here to explore the ensemble of transverse eff
achievable.

To reach this goal, the linear response regime is con
ered, which permits the use of a very general Onsager
malism, to relate fields~pressure and electric potential grad
ents! to currents~hydrodynamic flow and electric current!.
For the sake of clarity, we further restrain our analysis t
simple class of geometries, with the fluid confined betwe
two parallel plates, homogeneously and periodically p
terned~Fig. 1!. Parallel walls may be present so as to form
channel.

In Sec. II, the geometry and the matrix representation
linear response are first given, then used to explain at
phenomenological level the off-diagonal effects for the c
of passive walls~a few situations where electrodes are e
bedded in the walls are considered in Appendix A, and
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corresponding wall-generated effects analyzed!. In Sec. III,
an explicit realization is described and estimates for the
fects given. The calculations are performed using the lu
cation approximation, and assuming weak surface potent
which provides a convenient analytic handle. Results
sinusoidal modulations of the shape and charge densities
reported in Appendix B. A brief discussion closes the pa
~Sec. IV!, pointing out directions for future studies.

II. DIRECTIONAL COUPLING WITHIN LINEAR
RESPONSE

A. Local linear response

We consider the Hele-Shaw quasiplanar geometry of F
1, where the two sides of the slab bear periodic pattern
principal axes (x,y), and set the formalism relating two
dimensional~2D! fields to 2D currents~i.e., integrated over
z) at thelocal scale~i.e., at a scale larger than the period
the pattern but smaller than the width of the channel!. In the
linear-response regime, the 2D currents~hydrodynamic flow
J and electric currentJel) are related to the 2D pressur
gradient“p and to the 2D electrostatic potential gradie
“f52E, by a generalized conductance matrix@11#:

FJ

Jel
G5FK M

M S G•F 2“p

2“fG ~1!

or equivalently by the generalized resistance matrix:

FIG. 1. Slab geometry considered in this paper: Two para
walls bear on their inner faces periodic microfabricated pattern
principal axesx andy. The slab may be limited sideways by wall
the axis of the resulting channele2 at an angleu with they axis of
the pattern. From Sec. III on, we focus on patterns periodic alonx
and invariant alongy.
©2001 The American Physical Society01-1
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F2“p

2“fG5Fk m

m s G•F J

Jel
G , ~2!

where K , M , S, k, m, and s are 232 matrices, that are
symmetric to satisfy Onsager relations@11#.

The permeation matrixK describes the flow induced b
pressure differences~the Darcy law in a porous medium!.
The conduction matrixS relates the electric current to th
electric field~the medium’s Ohm’s law!. The matrixM de-
scribes the electro-hydrodynamic coupling~so-called electro-
kinetic effects!. In the first line of Eq.~1!, it quantifies
electro-osmosis, i.e., the hydrodynamic flow induced by th
electric field. This effect stems from the presence of t
diffuse layers in the vicinity of charged walls where the flu
is non-neutral, and thus dragged by the local electric field
the second line of Eq.~2!, M measures the electric curre
induced by the presence of a net hydrodynamic flow. Thi
due to the convective transport of the above-mentio
charged layer that leads to an ionic current. The resul
hydrodynamically generated electrostatic potential diff
ences ~‘‘streaming potentials’’! and electric currents
~‘‘streaming currents’’!.

All the above is standard in the 1D geometry of cylind
cal capillaries, or for homogeneous and isotropic porous
dia, whereK, S, and M are scalars. Here, we explore th
phenomena occurring in the present 2D geometry with n
equivalent properties along thex andy axes, allowing for the
existence of off-diagonal effects.

Indeed, the 232 matrices in Eqs.~1! and~2! are diagonal
in the principal axes~x,y!, but not in the basis (e1 ,e2) related
to the overall channel geometry~see Fig. 1!. To set notations,
if one of them readsF5Fxxx1Fyyy, its expressionF
5S1,2Fi , jeiej in the basis (e1 ,e2) is

F5S Fxcos2u1Fysin2u ~Fx2Fy!sinu cosu

~Fx2Fy!sinu cosu Fycos2u1Fxsin2u D . ~3!

