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This paper uses the assumptions of ergodicity and a microcanonical distribution to compute estimates of the
largest Lyapunov exponents in lower-dimensional Hamiltonian systems. That the resulting estimates are in
reasonable agreement with the actual values computed numerically corroborates the intuition that chaos in such
systems can be understood as arising generically from a parametric instability and that this instability may be
modeled by a stochastic-oscillator equatioh Casetti, Clementi, and Pettini, Phys. Re\6& 5969(1996)],
linearized perturbations of a chaotic orbit satisfying a harmonic-oscillator equation with a randomly varying

frequency.
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I. INTRODUCTION AND MOTIVATION dence. For certain amplitudes and periodicities, the solutions

to such an equation remain boundg@at grow at most as a

By definition, Lyapunov exponents probe the average linjpower law in time, this corresponding to stable periodic
ear instability of chaotic orbits in an asymptotie>co limit orbits. However, for other amplitudes and periodicities, the
[1]. Their computation thus involves solving a matrix solutions grow exponentially, this corresponding instead to
harmonic-oscillator equation with characteristic frequenciesan unstable periodic orhjf].
that vary in time. In the context of a geometric description—  Since chaotic orbits are aperiodic afid some senge
which is convenient but by no means necessary—this equdrandom,” one might instead suppose that one can model the
tion can be reinterpreted as a Jacobi equati@, equation Jacobi equation describing a linearized perturbation of a cha-
of geodesic deviatigrfor motion in an appropriately defined otic orbit as astochasticharmonic-oscillator equation, in
curved space, e.g., by introducing the Eisenhart mé®ic which the time-dependent frequencies vary in a random fash-

It has been long knowi3,4] that geodesic flows in a ion. Given this assumption, the key issue becomes one of
space with everywhere negative curvature are unstable in thdentifying the stochastic process, i.e., the form of the col-
sense that nearby orbits diverge exponentially; and, for thisred noise, which can capture correctly solutions to the Ja-
reason, there was an implicit assumption in much earliecobi equation.
work that chaos could often be understood as a manifestation If, for fixed potential and energy, almost all of the con-
of negative curvature. However, as emphasized by Pettirgtant energy hypersurface is chaotic, as is true generically for
[5], in many systems chaos cannot be attributed to negative>2 (provided that the energyE is the only time-
curvature. In many cases, the average curvature is positivendependent constant of the motjoit would seem reason-
and indeed, there are many known examples of noninteable to infer that the parameters for the oscillator equation
grable Hamiltonian systenig.g., the finite-order truncations should be estimatable assuming ergodicity. What this means
of the Toda[6] potentia) which admit large measures of is that one may assume an invariant measure corresponding
chaos even though the curvature is everywhere positive. Th® a uniform population of the constant energy hypersurface,
curvature associated with the Eisenhart metric can be negae., a microcanonical distribution. If, furthermore, one is
tive only if the second derivative of the potential becomesconcerned with comparatively high-dimensional systems, the
negative. Instead, it would seem natural to understand cha@®mputationally awkward description in terms of a microca-
as reflecting a parametric instability. nonical distribution can be replaced by a more user-friendly

The Jacobi equation for a regular periodic orbit reduces talescription based on a canonical distribution: In the spirit of
a multidimensional Hill equation, i.e., a harmonic-oscillator ordinary thermodynamics, one may argue that the canonical
equation with frequencies that exhibit a periodic time depenand microcanonical ensembles should yield nearly identical

results in the larg® limit.
Given this logic, Casetti, Clementi, and Pet{iBj devel-

*Electronic address: kandrup@astro.ufl.edu oped a “thermodynamic” theory of chaos that they used to
"Electronic address: sideris@astro.ufl.edu obtain very good estimates of the values of the largest
*Electronic address: clbohn@fnal.gov Lyapunov exponents for two well-studied physical systems.
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To do this, they(i) extracted from the fulD-dimensional 0.14
Jacobi equation an “isotropized” one-dimensional oscillator

equation that they argued should capture the chaotic behavic

of typical orbits; (ii) derived the statistics of their assumed > 0.07
stochastic process in the context of a canonical ensembli
description; and thertiii) showed that, for two seemingly

generic models, solutions to the resulting equation yield rea-  0.00 L.
sonable estimates of the largest Lyapunov exponent, at leas

for D>100 or so.

An obvious question is whether this logic may also be
exploited to provide reasonable estimates of the larges 0.16
Lyapunov exponent for lower-dimensional systems, Bay
=2 or D=3. As discussed in the concluding section, there
are a variety of settings where it would be convenient if onex¢ () 08
could estimate these values without resorting to detailed nu:
merical computations. Arguably, however, this rist the
most important point. Rather, the foremost objective is to  0.00 L.--
implement a simple physical picture of the origins of chaos
in lower-dimensional Hamiltonian systems. To the extent
that the Casettet al. proposal, or some variant thereof, can
provide reasonable estimates of Lyapunov exponents in thes
systems, one would seem justified in visualizing chaos as
arising from a parametric instability manifested by a
stochastic-oscillator equation. In other words, one will have 0.09
a clear alternative paradigm in terms of which to interpret the
origins of chaos in lower-dimensional Hamiltonian systems.
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II. AN ILLUSTRATIVE EXAMPLE

The validity of the formula for the largest Lyapunov ex- | M
ponent derived by Caseti al. was tested for one simple toy 0910 Mpy
model. The model is motivated by recent observations of
e!“ptlc.al galames’ V\./hI.Ch suggest that these objects may Shates of the largest Lyapunov exponent for chaotic orbits evolved
hibit significant deviations from axisymmetry and that they;, e three-dimensional galactic potentiall) with a®=0.75, b

often _have a high-density cusp at their centr_oids, perhaps 1.0, andc?=1.25 as a function of black-hole malf for total
associated with the presence of a supermassive black ho'ﬁ’article energyE=1.0. (b) The same foE=0.6. (c) E=0.4.

The stars in a real galaxy populate B-@imensional phase

space, withN denoting the number of stars in the system.gom My, the potential is approximately quadratic in the
Considering that fine structure due to localized irregularities,gordinates. and close Mg, it is approximately spherically
_and granularity will take a long time to manl_fest itself, it |s_of symmetric; the orbits are accordingly quasiregular in these
interest to model the system in terms of its coarse-grainedsgions wherein there will be almost no chaotic mixing. The
six-dimensional phase space in expectation that the timgeory correctly predicts zero chaotic mixing in a harmonic-
scale associated with the coarse-grained potential will représgijjator potential, thereby incorporating the former circum-
sent the shortest time scale for macroscopic evolution. Th“%tance, but it also incorrectly predicts nonzero chaotic mix-

a model potential for such systems comprises the sum of 8y in the spherically symmetric Plummer potential that
anisotropic harmonic potential and a spherical Plummer pogominates neaki o Thus, a nonzere “regularizes” orbits

tential, near the black hole. In view of these considerations, the
value of € used in the theory was chosen by requiring the

FIG. 1. (@) Numerical(diamondg and analytic(solid line) esti-

Mg+ itude of the h ic potential to b ble t
V(X.Y.2) = 1(a2X2+ b2y 2+ c22%) — (2.1 Magnitude of the harmonic potential to be comparable to a
(xy,2)=3( y ) Jré+ €2 @1 tenth of that of the Plummer potential at distances="e"
from the centroid. The specific choice ds=0.5M 3.
with r2=x2+y2+72, a?=1—A, b?=1, andc®=1+A. A Figure 1 compares the “true” Lyapunov exponents com-

parametrizes the ellipsoidal geometry, andunctions as a puted via numerical simulations with estimates of the largest

“softening parameter” that is set at=10"2 for numerical  Lyapunov exponent derived using the Casseittil. formal-

simulations. ism, Egs.(4.12, (4.15, and (4.16 below. The numerical
The theory of Casettt al, described in Sec. IVA below studies are described in detail in R€8], and the numeri-

is analytic, and within this formalisng acts as a “free pa- cally generated curves derive from Fig. 5 in that paper. The

rameter” that reflects uncertainty about the detailed dynamifigure shows how the Lyapunov exponents pertaining to cha-

cal properties of the phase space. One knawsiori that far  otic orbits scale against black-hole mass and total particle
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FIG. 2. (@) Numerical(diamond$ and analytic(solid line) esti-
mates of the largest Lyapunov exponent for chaotic orbits evolved
in the three-dimensional galactic potent{all) ith Mg,=0.1 and
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a’=1-A, b?=1, c?>=1+A as a function ofA for total particle
energyE=1.0. (b) The same folE=0.6.