It is then obvious that, locally, nondiagonal or transve
effects ~a cause alonge1 induces an effect alonge2 or the
reverse! occur if some of the local transverse coefficien
K12, M12, or S12 are nonzero. From the above geomet
formula, this requiresKxÞKy , MxÞM y , or SxÞSy , i.e.,
that the anisotropy in the pattern of the plates has transl
into different local susceptibilities along the two princip
axesx andy.

We postpone to Sec. III a description of a way to achie
this asymmetry, and start with a generic description of
effects expected if local anisotropy is present. As writt
above, the local Eqs.~1! and ~2! already describe the trans
verse electrokinetic couplings that would occur in open
ometries with no boundaries: for example, an electric fi
along e1 generates a flow alonge2 ~transverse electro-
osmosis!, and a flow alonge1 a transverse streaming poten
tial alonge2. To be more practical, we wish now to explo
the expression of these couplings in the channel geometr
Figs. 1 and 2, where the walls perpendicular toe1 impose
constraints on the fields and currents.
01630
n

n

is
d
is
-

e-

-

e

ed

e
e
n

-
d

of

B. Channels with passive walls

Take a channel of lengthL alonge2 and widthd alonge1,
bounded by impermeable walls. We suppose here tha
electric current may flow from one side to the other, so b
currents in directione1 are on average zero:J150 andJel1
50. Potential differences between the two walls may ho
ever be measured using a set of electrodes connected
high resistance in series with a voltmeter~Fig. 3!. In this
geometry, it is straightforward to quantify the effects gen
ated by a forcing along the length of the channel~direction
e2).

1. Pressure-driven effects

Suppose a pressure dropDp2 is applied along the channe
so that the average value of]2p is Dp2 /L. We furthermore
consider that there is no external electrical path connec
the two ends of the channel so thatJel250: any streaming
current~along the walls! is compensated by a back current
the bulk.

FIG. 2. Top view of the slab geometry of Fig. 1.

FIG. 3. Passive walls: Neither hydrodynamic flow nor elect
current is possible along thee1 axis. A potential differenceDf1

may be measured using a high-input impedance voltmeter.
1-2
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The application of the pressure dropDp2 then results in
‘‘classical’’ longitudinal effects alonge2: a total fluid flux
Q25d J25k22

21(d/L)(2Dp2) ~a Darcy law modified by
electric effects!, and a streaming potentialDf2
5(m22/k22)Dp2.

More interestingly, transverse effects are also genera
across the channel: a pressure differenceDp1 and a potential
drop Df1:

Dp15~k12/k22!~d/L !Dp2 , ~4!

Df15~m12/k22!~d/L !Dp2 . ~5!

The transverse pressure differenceDp1 exists if k12Þ0, in
which case it indicates that recirculation is taking place
the e1 direction: the pressure drop alonge2 entrains fluid in
thee1 direction, which, due to the presence of the walls, th
has to recirculate. A certain amount of shearing and mixin
thus induced.

The transverse streaming potentialDf1, proportional to
the nondiagonal electrokinetic coefficientm12, provides an
electric measure of the hydrodynamic flow alonge2. Note
that, this potential drop is intrinsically smaller than th
streaming potential along the channel by a factord/L due to
the geometry of the system, times a factorm12/m22 that need
not be smaller than one~see, e.g., the end of Sec. III an
Appendix B!.

2. Electrically driven effects

Suppose now that a total electric currentI 25d Jel2, or an
average electric fieldE2, is applied along a channel con
nected to large open reservoirs so thatDp250. This yields
standard effects along the channel, which are simply Oh
law Jel25@k22/(k22s222m22

2 )#E2 and a longitudinal electro
osmotic solvent flux Q25d J252(m22/k22)Jel25
2@m22/(k22s222m22

2 )#d E2.
In addition, transverse effects are generated,

Dp152
m12k222k12m22

s22k222m22
2

d E2 , ~6!

Df152
s12k222m12m22

s22k222m22
2

d E2 . ~7!

Equation ~6! indicates transverse electro-osmosis: the
electric-fieldE2 induces an electro-osmotic flow alonge1 ~if
m12Þ0), which due to the presence of the walls, leads t
pressure differenceDp1 that drives recirculation of the fluid
alonge1. Again, this induces shear and favors mixing. Th
effect is due both to the nondiagonal permeation (k12) and to
transverse electro-osmosis per se (m12).

Equation~7! describes an ‘‘electrokinetic Hall effect’’: an
electric field applied alonge2 results in an electrostatic po
tential difference alonge1, due to both the anisotropic con
ductivity (s12) and the transverse streaming current (m12).
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ed

n
is

’s

a

C. Comments

Many other geometries may actually be envisaged, co
sponding to various imposed boundary conditions for flux
or potentials. In Appendix A, we consider situations whe
electrodes are embedded in the walls, which permits, for
ample, the generation of flow along the channel from tra
verse potential differences between the walls. Let us st
here a few general points.

Evaluation of the effect is easy only if the geometry~im-
posed boundary conditions! permits homogeneous solution
for the gradients and currents. Otherwise, one has to s
the 2D conservation equations for the currents.

This obviously would also be the case with heterogene
patterns on the plates. We will return to this in the discuss
section.

A more serious~less obvious! problem has to do with
electrodes: the specificities of electrochemistry at their s
face may require a description in terms of the fluxes of
various ions rather than the simple description in terms of
electric current of Appendix A, in addition to the many e
perimental problems involved~surface corrosion, generatio
of gas bubbles, etc.!.

In the channel geometries considered here, modifying
controlling the electrical connection between the walls
fects the longitudinal coefficientsK22,M22,S22 ~if off-
diagonal coefficients are nonzero!.

Clearly, several coefficients describe the various c
plings allowed by symmetry in this linear theory. To giv
quantitative estimates for these coefficients and thus for
corresponding effects one has to deal with notoriously di
cult ~even at low Reynolds number! electro-hydrodynamic
calculations. However, a useful guide may be developed
ing the lubrication approximation, as shown in the ne
section.

III. SPECIFIC CALCULATIONS WITHIN LUBRICATION
APPROXIMATION

A. Geometry and approximations

In this section, modulating the shape and the charge d
sity on the plates is proposed as an efficient patterning
obtain transverse effects. Explicit calculations of the mat
coefficients introduced in Sec. II A are performed, whi
provide an estimate of the off-diagonal effects listed in S
II B. For the analysis to remain simple, I focus on the spec
case where the charge and/or surface pattern is peri
along the directionx and invariant along the perpendicula
directiony. To set notations, the channel has a local thickn
h(x)5h01dh(x), and modulated charge densitiess1(x) on
the bottom plate ands2(x) on the top one~Fig. 4!. Further,
the following assumptions are made:

~i! the modulation wavelength is larger than the gap
that lubrication approximation holds@10#,

~ii ! the ionic strength is high enough for the typical g
thicknessh0 to be much larger than the Debye lengthlD
5k21,

~iii ! the surface potentials~or charge densities! are weak
enough for the double layers to be well described by
1-3
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Debye-Hückel theory. All effects are calculated to first ord
in these surface charge densities, so that terms proporti
to products ofs i are neglected altogether. This restrictio
comes in addition to~and is distinct from! the fact that we
focus on the linear response of fluxes to applied fields.

Although these assumptions limit the quantitative pre
sion of the results, they permit analytic calculations and t
a clear discussion of important qualitative features at a
sonably simple level, as well as estimates for the orders
magnitude of the effects.

To provide a clearer illustration, the following set of n
merical values for the local parameters is used: water vis
ity h51023 Pa s, a 1:1 electrolyte at salt concentrati
1023 mol/l so that the Debye length islD.1028 m and
the conductivity gel.1022 m2/V/s, and a charge densit
such that ‘‘electro-osmotic mobilities’’ are of orderm.2
31028 m2/V/s. This last assumption corresponds to surfa
electrostatic potentials of orderkBT at the limit of strict va-
lidity of the Debye-Hu¨ckel approximation. Wheneve
needed, the channel geometry will be described by a ga
h0510 mm, a widthd5200 mm, and a lengthL52 cm.

B. Flat and uniform surfaces

To get a physical insight, it is useful to start with th
simple geometry of uniform flat surfaces@Fig. 4~a!#: h(x)
5h0 , s1 ands2 constant. The computation of electrokinet
effects is then simple~given ~ii ! and ~iii ! @12#!, and may be
found in textbooks~e.g.,@11#!.