energyE. Interestingly, the analytic results agree closely with

the numerical results, particularly for intermediate-to-small

values ofMgy. The agreement is still reasonable for large

values of Mgy (values that are in fact unphysically lajge

though the degree of agreement is less good. This is as ex
pected in that a black-hole mass that is comparable to the
ellipsoidal mass will establish sizeable regions of regularity

over the constant-energy hypersurface, and the fraction of
chaotic orbits will be correspondingly lowg®].
Figure 2 compares for fixell gu=0.1 the numerical and

analytic Lyapunov exponents versus ellipticity as param-
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etrized byA. Again, the analytic technique is seen to yield yyo.dimensionalx, y) plane.
reasonable estimates providadis not too small. AsA de-
creases to zero, the potential approaches spherical symmetry

and is thereby integrable, supporting only regular orbits. In-
asmuch as the fundamental assumption underlying the C%—
setti et al. formalism is that a substantial fraction of the or- °€
bits is globally chaotic, the formalism clearly breaks down
for spherical symmetry. As discussed in Réfl, the fact that
the numerical curves exhibit a great deal of structure nof
manifested by the analytic predictions reflects the fact thal
the phase space associated with the pote(®id) is domi-
nated by resonances with frequencéed, andc associated
with the harmonic contribution that are completely indepen

dent of initial conditions.

The results of Figs. 1 and 2 suggest that the six
dimensional phase space governed by the toy potetial
exhibits global chaos and associated rapid irreversible ch
otic mixing over the bulk of the parameter space. Can the
same be said for a lower-dimensional analog, i.e., one corré
sponding to the toy potential in whick=p,=07? Figure 3,

FIG. 3. Same as Fig. 1, but with all orbits restricted to the

Ill. THE SCOPE OF THIS PAPER

other(classes of potentials,

The obvious question is whether the striking agreement
tween theory and numerics described in the preceding sec-
tion is simply a fortuitous accident, or whether it is in fact
generic. Can the Casettt al. analysis provide reasonable
stimates of the largest Lyapunov exponent for generic
ower-dimensional Hamiltonian systems?

Related to this is another important question: To what
extent are the assumptions implemented by Case#i. jus-
tified for lower-dimensional systems? To the extent that they
are not justified, one might expect eithdr) that the final
formula for y that they derived is comparatively insensitive
to (some of the assumptions and/@r) that modifying these
6@ssumptions might lead to improved estimates.

These questions were addressed by a detailed exploration
f orbits in the potentials discussed in Sec. Il, as well as three

which provides the same information as Fig. 1, but now fora (1) The sixth-order truncation of the Toda lattif8], a
four-dimensional phase space, hints at the answer. One nofgmiliar two-dimensional potential,

sees the agreement between the numerical and analytic re-
sults to be less good, as would be expected, because theV(x,y)=3(x?+y?) +x2y—3y3+3x*+x%y2+ 3y +x%y
fraction of globally chaotic orbits is generally much reduced

over the six-dimensional case. Nonetheless, the results are
still comparable within a factor of two.
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(2) A multidimensional generalization of the dihedral po- Jacobi metric. However, from a practical perspective, the
tential[10], for one particular set of parameter values, allow-most convenient choice is to work with the Eisenhart metric
ing for D=2 throughD=6, [2].

5 Given aD degree-of-freedom Hamiltonian system charac-
2 o202 terized by a Lagrangian

£ i o

I<i=1 3.2 L=T-V=3a;q'q'-V(q",....a°), (4.2)

0 1
V(Qli---qu):_E Qi2+Z
i=1

D 2
1

2 ——
iElqi) 4

with motion defined on some manifold, consider the ex-
tended manifold M XR?, with coordinates
(9%q?,...,.a°%,q°"1), and introduce the Eisenhart metric

(3) A generalization of the Fermi-Pasta-Ula(RPU) B
model[11] with

D

= NI
V(q“"’qD):;l [5[0i+1— Q1%+ 5(aira—a)?], ds’=g,, dx“dx

(3.3 =a; dq'dq'—2V(q)dq’dg®+2dg’dgP "t

4.2
with gp,1=q;, allowing for D=3 throughD =6 (the spe-
cial caseD =2 is integrabl¢ Fora=1, Eq.(3.3) reduces to  Setting q°=t and q°*'=t/2— f{dt'L(q,§) yields ds’
the standard FPU model; far<0, the potential admits ex- =dt?. Without loss of generality, one can ®f= &;; , mak-
trema that are local maxima, so that the local mean curvaturiag the kinetic energy a sum of quadratic contributions
can become negative. The case 1 andb=0.1 was consid-  (g')?/2, in which case the geodesic equations reduce to New-
ered by Casettet al. for much larger values db. ton’s equations of motion. Correspondingly, the Riemann

. . . . tensor simplifies greatly; its only nonvanishing components
Section IV of this paper begins by providing a terse math-

ematical summary of the formalism introduced by Casetti

et al.to estimate the values of the largest Lyapunov exponent 9V
in higher-dimensional systems. This mathematical structure ROin:W.
is then restated in much simpler physical language and the
resulting reformulation is used to suggest how their analysigng the Jacobi equation for a linearized perturbation be-
could be reformulated for lower-dimensional systems. SeCzomes

tion V summarizes the results of extensive simulations in the

potentials(2.1) and(3.1)—(3.3), which were used to test the 4 5in0j0k§k:0- (i=1,...D). (4.4)
validity of the original assumptions. Section VI then turns to

the actual values of Lyapunov exponents estimated using this Were the Riemann components entering into @) ev-
general approach, considering both the “true” Lyapunov ex-erywhere negative, an arbitrary perturbation would always
ponents, defined in &0 limit, and short-time Lyapunov grow exponentially fast. Everywhere negative curvature im-
exponentq 12] appropriate for orbit segments of compara- plies chaotic behavior and positive Lyapunov exponents
tively short duration. Estimates of the latter for a variety of[3,4]. The important point, however, is that, because of para-
different orbit segments evolved in the same potential withmetric instability, one can have chaotic orbits with positive
the same energy reveals an important point: Even when thieyapunov exponents even if the curvature is everywhere
estimated short-time exponenjgg differ from the “true”  positive. If, following Casettiet al, one assumes that the
exponentsy,,,m computed numerically by as much as a factorcurvature varies “randomly” along a chaotic orbit, E¢..5)

of two, their values tend to be strongly correlated. For ex—+educes to a stochastic-oscillator equation of the form
ample, orbit segments for which.; is especially small cor- _

. . . . . 24
respond, in general, to orbits for which the numeriggl, is d<é n
also especially small. In this sense, it is clear that, even if the dt?
Casettiet al. formula for y is not completely satisfactory, it _
doescapture some important aspects of the flow. Section VIwhere the matri>k} is characterized completely by its statis-
concludes by summarizing the principal conclusions and distical properties. However, it is well known that, everkjfis

4.3

ki(hg=0, (i=1,...D), (4.5

cussing potential implications and extensions. positive definite for all times&' can grow exponentiallji4].
Especially in high dimensions, matrix equations become
IV. CHAOTIC MOTION AS A STOCHASTIC PARAMETRIC difficult to solve either numerically or analytically. For this
INSTABILITY reason, Casettietal. proceeded by replacing this

D-dimensional equation with a simpler one-dimensional

equation that aims to capture its “average” behavior. For-
The starting point is the reformulation of a time- mally, they start by observing that the Riemann tensor may

independent Hamiltonian system as a geodesic flow in abhe decomposed into two pieces

appropriately defined curved space. This can be done in a

variety of different ways, the best known of which involves R — (

implementing Maupertuis’ PrinciplgL3], which leads to the K p—1

A. The proposal of Casetti, Clementi, and Pettini

R;i 8— Rjk5:)+wijk| , (4.6)