Electro-osmosis.If an electric fieldE is present in the
channel, it will exert a drag on the thin charged Debye la
in the vicinity of the surfaces. The actual no-slip bounda
condition for the solvent flow on the real surface of the pla
may then be replaced by an electro-osmotic slip velocityv i
52m iE on platei, wherem i5s ilD /h, andh is the viscos-
ity of water. This leads to a simple flow profilevEO(z)5
2m1E(122z/h0)2m2E(112z/h0) and a net electro-
osmotic flow through the channelJEO52(m11m2)h0E/2.

Poiseuille flow.In addition, there is naturally the pressu
driven flowvPoise.5(z22h0

2/4)]xp/2h which gives a current
JPoise.52h0

3]xp/12h.
Flow-induced current.This pressure-driven flow induce

transport of the charged fluid of the Debye layers. If the lo
shear rate in the vicinity of thei th plate isġ, the induced
current is~per unit length in they direction! Jeli52s ilDġ

FIG. 4. Geometry considered in Sec. IV:~a! case of a uniform
flat system,~b! the slip parameters describing electrokinetic effe
and the thickness vary alongx only.
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52hm i ġ. Given thatġ52h0]xp/2h, this leads to a total
currentJelFlow-ind.5(m11m2)h0]xp/2.

Ohm’s law.Of course, the flow-induced current is often
minor correction to the main conduction current described
Ohm’s lawJelOhm5gelh0E.

Gathering all contributions, we are thus led to a scalar~in
this isotropic case! version of Eq.~1!,

J5
h0

3

12h
~2“p!2h0

m11m2

2
~2“f!, ~8!

Jel52h0

m11m2

2
~2“p!1gelh0~2“f!. ~9!

The symmetry of the Onsager matrix is here clear.
Note that in principle, electro-osmotic flows also indu

convective transport of the charged regions, which cont
utes an additional term of ordersmE to the electric current
Jel . However, this effect is proportional tos is j and ne-
glected here given~iii !. This is valid if h0@(hm2/gellD), a
criterion fully satisfied by the numerical values propos
above for which it readsh0@ 4 nm.

C. Fields and currents along the modulation directionx

Returning to a channel periodically modulated alongx, I
consider first the case where the fluxes and gradients
applied along this axis. In this geometry, the currentsJx and
Jelx are constants, whereas the local values of the pres
gradient ]xp(x) and electric fieldEx(x) vary ~although
slowly enough in the lubrication approximation to consid
them independent ofz).

In the lubrication picture we can transcribe the results
the previous section

Jx5
h3~x!

12h
~2]xp~x!!2h~x!

m11m2

2
~x!Ex~x!, ~10!

Jelx52h~x!
m11m2

2
~x!~2]xp~x!!1gelh~x!Ex~x!.

~11!

Then, neglecting along~iii ! terms proportional to the produc
of s is ~or m is!, and performing integrals alongx over a pe-
riod of the modulation, gives

S ^2]xp&

^2]xf&
D 5

12h

gel S gelK 1

h3L K m11m2

2h3 L
K m11m2

2h3 L 1

12h K 1

hL D S Jx

Jelx
D ,

~12!

where^ f & is the average of the functionf (x) over a period.
With the same approximations, inversion yields:

s

1-4
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S Jx

Jelx
D 5DxS 1

12h K 1

hL 2K m11m2

2h3 L
2K m11m2

2h3 L gelK 1

h3L D S ^2]xp&

^2]xf&
D

~13!

with Dx
215^1/h3&^1/h&.

Note that approximation~iii ! amounts here toh2

@12hm2/gel , or h@20 nm with the above numerical va
ues, again easily verified for micron-sized gapsh0.

D. Fields and currents along the perpendicular directiony

I now take fields and flows along the perpendicular dir
tion y. In an infinite geometry, the electric-fieldEy and the
pressure gradient]yp are independent ofx, whereas the cur-
rents are modulated along this direction:

Jy~x!5
h3~x!

12h
~2]yp!2h~x!

m11m2

2
~x!Ey , ~14!

Jely~x!52h~x!
m11m2

2
~x!@2]yp~x!#1gelh~x!Ey .

~15!