016214-4
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whereR;; is the Ricci tensor anW}k is the Weyl projective  corresponding to the length scale on which the fluctuations
tensor. For the case of an isotropic space, the Weyl tensdrecome comparable to the average curvature. They then se-
vanishes identically anR“qu'/(D— 1) reduces to thécon- !ect as an appropriate autocorrelation time a vatsatisfy-
stan) sectional curvature. The crucial assumption then igng
that, even though the space is not isotropic, it should appear B B

i i i i T 1=2(r Y (4.1
nearly isotropic when viewed on comparatively large scales. 1 2 '
In the context of such a “quasi-isotropic” approximatid®,

andw, = W), become diagonal, and E@t.6) reduces to a so that
one-dimensional equation of the form Q
27= . (4.12
d?¢ 2VQ(Q+ o)+ 7o

Casettiet al. suggest further thdt(t) might be well approxi-

. . - . mated by the oscillating function
All that remains is to specify the statistical properties of the

random procesk(t). 0% sinot

For a generic Hamiltonian system, the formkofould be I'=—-——. (4.13

quite complex. However, given the assumption tBatis
large, one might expect that the complicated details willwhich yields an autocorrelation time
largely wash out. Thus, Casetti al. argue in the spirit of the

central limits theorem that the curvature fluctuations in dif- 1 7o

ferent directions may be approximated as nearly independent T %0 4m’ (4.14
and, at any instant, Gaussianly distributed. It then follows

that with 7, the oscillation period. However, this is largely ir-

relevant for their analysis. Granted the assumption of addi-
tive Gaussian noise, the form of the color only enters into the
final expression fo through the autocorrelation time 14].
Given a knowledge ofr and the first two moments, Eq.
where, in terms of the quantit¢=32V/dq g =AV, which (4.8 may be solved ana]ytically us!ng a technique developed
has mear(K) and dispersionsK, the quantityQ=(K)/(D by van Kamperj14] to yield an estimated largest Lyapunov

~1), ¢=8K/JD—1, and 5 is Gaussian noise with zero ©XPonent

2

d<¢
W+Q§+Uﬂ§:0’ (4.8

mean and unit variance. The factors involvibgreflect the 1 40
fact that the curvature-driven motion in tiéh direction is, X= —(A— —) (4.15
on the average, “shared” by tHe — 1 orthogonal directions. 2 3A
Presuming further that the flow is ergodic and tkait Where
mos}) all orbits are chaotic, the quantitiés) and SK may be
calculated assuming a uniform sampling of the constant en- 403 13
ergy hypersurface, i.e., a microcanonical distributign A=|20?%7+ \/ —| +(20%7) (4.16
«5p(H—E). Alternatively, for sufficiently high dimensions, 3
one may proceed instead by assuming a canonical distribu-
tion which, for largeD, is much simpler computationally B. Applying this proposal to lower-dimensional
although it should yield nearly identical results. Hamiltonian systems

To complete the characterization of the random process The preceding may be reformulated without recourse to
k(1), it remains to specify the autocorrelation functib(t)  giterential geometry in a setting that makes the physical
or, at least, the autocorrelation time which governs how  content of the assumptions more transparent and, as such,
rapidly th(_a curvature fluctuates along the orbit. This, Casettj,skes it clearer which assumptions might prove suspect, es-
et al. provide using another geometric argument. On the ONBecially for lower-dimensional systems.
hand, they identify a time scale The basic perturbation E@4.5 may be derived trivially

from the original Hamilton equations

—— (4.9 dg oH
20 +o d—?zgzglpj (4.17)
i

v
T17

corresponding to the typical time between successive conj snd
gate points, i.e., points where the Jacobi field of geodesic

deviation vanishes. On the other, they identify a time scale dp JH aVv
— == — 4.1
Q12 dt aq’ aq' 418
2T (410 ssociated with the Hamiltonian

016214-5



KANDRUP, SIDERIS, AND BOHN PHYSICAL REVIEW BE65 016214

H=T+V:%5”pipj+V(q). (4.19 assumption does not, in general, yield significant improve-
ment in the estimated value of the largest Lyapunov expo-
It is clear that the introduction of a small perturbatigh  nent.
—(q'+¢& andp;—p;+ ¢ leads to evolution equations of the  For generic Hamiltonian systems with larBe one antici-

form pates thatalmos} all the orbits on a constant-energy hyper-
i ) surface are chaotic. Granted the assumption of ergodicity, it

d_§= si¢ and %z _ 9 v & (4.20 then follows that, over sufficiently long time scales, an orbit

dt J dt aq'aql * ' eventually samples a microcanonical distribution. This im-

o _ _ _ plies that, when estimating a Lyapunov expongfE), as
but combining these last two equations leads immediately t@efined in an asymptotit—o limit, one may assume that
Eq. (4.4). the statistical properties of the curvature experienced by an

The crucial assumption underlying the entire Cas#ttl. 4yt are given correctly by a microcanonical distribution. By
analysis is the assumption that, for the case of chaotic orbitg,, o<t “for lower-dimensional systems, especidly: 2

Egr (:L':) ((:::snebgfT\(/)v(ijlglledcEgoiisfog:]b?tsglg_rozcr:gli?ts; er?]:ii'sonone anticipates instead that a generic potential will admit a
which are far from peyriodic, this assumption W03|d See’mcogxistence of large measures of bth regular. and_chgotic
quite reasonable. However, in lower-dimensional system rbits, so that the assumption of a microcanonical distribu-
one encounters the possibility of “stickyl'15] orbit seg- tion is not justified. _R_ather, grant_ed the assum_ptlon of_ergo_d-
ments that, albeit characterized by positive short-tim®y: one WO_UId anticipate th_e existence _ofadlfferent invart-
ant distribution, corresponding to a uniform population of

Lyapunov exponents, are “nearly regular” in visual appear- h ) f th h f h
ance and have Fourier spectra with most of the power con- ose portions of the constant energy hypersurface that are
accessible to a chaotic orbit with specified initial condition.

centrated at or near a few special frequen¢Es. This is It ol how this distributi d b ted
especially common fob =2, where cantorfl] can serve as IS not ciear how this distribution could be computed ana-
Iytically. However, as described in Sec. V, numerical ap-

entropy barriers, confining a chaotic orbit near a regular is S < ; ST
land for surprisingly long times. To the extent that such orbitProximations to this invariant distribution may be generated

segments behave in a nearly regular fashion, the assumptiéﬁra'ghtfomardly through a time-series analysis of orbits

of nearly random behavior is clearly suspect, and one mi h‘?VOIVed numeripally. . o
y y P g Even if a microcanical distribution is justified, the as-

anticipate that a stochastic-oscillator equation cannot prove

completely satisfactory. Alternatively, to the extent that thissDuThpt'on of GatL_JSS|an fluk():tuauci_ns tIS dprq?rllem?tl_c. dFor Iarg?
“sticky” behavior is rare, such an equation might be ex- 7’ IS assumption may be motivated with a tair degree o

pected to provide a reasonable starting point. '[Lgo[j'vlga't? Eentr?l I"in'ts tor;ﬁe\(;r.em largument, SIIthposmg that
The assumption of “quasi-isotropy” may also be under- € I'S.”du |onc? Vtadl.ﬁs.b " |an0 V?ﬁ a convotu lon o ¢
stood in very simple physical terms: Instead of considerin garly Indépendent distributions for the seéparaté components

2 i H . . - .
the D-dimensional Eq(4.4), which involves the full second 9°Vlaq oq _(no.s.um over '”d'CQS. For very smallD, th|§ IS
derivative matrix ofV, it is assumed that, on the average,Clearly not justified, and the minimum value Dffor which

each direction in configuration space is statistically identical,the Gaussian approximatias justified must depend to a

so that one can consider insteRddentical one-dimensional Cc€ftain extent on the form of the individual distributions. It
equations. In this context, the only question concerns théill D& seen in Sec. V that, for the model syste8<) and

proper identification of the quantity to play the role of the 3.3), the convergence towards a Gaussian is quite efficient,

squared frequencl(t). The Casettet al. prescription states gnd th_at the dis]:[(r:‘igutiorN[Al\l/] isSreaior:abl_yl/l Wlell fti)t by a

that the relevant information about stability is contained in aussian even fob as small as s or =. twill also be seen

the trace of the second derivative matrix, so t@) should that, at least for distributionsl[ AV] that are not too skew,

be proportional toAV=32V/aqidq; The, factor ofD—1  deviations from a Gaussian do not change the estimated
i

entering into Eq(4.9) reflects the fact that the perturbation value of the largest Lyapunov exponent all that_ much.
driving the chaos is “shared” amorig — 1 dimensions[Re- The formula for the autocorrelation timemotivated by

call that, in a time-independent Hamiltonian system, there i&as?t}' et alis'; sorgew_f;aiad h?cbm (;ha_t, L(‘jn:j”.(e ttrllefother
always one direction of neutral stability corresponding gocructal Inputsil ando, 1t cannot be derived directly from a
translation along the orbit fromg'(t) to g'(t+ ot).]. microcanonical distribution. However, the basic scaling im-

This assumption of quasi-isotropy seems especially reaQ”Cit in 7may again be infe_rred relatively simply. As Wi|| be
sonable for larg® where, on average, different directions of seen below{) ande are typlcally comparable in magnitude.
the configuration space should look much the same, but bé[hey both reflect statistical properties AV and, as such,
comes more suspect in lower dimensions. In principle, ongcale(within factors of order unityasV/R?, whereV rep-
can relax this assumption by working with the full matrix resents a typical value of potential aRts a characteristic
equation. As a practical matter, however, this becomes quit€ngth scale, i.e., the size of the configuration space region
cumbersome fob> 2. For this reason, most of the following Probed by an orbit. Assuming “virialization,” i.e., that the
analysis will retain the assumption of quasi-isotropy. WhatMean potential and kinetic energies of the orbits are compa-
happens when this assumption is relaxed for two-able in magnitude, it follows that~v?, wherev denotes a
dimensional systems is considered briefly in Sec. VI. Ittypical orbital speed. However, this implies th&~o
would in fact appear that, at least f&r=2, relaxing this ~v/REt51, wherety denotes a characteristic dynamical or
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crossing time. Allowing for the fact that the characteristic orbit segments were assumed to be regular. Combining all
scale on whichV changes significantly is typically somewhat the orbital data for all the chaotic orbits allowed the compu-
smaller than the size of region accessible to the orbit leads t@ation of the bulk momentgK) and K where, recall K
the obvious physical conclusion thashould be comparable =AV. Binning the combined data into 1000 bins yielded a
to, but somewhat smaller than, the time required for an orbihumerical representation of the distributibiik ].
to travel from one side of the system to another. . A discretized representation of the average autocorrelation
Implicit in the Casettiet al. analysis is the assumption fynction I'(t) was computed by selecting a representative
that the stochastic procesk(t) corresponds to state- ensemble of 5120 initial conditions, evolving each of these
independent, additive noise, so that, e.g., the autocorrelatiotg the future for an extended tinfe=2048, so as to gen-
time 7 on which the curvature changes is independent of th@rate a set of well-mixed “random” phase-space points,
value of the curvature. Strictly speaking, this assumptiongentifying each of theN.<N orbit segments that were cha-

cannot be correct. If, e.g., an orbit is in a region wheéres  otic and, by extending the integrations for an additional time
especially small, its kinetic energy, and hence, its velocity;r — 1024, constructing

will be especially large, so that the orbit will move very

quickly to a different region wher¥, and hence in general 1 N

AV, is very different. If, instead, the orbit is in a region F(né‘t)=m2 DK(T)DK;(T+nét). (5.1
whereV is especially large, it will move more slowly so that ¢ =1

AV might be expected to change more slowly. The autocor-

lation fti f Eqg. (4.1 .
relation time 7 of Eq. (4.13 represents an average over aHere,DKJEKj—<K), and the quantitieék) and(K?) rep-

variety of orbits with very different values &f. One might . .
anticipate that these differences will tend to wash out fof ©Sent averages computed for all the chaotic orbital data} for
T<t<T'. Ideally, one should compute the autocorrelation

large D, but there is no obvious reason why this should be : o .
true for smallem. time 7 using the defining relation
One final point. It is clear that, for smal, one cannot

pass from a microcanonical to a canonical description. One .

must work directly with the microcanonical measure f dtI(t) =(K?)r. (5.2

« 5p(H—E). This, however, is not a major problem. Foba 0

degree of freedom system, the microcanonical distribution

corresponds to a configuration space density

E_\)0-22 i V<E: inen, hpwever, thdt“ is typically a rapidly oscillating func-

F(q)er (E=V) T VsE, (421 tion (period ~tp) with an envelope that damps very slowly,
0 if V>E, ' such a computation proved unreliable. A seemingly better

measure ofr or, at least, of howr scaled with energy for
but, given this formula foff, it is straightforward, at least fixed potential, was obtained by computing the perigg.
numerically, to compute the distributidd[ AV] and/or any  associated with the oscillations.

moments of the distribution. Predictions associated with a microcanonical distribution
were computed as follows: The microcanonical distribution
V. TESTING THE BASIC ASSUMPTIONS pn6p(H—E) implies the configuration-space probability

density(4.22); but, given thisf, it is straightforward to com-
pute the value of any configuration space functgg). Nu-
To test the validity of the basic assumptions requires anerical representations of the distributibliK] associated
comparison of real orbital data with predictions made assumwith a microcanonical distribution were computed (bydi-
ing a microcanonical distribution. The requisite orbital dataviding the occupied configuration space into a collection of
were generated and analyzed as follows. M hypercubes,(ii) deciding randomly whether or not to
For given choices of potential and total energy, a collecsample each hypercube, using a weightinge — V)P ~2)/2
tion of N=1000 initial conditions were selected, and each ofas evaluated at a random point in the cufiie) in the event
these was integrated into the future for a total timeorre-  that the hypercube was to be sampled, locating a point in the
sponding to betweern-100 and 2000 characteristic crossing cube at a randomly chosen location, and ttighbinning the
timestp . The numerical integration simultaneously trackedresulting collection of points into 1000 bins.
the evolution of a small initial perturbation, periodically  Granted the assumption of a Gaussian distribution of cur-
renormalized in the usual wdit] so as to yield an estimate vatures, estimates of the Lyapunov expongrntan be, and
of the largest(short-timg Lyapunov exponent for the orbit were, computed using E¢4.16), which does not require the
segment. Configuration space data, recorded at fixed inteassumption of a microcanonical population. When the as-
vals 6t, were used to generate a time seffés(nét)} for  sumption of a Gaussian distribution is relaxed, an analytic
each of the segments in the 1000 orbit ensemble that wasolution is not possible in general, so thatvas obtained
deemed to be chaotidt was typically so chosen that each instead from a numerical computation, with the random cur-
segment was sampled by 2560 points. Distinctions betweewature generated initially by sampling[ K], held constant
regular and chaotic were implemented through the introducfor the autocorrelation time, and then replaced by another,
tion of a threshold valug i, if the computedy<xmi, the  randomly chosen curvatufé7].

A. What was computed
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) o FIG. 5. () The mean curvaturé) for chaotic orbits in theD
FIG. 4. (a) The mean curvaturé&) for chaotic orbits in theD =4 FPU potential wita=1.0 andb=0.1 as a function of energy

=2 dihedral potential as a function of enerycomputed assum- g computed assuming a microcanonical distributisolid line)

ing a microcanonical distributiotsolid line) and extracted directly  4n4 extracted directly from orbital datdashed ling (b) The asso-
from orbital data(dashed ling (b) The associated dispersiaiK. ciated dispersioK. (c) (K) for D=6. (d) 6K for D=6.
(c) (K) for D=3. (d) 5K for D=3.