Averaging over a period alongx here gives

S ^Jy&

^Jely&
D 5S 1

12h
^h3& 2 K m11m2

2
hL

2 K m11m2

2
hL gel^h&

D S 2]yp

2]yf
D

~16!

or upon inversion

S 2]yp

2]yf
D 5Dy

2112h

gel S gel^h& K m11m2

2
hL

K m11m2

2
hL 1

12h
^h3&

D
3S ^Jy&

^Jely&
D ~17!

with Dy
215^h3&21^h&21.

E. Summary for arbitrary modulations

We may now write down the local coefficients of the r
sponse matrix to make the anisotropy in (x,y) explicit. The
coefficient of the conductivity matrices~Sec. II! giving
fluxes as functions of gradients are

Kx5
1

12h
^1/h3&21, Ky5

1

12h
^h3&, ~18!

Sx5gel^1/h&21, Sy5gel^h&, ~19!
01630
-

Mx52

K m11m2

2h3 L
K 1

h3L K 1

h1L ; M y52 K m11m2

2
hL . ~20!

The anisotropy appears in a similar form in the ‘‘resistan
matrix’’

kx512h^1/h3&; ky512h^h3&21, ~21!

sx5
1

gel
^1/h&; sy5

1

gel
^h&21, ~22!

mx5
6h

gel
K m11m2

h3 L ; my5
6h

gel

^~m11m2!h&

^h&^h3&
. ~23!

The coefficients describing off-diagonal effects~Sec. II! are
then obtained from these matrices expressed in the (e1 ,e2)
frame @using Eq.~3!#.

F. Discussion

To investigate semiquantitatively the consequences of
formulas derived above, a simple and practically relev
example is sinusoidal modulations of the shape and cha
density@Fig. 5~a!#,

h~x!5h0„11a cos~qx!…, ~24!

m11m252„m01dm cos~qx1Q!…. ~25!

Analytical results take a simple form in the limit of wea
modulation amplitudes for the shape, which allows us to c
culate the result through an expansion ina.

This calculation is performed in Appendix B where th
yields estimates for the ratios of nondiagonal to diago
coefficients of the conductance and resistance matrix~e.g.,
m12/m22), which are one of the main ingredients that det
mines the amplitude of the transverse effects describe
Sec. II B and Appendix A.

From this~see, in particular, the end of Appendix B!, and
from direct inspection of the formulas of the subsecti
above~Sec. III E!, a few important points may be derived.

~i! A simple modulation of the charge pattern is not suf
cient to induce off-diagonal effects. This is the conseque
of the linear description in terms of the surface charge d
sities and of the1/2 symmetry~see, e.g.,@9# for a discus-
sion of this!.

~ii ! A modulation of the shape at homogeneous cha
density is enough to produce off-diagonal effects for all ph
nomenologies ~permeation k12Þ0, electro-osmosis and
streaming potential/currentm12Þ0, conductances12Þ0).
However, for a weak modulationdh(x) around a meanh0,
the coupling coefficients will be proportional to (dh/h0)2.

~iii ! A correlated coupling of the charge pattern and of t
shape leads to strongerO(dh/h0) amplitudes for the off-
diagonal electro-hydrodynamic couplingsm12 and M12.
These off-diagonal couplings are proportional todm, and
1-5



t
in

ig

ap
s
o
e

ia

-
c

l th

on

o

cts
ple
rse
-
SI

-

ing

f

’s
ng
ith

be
ari-
c-

the

e

s

re

-
ssed

ron
ge-

-
n

r
er
us

e a
ld.
of
s
he
o-
ined
ac

T

si-

ei
t

. A
of

de

ARMAND AJDARI PHYSICAL REVIEW E 65 016301
may dominate the longitudinal ones ifdm/m0@1. This syn-
ergy between shape and charge modulation stems from
shape-induced symmetry breaking between plus and m
charges, and is described at length in@9# for the specific case
of electro-osmosis. A schematic description is given in F
5.

~iv! Extrapolation of these results to the casea→1
~which does not necessarily contradict the lubrication
proximation, see Appendix B!, semiqualitatively suggest
that the off-diagonal coefficients may all be of the same
der than the diagonal ones. Favorable ingredients ar
marked shape modulation (dh/h;1), and a large charge
modulation (dm/m0;1).