B. What was found

1. N[K] and its first two moments

Figure 4 exhibits the energy-dependence of the quantities o
(K) and 8K for chaotic orbits in the dihedral potential with 0.8
D=2 and 3, computed both from time-series déadashed — 06
lines and assuming a microcanonical distributigsolid Z 04
lines). Overall, one observes excellent agreement between 0.2
the numerical and analytic predictions, particularly for the 0.0
first moment(K). The best overall agreement obtains for 15 o 15 30
lower energies where, even fbr= 2, the measure of regular K
orbits is comparatively small and “stickiness” seems com- 1.0
paratively unimportant. 0.8

For D=2 at higher energies, s&/>1.0 or so, it appears — 06
that a third of the constant energy hypersurface, or even = p =

. . 0.4t / < 0.4

more, corresponds to regular orbits, so that one is clewaty 4
justified in assuming a microcanonical distribution. How- 0z2r 4 0.2
ever, it is evident that the predictions based on a microca- 0.0L 0.0
nonical distribution remain quite good. That this should be S e e S
the case is not really surprising. Presuming that the regular
islands are not concentrated preferentially at regions where 10 o (f)
AV is especially large or small, it would seem reasonable to 08 08
assume that, in a sufficiently coarse-grained sense, chaotic — 0-6f = 06
orbits still go “all over” the energetically allowed regions of = 0.4} = 04
configuration space. To the extent, however, that this be true, ool 0.9
one might expect moments approximating the moments ap- 00 N 0.0 A
propriate for a microcanonical distribution which, fa@r -10 0 10 20 30 -10 0 10 20 30
=2, implies[cf. Eq. (4.21)] a uniform configuration space K K

density. Figure 5 exhibits analogous data for the FPU poten-

tlal with Df4 and 6, generated for parameter valges orbits with energye=1.0 in theD =2 dihedral potential, computed
=1.0 andb=0.1. assuming a microcanonical distributi¢ick-solid line and from

~ The thick solid curves in panelg)—(d) of Fig. 6 exhibit  ,pita| data for an ensemble evolved for timtes1024 and 3172.
distributions of curvatured\[K], for the dihedral potential () N[K] for D=2 andE=6.0.(c) N[K] for D=6 andE=1.0. (d)

with D=2 and 6 generated aSSUming a microcanonical diSN[K] for D=6 andE=6.0. () N[K], as generated from time-
tribution. The corresponding curves in Fig. 7 exhibit analo-series data for= 3172, forE=1.0 withD=3, D=4, andD =5. (f)
gous distributions for the FPU potential f@=4 and 6. N[K] for E=1.0 with D=3, D=4, andD=5, now generated as-
Panels(e) and (f) in Fig. 6 show the time series and micro- suming a microcanonical distribution.

FIG. 6. (a) The distribution of curvatured\[K], for chaotic
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FIG. 7. (a) The distribution of curvaturedN[K], for chaotic
orbits with energyE=20 in theD =4 FPU potential witha=1.0 FIG. 8. (a) The distribution of curvature$\[K], for a represen-

and b=0.1, computed assuming a microcanonical distributionisiive ensemble of 1000 orbits with enerfy= —0.5 in theD=2
(thick-solid ling and from orbital data for an ensemble evolved for gihedral potential. The five lower curves represent subdistributions,
timest=1024 and 4196b) N[K] for D=4 andE=320.(c) N[K]  generated by dividing the ensemble into five quintiles based on the
for D=6 andE=20. (d) N[K] for D=6 andE=320. values of the short-time Lyapunov exponents for the orbits. The
near-horizontal upper curve represents the distribuNpK] pre-

. - . . . . dicted by a microcanonical distribution; the other, more jagged up-
torighy D=3, 4, and 5. Itis evident that the microcanonical per curve represents the distributibiiK] associated with the full

distributions for the d'he.dral potential WItD:.Z_ are not 1000 orbit ensemble, given by the sum of the five lower cur{®s.
even remotely Gaussian in shape. However, it is also appaky . same foE=6.0.

ent that, for all the other cases, the distribution is in fact
reasonably well fit by a Gaussian, althoulypK] typically  ergodicity, there remains an obvious question: How long
has a slight skew and can manifest appreciable deviations ferust one evolve some ensemble of initial conditions before
large|K —(K)]. its time-averaged density closely approximates the density
The other curves in Figs(&—6(d) and in Fig. 7 represent associated with a constant population of the accessible phase
distributionsN[ K] generated from time-series data. Figure 7space regions? Comparing the distributifK ] associated
and the first three panels of Fig. 6 display two numericalwith an evolving ensemble with the[ K] associated with a
curves, one representing data forx©<1024 and the other microcanonical distribution can provide a useful diagnostic
for 2048<t<3072. Figure €d) also includes a third numeri- for probing the extent to which the ensemble has evolved
cal curve, generated for 8192<9216. For the two energies towards a time-independent invariant distribution.
exhibited in theD=2 dihedral potentialE=1.0 and 6.0, It is well known that different chaotic orbit segments in
there exist large measures of both regular and chaotic orbithe same connected phase-space region can exhibit vastly
and, for this reason, the time-seriéf K] differs signifi-  different short-time Lyapunov exponents, and that the values
cantly from the microcanonicaN[K]. However, the en- of these short-time exponents may correlate significantly
sembles of initial conditions used to generate the time-seriewith position. For example, chaotic segments near regular
distributions evolved towards an invaria@beit nonmicro- islands tend to be much less unstable than wildly chaotic
canonical distribution relatively quickly, so that the two nu- segments located in the middle of the stochastic sea. One
merical curves very nearly overlap. might, therefore, expect that orbit segments with especially
For the dihedral potential wittb=3 and for the FPU large or small short-time exponents would be characterized
potential withD=4, almost all the orbits appear to be cha- by different curvatures. For potentials and energies where
otic, so that, assuming ergodicity, the microcanonMgK ] almost all the orbits are chaotic and “stickiness” is rare, this
and a truly representative time-seridpK] should coincide segregation should be minimal; but for potentials where
up to statistical uncertainties. However, for the cases exhibthere is a coexistence of large measures of both regular and
ited in Figs. c) and &d) and Fig. 7, the initial ensembles chaotic orbits, and where “stickiness” is pronounced, this
only converged towards an invariant distribution on a com-effect should be much more pronounced.

canonical predictions for the dihedral potential(from left

paratively long time scale, so that the twar more time- As illustrated in Fig. 8, this intuition was corroborated
series curves differ appreciably from one another. In eaclmumerically. The top panel of Fig. 8 was generatedEer
case, the later time samplif®y yielded distributionsN[K] —0.5 in theD=2 dihedral potential, an energy where the
that more closely approximated the microcanonMpK ]. regular regions are extremely small, so that a representative

The preceding suggests that one may use the form of thensemble of 1000 initial conditions, integrated for a tifhe
distributionN[ K] as a robust diagnostic in terms of which to =1024, yielded no regular orbits. The orbits generated from
probe the approach towards ergodicity. Ergodiggr seis  these initial conditions were divided into five quintiles, de-
an assumption regarding thhe- limit and, even assuming pending on the values of their short-time Lyapunov expo-
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nents, and the lower-five curves in this panel exhibit indi- 1.0 T ] 1.0
vidual subdistributionsN[K] computed for each quintile. 05 0.5
The four quintiles corresponding to the larger valuesyof - —
yielded distributions that were nearly identical. The lowest = ©° {UUWAW’WWWW & 00 VT
quintile was again quite similar, but did manifest some no- 05 05
ticeable differences: This subdistribution, corresponding to o (@) 1o (©)
the thick-solid line, is distinctly underrepresented at very low 0 20 40 80 80 o 10 o0 30 40
values ofK and over represented at very latgeand, unlike t t
the other four quintiles, appears to be a slowly decreasing 10 ] 10
function of K in the interval 6<K<7.5. The sum of these
five subdistributiongwith a different normalization from the 0> ‘ 0'54
subdistributions corresponds to the slightly jagged upper > 00| | £ 00 UUVWWMMWM
curve, which is essentially identical, modulo statistical un- e 1 _os ]
certainties, to the smoother curve computed for a microca- (<) (d)
nonical distribution. -9 -0

The lower panel of Fig. 8 exhibits analogous data For 020 A e e oo E e
=6.0, again in theD =2 dihedral potential. In this case, a o 03
1000 orbit ensemble was divided instead into a “quintile” of RN ‘
332 regular orbits and four“quintiles” each comprised of ool Pa | 0o l8, |
167 chaotic orbits, but the resulting subensembles were ana- A\A\A . N T .
lyzed identically. The lower solid curve peaking l&t-13 01 Q%\*‘Q\z\e | 0 N’\*“\\Q
represents the 332 regular orbits, and the three nearly iden-
tical curves that have a local minimumtat-13 correspond 0.0 (e) 0.0 ()
to the chaotic orbit segments with the largest short-time 0 2 4 6 0 2 4 6
Lyapunov exponents. The intermediate dashed curve corre- E E

sponds to the chaotic Orb'FS _W'th the' smallest short-time FIG. 9. (a) The autocorrelation functioh'(t) for chaotic orbits
Lyapunov exponent, the majority of which could be reasons, e p=2 dihedral potential wittE = — 0.5. (b) The same foD
ably classified as “sticky.” The totalN[K] given as asum of —g gndE=-0.5. (c) The same foD=2 and E=86.0. (c) The
the four chaotic “quintiles” is represented by the upper curvesame forb =6 andE=6.0. (€) The Casettet al.time scaler of Eq.
with a local minimum atK~13. The upper curve corre- (4.12 (solid line) and the time scale../4m of Eq. (4.14) (dashed
sponding to a nearly flat profile again corresponds to a mitine), for chaotic orbits in thed =2 dihedral potential at different
crocanonical distribution. energie<E. (f) The same foD =6.

2. The autocorrelation timer . L )
ready, a direct determination af using Eq.(5.2) proved

As suggested by Casett al, the autocorrelation func- ynreliable.

tion I'(t) is in fact an oscillating function of time, but it Perhaps the most striking point is that, at least when
tends to decay more slowly than with the Bhvelope im-  “stickiness” is comparatively unimportant, the Casetial.
plicit in Eq. (4.14). This slower decay is especially evident time scaler given by Eq.(4.13 and the time scalery

for potentials and energies when “stickiness” is important, inexhibit very similar scaling with energg. This is illustrated
which case a substantial “memory” may persist for dozensin Figs. 9e) and 9f), which exhibit both time scales as func-
of oscillations. This is, e.g., evident in Figga8-9(d), which  tions of E for the D=2 and 6 dihedral potential. In each
exhibit data for the dihedral pOtential f@@=2 and 6. The case, the time Scale)sc is somewhat |0nger than the Casetti
first two panels correspond to a very low-enefgy —0.5, et al.time scaler. Significantly, though, foD = 2, the quan-
Where, even fODZZ, almost all the orbits are chaotic. The t|t|es Tosc and T exh|b|t Very diﬁerent Sca”ngs at h|gher en-

second two panels correspond to a higher-endfgy6.0  ergies, precisely where “stickiness” is most prominent.
where, for bothD =2 and 6, chaotic segments can be nearly

periodic and have comparatively small short-time Lyapunov
exponents. Fob =2, the case exhibited in pan@), roughly
one quarter of the chaotic orbits are noticeably “sticky,” for ~ Granted the assumption of a Gaussian distribution of cur-
D=6, the case in panétl), the fraction is reduced to about vatures, the predicted value of the largest Lyapunov expo-
5%. In either case, analysis of a sample that exclude§ent depends on only three quantities, nan{ly oK, and
“sticky” segments yields an autocorrelation function that de- 7, and as such, it is natural to ask how the predicted value
cays substantially more quickly. Xest Varies if any of these inputs are changed.

As noted by Casettt al, if the autocorrelation function If one introduces a simultaneous scaling of b@th and
is in fact well approximated by Eq4.13 the time scale dK, i.e.,(K)— a(K) and 6K— adK, with « of order unity,
identified geometrically in Eq(4.12) should coincide with  Xes— @Y*xest- If, alternatively, (K) is held fixed butsK
the time scalg4.14). This prediction was tested numerically —adK, one infers, at least approximately, thates
and found typically to be satisfied to within factors o2, —>a3/2Xest- Finally, if (K) and 6K are held fixed, but one
although some discrepancies were observed. As noted ailows for a scalingr— a7, Xese= @ Xest-

3. Sources of uncertainty
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Given that the values ofK) and 6K can be estimated 05T ' ' '
quite well using simple dimensional arguments—recall that, '
even when there are relatively large measures of periodic
orbits, a microcanonical population yields estimates in good
agreement with the results of direct numerical :
computation—it would seem that, with the assumption of 0.3EF
guasi-isotropy and a Gaussian distribution of curvatures, the :
largest source of error should be in the determination of the ;
autocorrelation timer. The expression forr motivated by 0.2f
Casettiet al. is moread hocthan the expression fdK) and F o
6K; and dimensional arguments are hard pressed to yield % ]
estimates ofr that are accurate to better than a factor of two. o1 3 E
However, factors of two uncertainty in translate directly :
into factors of two uncertainty iryeg:. 00b ! . .

One may also investigate how the predicfed; changes 0 2 4 6
if one relaxes the assumption of a Gaussian distribution, in- E

Stea.d Cqmputlnqest by solving Eq'(4'9) numerlc_ally for th_e FIG. 10. Estimated values of the largest Lyapunov exponent for
d!str!but!on N[K] generateq either from a mlprocanonlcgl the D =2 dihedral potential as a function of energy;,, generated
distribution or from real orbital data. The resulting change iy girect numerical integrationsolid curve, the Casettiet al.
Xest Will of course depend on the degree to WhibiK]  yajue, generated assuming a GausdiiK] and autocorrelation
deviates from a GaUSSIan, |argel’ deviations I’eSU|tIng n |argque Tgiven by Eq(413 (Short dashesan estimate based on Eq
changes. Especially for two-dimensional systems, wheres.g) but now using th&\[ K] generated from a time-series analysis
N[K] is far from Gaussian, allowing for the correct distribu- and  given by Eq.(4.14 (long dashes an estimate based on Eq.
tion may changey.s; by a factor of three, or even more. (6.6), using w_ and 7 given by Eq.(4.14 (dot dashes and an
This is illustrated in Fig. 10, which exhibits several dif- estimate based on the coupled oscillator system, assuming Gaussian
ferent estimates of the largest Lyapunov expongntgfor  fluctuations andr given by Eq.(4.12.
the D=2 dihedral potential, most of which will be described
in Sec. VI. In the present context, note simgiythe “true” Figure 11 compares the numerical and estimatg)) for
xnum, generated by tracking a small initial perturbationthe dihedral potential fob=2, 3, 4, and 6. The estimated
(solid line), (i) the Casettiet al. yos, based on the assump- Values were computed using Eg.13, based on a Gaussian
tion of Gaussian fluctuations and an autocorrelation timefistribution, with moments generated both from a time-series
given by Eq.(4.13 (short dashas and (iii) an alternative analysis(dashed linesand assuming a microcanonical dis-
Xest again based on the “quasi_isotropized“ Hq]_g), but tribution (dotted line$. The numerical values are connected
now a”owing for a d|str|but|0rN[K] generated from time- with a solid line. One observes Significant differences in the
series data and an autocorrelation titdel5 (long dashes shapes of the curves associated with the numerical and esti-

Both estimates are comparable in magnitudeytg,, but Mated values, but there is invariably an overall agreement to
both miss the nontrivial dip that arises né&# 0.0. within a factor of two. The most striking discrepancies arise

for D=2, where the estimates completely miss the abrupt dip

0.4F

V1. ESTIMATES OF LYAPUNOV EXPONENTS IN LOWER- O4p o a--f 0.4

o
DIMENSIONAL HAMILTONIAN SYSTEMS 0.3 ¢ e * 0.3}
> 0.21 ¢ = 0.2

A. Estimates of the true Lyapunov exponent

Overall, Eq.(4.15 first proposed by Casetéit al, modi- 0.1 () 0.1 (b)
fied to allow for moments computed assuming a microca- 0.0 6o
nonical distribution, appears to give reasonable estimates of b2 4 @ O 2 4 6
the largest Lyapunov exponent in lower-dimensional Hamil- . .
tonian systems, provided that an appreciable fraction of the 0.4 0.4
phase space corresponds to chaotic orbits. In particular, as 0.3 ? 0.3} yyemmma=s?

long as the true Lyapunov exponents are not very small
(Xnum<t51) and/or “stickiness” is not especially prominent,
the estimatedk . typically agree with the numerical,,m to 01 (c) 01 (d)
within factors of two. In some cases, such as for the FPU 0.0 Do
model, the agreement between,, and x.. rapidly in-
creases with increasing; but in other cases, such as for the
dihedral potential, this i:ot the case. This would suggest  FIG. 11. Estimated values of Lyapunov exponents for orbits in
that the quasi-isotropy assumption, which should become inthe dihedral potential, generated from numerical integratienkd
creasingly justified in higher dimensions, net necessarily lines) and estimated using E¢4.12. (a) For D=2. (b) D=3. (c)
the principal source of error. D=4.(d) D=6.
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FIG. 13. (a) Estimated values of Lyapunov exponents for orbits
in the truncated Toda potential, generated from numerical integra-
tions (solid lineg and estimated using E@4.12. (b) Short-time
Lyapunov exponents computed using E4.12) (x.s) and gener-