Then, in most cases, these ratios of nondiagonal to d
onal matrix coefficients that describelocal couplings have to
be multiplied by the geometrical factord/L, to get the over-
all estimate of themacroscopictransverse effect. For ex
ample, pressure along a channel with passive walls indu
across the channel width a transverse streaming potentia
is smaller than the longitudinal one by a factor (m12/
m22)(d/L). For a channel with a marked charge modulati
around a weak averagedm/m0;10 ~acknowledgedly, a very
favorable situation!, a;0.5, one may get the first factor t

FIG. 5. Generation of off-diagonal effects~here electro-osmosis!
from a sinusoidal modulation of shape and charge densities.
case depicted here~a! corresponds toa.0, dm.0, Q5p/2, and a
zero average charge densitym050. A schematic top view is then
used in~b!, ~c!, and~d!, with u5p/4. ~b! The fieldEx generates a
flow alongx resulting from the opposite action of the narrow po
tively charged sections~tending to slip the fluid backwards alongx)
and of the wider negatively charged sections~which induce a slip in
the positive direction!. The thin sections dominate because of th
stronger hydrodynamic resistance so the net flow is opposite to
applied field.~c! A field Ey applied alongy induces a stratified flow
with thin and wide sections again pushing in opposite directions
the field is uniform, the slip velocities in the two directions are
similar amplitudes. Thus, the net flow is dominated by the wi
sections, and points in the direction of the applied field.~d! Thanks
to the linearity of the problem, the net flow created by a fieldE
applied alonge2 is obtained by superimposing those obtained in~b!
and ~c!, resulting here in a dominant transverse component.
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be of order five so that for a channel of widthd5200 mm
and lengthL52 cm, one obtainsDf1 /Df2;1/20.

Let us end with rough estimates for the transverse effe
described formally in Sec. II, using the numerical exam
proposed in Sec. III A, and assuming efficient transve
couplings in the limita→1. Using the values for local pa
rameters of Sec. III A, the local matrix coefficients are in
unitski j .1013, mi j .2 107, andsi j .107. We consider again
a channel of lengthL52 cm, widthd5200 mm and typi-
cal gaph0510 mm.

~i! An applied pressureDp2 of order 1 atm generates~Sec.
II B 1! flow velocities of orderv2;5 cm/s, a longitudinal
streaming potentialDf2;0.2 V, atransverse streaming po
tential Df1;2 mV, and a transverse pressureDp1
;1000 Pa that induces transverse recirculations and mix
at velocities comparable tov2.

~ii ! An applied electric field ofE25500 V/cm~a current
I 2;1026 A) generates longitudinal velocities of orderv2
;1 mm/s, as well as~Sec. II B 2! a transverse pressure o
Dp1;20 Pa, and atransverse potentialof order Df1
;10 V resulting mostly from the anisotropy of the Ohm
law in this geometry. Transverse recirculation and mixi
also occurs in this electrically driven situation, again w
transverse velocities comparable tov2.

IV. CONCLUSION

We have shown that various off-diagonal effects may
generated using micropatterned geometries allowing for v
ous functionalities: transverse pumping, mixing, flow dete
tion, etc. The corresponding couplings may locally be of
same order as the usual~diagonal! electrokinetic coefficients
~sometimes larger!. Their actual global value depends on th
geometry of the given device~through geometrical ratios
such as, e.g.,L/d). A detailed analysis for simple geometrie
of the flow pattern@variations in the third~z! direction# and
thus of the mixing capabilities will be published elsewhe
@15#. Obviously, more complex and realistic geometries~e.g.,
square-shaped grooves! are expected to lead to similar re
sults, although their detailed performance may be asse
only numerically.

Realization of charge-patterned surfaces at the ten-mic
scale has already been experimentally explored in simple
ometries, for both soft elastomer systems@13#, and more
rigid plastic systems@14#. Its combination with shape modu
lations is clearly within the range of current microfabricatio
technologies@2,13,14#, and is the topic of ongoing studies.

Naturally, more efficient devices for pumping, mixing, o
flow detection should be realizable by playing with a larg
class of patterns, including, in particular, inhomogeneo
ones. A simple example is schematized in Fig. 6 wher
vortex may be created by application of an electric fie
Additional features or control can result from the increase
the third dimension: dealing with thicker fluid layers allow
us, for example, to produce rolls with axes parallel to t
surface@9,13#. Eventually, let us stress that although the f
cus of the present paper is on steady-state effects obta
with dc fields, interesting effects are also expected using
fields and arrays of microelectrodes@3,4,16,17#. This great
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diversity of geometries imposes a hand-in-hand developm
of theoretical proposals and experimental realizations tha
wish to pursue in the coming years.
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APPENDIX A: WALLS SHORT CIRCUITED BY
CONNECTED ELECTRODES

We again consider the geometry of Sec. III, but with t
walls perpendicular toe1 now covered by connected ele
trodes, so as to short circuit any electrostatic potential dif
ence between the two walls.

Our picture here is very simplistic as we do not want
enter the detail of electrochemical reactions. Let us o
make the following distinction~Fig. 7!. First, in case~a!, we
will consider that these walls actually consist of a series
electrode pairs not connected between them, so that altho
the potential drop is on average zero in thee1 direction,
potential differences may nevertheless exist along thee2 di-
rection. In the second simplistic case~b!, the walls are coated
with continuous electrodes in which currents may circul
also along thee2 direction so that the electrostatic potent
is essentially constantDf15Df250.

FIG. 6. A simple heterogeneous geometry to create a vortex~top
view!. No shape modulation, and a simple charge pattern: a p
tively charged zone aside a a negatively charged one~ideally both
plates are patterned in the same way, i.e., floor and ceiling!. The rest
of the channel is neutral. The electro-osmotic slip generated b
electric field along the channel leads to a recirculation vortex
shown.
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1. Series of connected electrodes

Pressure driven flow.In this geometry@Fig. 7~a!# (Jel2
50, J150, Df150), an applied pressure difference alon
the channelDp2Þ0 results in a streaming potentialDf2 that
differs from the one obtained with passive walls

Df25
s11m222s21m12

s11k222m12
2

Dp2 . ~A1!

In addition, this pressure drop creates transverse effec
pressure dropDp1 along thee1 axis that induces recircula
tion, as well as atransverse streaming current I15LJel1
given by

Dp152
d

L

s11k122m11m12

s11k222m12
2

Dp2 , ~A2!

I 15LJel15
m12

s11k222m12
2

Dp2 . ~A3!

Electrically driven flow.In the case where no pressu
drop exists between the two ends of the channel (Dp250),
effects may be generated by applying an electric curr
Jel2Þ0 or an electric-fieldE2 along e2 ~due to the short-
circuited walls we haveJ150, Df150). The applied field
creates an electro-osmotic flow along the channel

J25
M22K112K21M12

K11
E2 ~A4!

that is different from the case where the walls were not c
nected~see Sec. II B 2!, if off-diagonal coefficients are non
zero. The electric conduction law is hereJel25@S22K11

2M12
2 )/K11]E2. Transverse electro-osmosisresults in a pres-

i-

n
s

FIG. 7. ~a! Connected electrodes;~b! the continuous electrode
short-circuit potential differences along the channel.
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sure differenceDp15d(M12/K11)E2 and a total current in-
tensity I 15LJel15L@(S12K112M12M11)/K11#E2 through
the connecting wires.

2. Continuous conducting electrodes

Due to the presence of the electrodes, any potential
ference between the entrance and the exit of the chann
short circuited~i.e., a backward current runs along the ele
trodes in thee2 direction! so thatDf250 @Fig. 7~b!#.

Pressure driven flow.A pressure drop along the chann
(Dp2Þ0) in this situation (Df250, J150, Df150) again
creates a transverse pressure drop across the channeDp1
synonymous of recirculation along thee1 axis, as well as a
transverse streaming current I15LJel1 given by

Dp152
d

L

K12

K11
Dp2 , ~A5!

I 152
M12K112M11K12

K11
Dp2 . ~A6!