. . ted fi ical integrati for E=30.0.(c) Th
iN xnum for E~0. The fact that, foD = 2, the two estimated %?E:rosn(; gumerlca integrationsfum) for (¢) The same

curves differ significantly at high energies reflects the fact
that the constant energy hypersurface contains large regular .
islands, so that the invariant distribution is far from micro- reast_)nable estimates of the Iargest Lyapunov expopasta
canonical. fgnctlon_ of energyE. However, if the stochastlc-OSCIIIator
Figure 12 exhibits the numerical and estimajgde) for picture is to t?e“accept(:::d as completely valid, one must al_so
the FPU model foD =4, 5, and 6, with the estimated values demand th"’.‘t it “explain t.he varying degrees. of chaos mani-
again computed assuming Gaussian distributions and mJ?Sted by different chaotic .Orb't segments with the same en-
ments generated from a time-series analysis. The data hay&dy: as p“’b_ed by short-time Lya_1punov e_xponents. In par-
been plotted on a log-log plot to facilitate comparison Witht'CUIar’ one might hope that, even if the estimated vajugs

Fig. 3 in Casettet al. Here, two points are immediately ob- of the true Lyapunov exponent disagree significantly with the

vious: (1) The estimated and numerical curves are distinctlyvalues)(num computed numerically, the estimated and com-

different, with yes always larger thary,,, but their curva- put_ed values of s_hort-time Lyapunov exponents for different
tures are comparatively simila2) The agreement between orbit segments with the same energy should be ;trongly cor-
Yrumand yeq becomes progressively better for higher Olimen_related_. For example, chaotlc segments for_ which _the true
sions and for higher energies. FBr=5 in D =4, where the short-time y,um IS espeqally small should yield estimates
numerical y,,m=0.211 corresponds to a very long tinte Xestthat are also especially small

~45>tp, xest OVerestimatesy,,m by nearly a factor of Ei Thit:{;;mh dccirgre)latlogslz'do 1'2 faﬁF EX'Sth.'g.t'IIUStrl"’tlted n
seven. FoD =6 andE=5, y.Yields a value approximately '9S. an ¢ and Fig. 14, which exnibit results ap-

; . - . . propriate for, respectively, the truncated Toda and dihedral
tzifr?gstltrgc?slatrgz large; foE=10240, its value is only 1.27 potentials. Each of these figures was generatef)bselect-

Figure 13a) exhibits the same data for the sixth-order ing a representative ensemble of 1000 initial conditions, all

truncation of the Toda potential. As for the FPU modgls V.V'th the same e”.ef9¥“> evolving these Into the future _for a
. . time T= 1024 while simultaneously tracking the evolution of
systematically overestimates the trug,,,, the largest errors

aring ot o energe, hee s comparately smal. 57, PEELONn o0 w0 Serertey () resorng
larger regular islands exist, and “stickiness” is especially o

important. analyzing each orbit to extra«_§K> and SK; and (v) using
these two moments along with E¢4.13 to generate an
estimatedyes;. The scatter plots provide unambiguous visual
confirmation that the values of,,, and y.s are strongly
The computations described in the preceding subsectiooorrelated.
indicate that, for a variety of lower-dimensional systems, the This visual impression may be quantified by computing
Casettiet al. model of a stochastic-oscillator equation yields the Spearman rank correlatidd between the values of;

FIG. 12. Estimated values of Lyapunov exponents for orbits in
the FPU model, generated from numerical integrati@adid line9
and estimated using E¢4.12. (@) ForD=4. (b) D=5. (c) D=6.

B. Short-time Lyapunov exponents
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0.4 0.4 the differences between different orbit segments become
. ! . F small and the pronounced correlation disappears.
202 ?; 202 It would seem visually from Figs. 1d)—14(e) that the
7?('0) numerical and estimated values of the short-time Lyapunov
0.0 G 0.0 exponents deviate largely because of some overall scaling.
00 02 04 00 02 04 Given that at least foD=3, the phase space is almost en-
Xest Xest tirely chaotic, so that the distribution of curvatures reflects a

microcanonical distribution, the eviden@. Fig. 6) that this
implies a nearly Gaussian distribution, and the argument in
the preceding subsection that quasi-isotropy is not necessar-
ily the principal source of discrepancies, it would seem natu-
ral to conjecture that this reflects a misidentification of the
proper autocorrelation time. Panel(f) in Fig. 14 shows
what happens to the estimated vapug, for the D=6 dihe-

dral potential if, for each orbity is reduced by a factor of
~0.75, the value required to ensure that, for the ensemble,
the mean values of the estimated and numerical exponents

(e) ) () coincide, |.e.,()(est>.—<)(_num). The net result is that, to a fair
0.00 0.00L degree of approximation, the data points are aligned along
00 02 04 0.00 0.15 0.30 _
Xest— Xnum-
Xest Xest
FIG. 14. (a) Short-time Lyapunov exponents computed using C. The special casd® =2

Eq. (4.12 (xes) @and generated from numerical integrations ) . .
for E=1.0 in theD=2 dihedral potential(b) The same forD It is natural to ask whether one can relax the assumption

=3.(c) D=4. (d) D=5. (§) D=6. (f) xpuy for D=6 contrasted of quasi-isotropy, at Iea;t foD=2, wher_e it would seem

with revised estimateg...generated by rescaling the time scalf ~ MOSt suspect. One way in which to do this would be to work

Eq. (4.12 by a factor of 0.75. instead with the Jacobi metric, which, for=2, leads to a
single oscillator equation of the forfi7,19]

and y,,.m in each ensemble, which satisfies d?¢ 1 dwd¢ -
———— —— 1 tK&=0, (6.2
6 N dt= W dt dt
R(Xnum: Xes) =1~ 15—y 2 O (6.1 |
=1 whereW=E—V(q') denotes the kinetic energy and

HereN=1000 denotes the number of orbits in the ensemble ~ 1

and &, denotes the difference in rank for thh orbit when K=AV+ V—V|VV|2- (6.3
ordered in terms Of,um and xest: R=1 corresponds to a
perfect correlation;R=—1.0 corresponds to a complete
anti-correlation.

The data sets in Figs. ¢ and 13c), corresponding to
E=30 and 50 in the truncated Toda potential, both yigld
~(.88. The data sets in Figs. (&}14(e), corresponding to
E=1.0in the dihedral potential, yield rank correlations rang-
ing between a low ofk~0.85 forD=3 and a high ofR (1) Consider the full multidimensional Jacobi equation
~0.95 for D=2. The especially high-rank correlation for and view it as a matrix stochastic equation. This could at
D=2 might seem surprising since the ensemble contains gast provide the “average” rate of exponential instability in
large number of regular orbit segments, with very smallgifferent configuration space directions. Quite generally, a
Xnum- The reasorik remains as large as it does is that, for small perturbatiorg' will satisfy
orbit segments that are manifestly regular, soxhg, even-
tually decays to zero, there is a correlation between the esti- d2g A
mated valueyg;and the rate at whicly,,m, tends to zero: for a9 + E Vjjé'=0, (6.9
regular orbits where the short-time,; is especially large, !

the convergence is especially slow, so that, at finite times, o
Xnum Will also be especially larggl8]. with V;;=4?V/dq'dq’ the second derivative matrix. The ob-

Not surprisingly, the computed value @& for a given Jective then is to view each component of this matrix as an
ensemble of initial conditions depends on the total integra{a@pproximately independent stochastic variable, i.e., consid-
tion time. If the orbits be integrated for a sufficiently laige  €ring
their differences tend to “wash out,” so that the observed
range of values foly,,m and xes; both decrease. Eventually, Vij=V;ji=Q;; + 5, (6.5

Unfortunately, however, this equation is very difficult to ex-
plore numerically since it yields near-divergences far
~0, which prove quite common fdd = 2.