Transverse electro-osmotic pumping.But we may also
consider the situation where an electric currentJel1 is applied
between the two walls. Formally, this case (Df250, J1
50) allows electro-osmotic pumping in thee2 direction,
even in the absence of a driving pressure gradient in
direction (Dp250). The resulting flow is

J25S M21K112K21M11

K11
DE1 ~A7!

or J25@(M21K112K21M11)/(K11S112M11
2 )#Jel1. This is

simply a manifestation of the transverse electro-osmo
mentioned in the first section of this section. It allows t
design of lateral electro-osmotic pumps that do not requir
global potential difference between the entrance and the
of the channel~i.e., Df2 proportional toL) but rather local
potential drops (Df1 proportional tod). For example, a po-
tential differenceDf1 of 1 V across a channel of widthd
5100 mm, is enough to generate a transverse fieldE1
;100 V/cm, and thus pumping along the channel atv2
;0.2 mm/s.

APPENDIX B: SINUSOIDAL MODULATIONS OF SHAPE
AND CHARGE DENSITIES

We propose here explicit formulas for the various comp
nents of the conductance and resistance matrices, obta
from the lubrication approximation in Sec. III, and summ
rized in Sec. III E, for the particular case of sinusoidal mod
lations of the height of the channelh5h0@11a cos(qx)# and
of the charge densities (m11m2)/25m01dm cos(qx1Q).

The lubrication approximation requires thatah0q!1. We
here present explicit formulas that correspond to an exp
sion in a up to ordera2, assuming implicitlya!1. This
provides a useful guide. The results are for the conducta
matrix
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Kx5
h0

3

12h
~123a2!, Ky5

h0
3

12h S 11
3

2
a2D , ~B1!

Sx5gelh0S 12
1

2
a2D , Sy5gelh0 , ~B2!

Mx52m0h0F12
3

2
a

dm

m0
cos~Q!2

1

2
a2G , ~B3!

M y52m0h0F11
1

2
a

dm

m0
cos~Q!G , ~B4!

and for the resistance matrix

kx5
12h

h0
3 ~113a2!, ky5

12h

h0
3 S 12

3

2
a2D , ~B5!

sx5
1

gelh0
S 11

1

2
a2D , sy5

1

gelh0
, ~B6!

mx5
12hm0

gelh0
3 F12

3

2
a

dm

m0
cos~Q!13a2G , ~B7!

my5
12hm0

gelh0
3 F11

1

2
a

dm

m0
cos~Q!2

3

2
a2G . ~B8!

Thus, for weak values ofa, using Eq.~3! of Sec. II yields
the ratios of transverse (F12) to longitudinal (F11 or F22)
coefficients that typically appear in the formulas giving t
effective overall transverse effects~see, e.g., Sec. II B and
Appendix A!:

k12/k115k12/k22.
9

2
a2sinu cosu, ~B9!

s12/s115s12/s22.
1

2
a2sinu cosu, ~B10!

m12/m115m12/m22.S 22a
dm

m0
cosQ1

9

2
a2D sinu cosu,

~B11!

K12/K115K12/K22.2
9

2
a2sinu cosu, ~B12!

S12/S115S12/S22.2
1

2
a2sinu cosu, ~B13!

M12/M115M12/M22.S 22a
dm

m0
cosQ2

1

2
a2D sinu cosu,

~B14!

where terms of ordera2(dm/m0)2 have been omitted in the
equations form12 andM12.

From these, three remarks may be made that substan
the statements of Sec. III F.
1-8
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~i! First, in the absence of a charge density modulation
the effects are of ordera2.

~ii ! Second, the prefactor ofa2 is purely geometrical, i.e.
it does not involve an adimensional ratio of other physi
quantities. Then remembering that the lubrication appro
mation solely requiresa!1/qh0, one is led to anticipate tha
in the case whereqh0<1, it is reasonable to expect tha
these ratio become of order one for a shape modulation c
parable to the average gap thicknessdh/h;1.

~iii ! If the average charge is almost zero so thatdm/m0 is
,
,

ng

01630
ll

l
i-

m-

very large, then in the limitadm/m0@1, Eqs. ~B11! and
~B14! are to be replaced by purely geometrical ratios

m12/m11.M12/M11.
4 sinu cosu

3 cos2u2sin2u
, ~B15!

so that longitudinal effects may be totally dominated
transverse ones~see, e.g., Fig. 5!, in particular in the vicinity
of the ‘‘magic angle’’u5p/3.
-
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