Alternatively, within the setting discussed hitherto in this
paper, there are two ways in which one might proceed:
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with 8€;; a random variable. Given distributiord] V,,], =2. In this sense, as suggested in the Introduction, one
N[Vy,], andN[V,,]=N[V,,], which can be computed from would appear to have a clear alternative paradigm in terms of
time-series data or assuming ergodicity, and some approxivhich to interpret the origins of chaos in lower-dimensional
mation to the autocorrelation functiohy,, I'y,, andl',,, Hamiltonian systems.
which may again be motivated either from a time series or The precise numerical values gf predicted using this
assuming ergodicity, this system is easy to solve numericallgnalytic approach are somewhat less accurate in lower di-
[20]. o _ _ ~mensions than they are for much lar@grbut it remains true
(2) At least forD=2, it is easy to diagonalize the matrix hat, in general, this approach yields predictions that are cor-
Eq. (4.2 at any given instant so as to obtain the eigenvalue$act 1o within a factor of two. In principle, one might hope to
of the st_ablllty ma_trlx. The corresponding eigenvectors will 4 otill better but, as a practical matter, this would seem
then satisfy equations of the form difficult if not impossible. The “obvious” alternatives con-
d2¢. sidered in Sec. VI C yield somewhat different predictions for
d—t{+ w€.=0, (6.6)  the largest Lyapunov exponents. In some cases, these predic-
tions are somewhat better than those based on Bds2,
(4.19, and(4.16 but, overall, they seem neither appreciably
better nor appreciably worse. This would suggest that the
0+ =3(Vyot Vi) £ 5[ (Vyo— Vy )2+ 4V2 12 (6.7)  predictions based on these equations are comparatively ro-
bust, in the sense that minor modifications do not yield vastly
Viewing w . =Qq . + 60 . as stochastic variables leads to adifferent results. However, this might also suggest that there
pair of decoupled-oscillator equations that are easy to solvis no single, universal modification that one might introduce
numerically. In general, one might anticipate that the smallethat would yield near-perfect agreement for all potentials and
eigenvalue will correspond to the more rapid growth rate. energies. In point of fact, this is hardly surprising. There is
These alternatives were tested in detail for bveé2 di-  every reason to expect that details that should “wash out” in
hedral potential. The principal results are summarized in Fighigher-dimensional systems will remain important in lower-
10, which shows the numericgh,,(E) (solid line) as well  dimensional systems. A “thermodynamic” description of
as estimated valueg..(E) generated in four different ways. chaos should work best for systems with many degrees of
The short- and long-dashed lines, discussed already in tHfeeedom.
preceding section, correspond to the isotropized Ed), In this context, two significant points should be stressed.
assuming a microcanonical distributi¢gshort dashgsor us- , -
ing inputs generated from orbital datbong dashes The (1) Even when the predicted valugss(E) of the “true
triple-dot-dashed curve represents the values generated fbyaPunov exponenkn,(E) are off by as much as a factor
the coupled-oscillator system and the dot-dashed curve ref@f tWo, one observes strong correlations betwegyE) and
resents the values generated by solving(d) for »_ . Al Xnun(E) for different orbit segments with the same energy.
the estimated curves yield valugs, that agree withy,,,to  Orbit segments for which the predicteds; is low tend to
within factor of two, but none seems especially better tharp@ve small short-time exponents,m; and, similarly, seg-
the others. ments for whichy.g is high tend to have larger values of
The hypothesis that chaotic behavior in lower- Xnum- The physics entering into Eq$4.12, (4.19, and
dimensional Hamiltonian systems may be modeled by 44.16 allow one to distinguish clearly between orbit seg-
stochastic-oscillator equation would appear robust in thénents that are “wildly chaotic” in visual appearance and
sense that different implementations all lead to predictiond'@ve especially large short-time exponents and “sticky” seg-
that yield at least rough agreement with numerical integraments that are nearly regular in appearance and have com-
tions. However, none of the alternatives considered hergaratively small short-time exponents. .
would appear “completely right.” It seems likely that, in 2 The largest discrepancies between the pre@cted and
very low-dimensional systems, the details matter sufficientiynumerically computed Lyapunov exponents occur invariably

that no universal prescription will yield a completely accu- for those potentials and energies where large portions of the
rate prediction. chaotic sea correspond to “sticky” orbits manifesting nearly

regular behavior, in which casg.s;can be much larger than
the “true” x,um. This is exactly what one would expect. If
large portions of the stochastic sea are “sticky,” an orbit will
The results described in this paper strongly corroboratspend much of its time evolving in a nearly regular fashion,
the intuition that chaotic motion in lower-dimensional but it is clear that, while manifesting such near-regular be-
Hamiltonian systems may be visualized as random, so thdtavior, its motion cannot be characterized as essentially ran-
the average instability of chaotic orbits, and hence, the valdom. Indeed, as discussed more carefully elsewhgreha-
ues of their largest Lyapunov exponents, can be derived frorotic orbit segments for whicK) and SK assume values
a harmonic-oscillator equation with a randomly varying fre-close to those characteristic of regular orbits tend systemati-
qguency. Modulo straightforward modifications, technicalcally to have very small short-time Lyapunov exponents.
rather than conceptual in nature, the approach introduced by The principal difference between the approach developed
Casettiet al. for higher-dimensional systems also works rea-in this paper and the approach introduced by Casétii. is
sonably well for systems with dimensionality as low s that the statistical properties of the mean curvatQ@e not

where the time-independent eigenvalues satisfy

VII. CONCLUSIONS AND DISCUSSION
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derived assuming a canonical distribution. For a truly condials that are knowra priori to be integrable and thereby
servative system, a thermodynamic description must, strictladmit only regular orbits that can only mix secularly. Ex-
speaking, be based on a microcanonical distribution, and it iamples include spherically symmetric potentials for which
only for largeD that one can approximate such a “correct” Poisson’s equation generates nonuniform density distribu-
description by a description based on a canonical distributions, and special triaxial potentials such as the Staeckel po-
tion. Moreover, for very low dimensions, especially=2, tentials[24]. Thus, the analysis provides no information as to
even a microcanonical distribution is clearly unjustified. Awhat criteria are necessary and sufficient to establish a pre-
microcanonical analysis is based on the assumption that th@onderance of globally chaotic orbits; it merely hypothesizes
entire constant-energy hypersurface is chaotic, but for lowetheir existence. Related to this deficiency is the failure of the
dimensions, nonintegrable systems typically exhibit a coexanalysis to account for “sticky” chaotic orbit segments that,
istence of regular and chaotic regions, both with significantvhen present, will tend to slow down the mixing. Real sys-
measure. A correct analysis must involve deriving the statistems may, however, mitigate thesaveats For example, ex-
tics of the curvature only in the chaotic phase-space regionsernal noise, even with very small amplitude, is known to
a task that seems difficult analytically but, given an assumpadd greatly to the efficiency of chaotic mixing by overcom-
tion of ergodicity, is straightforward to implement via a time- ing “stickiness” [25]. And the presence of localized irregu-
series analysis. larities that have been coarse-grained away may increase the
In part, this work concerning chaos and the phase mixinghaoticity of the orbits. An important point, however, is that
of chaotic orbits was motivated in the context of nonequilib-the graininess that manifests itself in binary particle interac-
rium systems comprised of a large number of interactingions isnot necessarily an example of such localized irregu-
particles. Examples of such systems include self-gravitatindarities. Graininess establishes diffusion of an orbit away
systems, e.g., galaxies, and charged-particle beams governtedm the trajectory it would have in the smooth potential but,
by external focusing forces and internal Coulomb forcesat least for nonchaotic orbits, this diffusion involves a secu-
(space charge For both these examples, fast evolutionarylar, rather than exponential, divergence of trajectoj&.
time scales have profound consequences. For galaxies, they Because it is based on the Eisenhart metric, the present
are an integral part of the formation proc¢23]. For beams, treatment is restricted to stationary systems. However, with a
they limit the degree to which an accelerator designer mayinsler metric, the geometric method may also incorporate
preserve the beam quality, especially insofar as the evolutiopotentials that are explicitly time dependent and/or velocity
is irreversible[22]. dependent{27]. For example, recent work involving the
As mentioned in Sec. Il, one way to infer the fastest timeHenon-Heiles potentig28] resulted in a geometric measure
scale is to consider the interaction of a single particle withof chaos over the associated Finsler manifold that was used
the coarse-grained potential formed by all the other particleor fast computation of the system’s Poincateface of sec-
The problem then reduces to one involving a low-tion. If used with a coarse-grained potential, the Eisenhart
dimensional Hamiltonian, and the obvious question is tometric includes no mechanism for changing the particle en-
what extent statistical arguments concerning the behavior agrgies. In principle, it may be included with a Finsler metric
chaotic single-particle orbits may be invoked to simplify thebased on a time-dependent coarse-grained potential; how-
analysis further. All the examples presented herein suggesiver, the generalization also requires specifying a suitable
that time scales in low-dimensional Hamiltonian systems ininvariant measure for the nonequilibrium systgz8)].
ferred via the statistical methods of Casedtial. are typi- One final point should be noted. In writing this paper, the
cally valid within a factor of order two. They also suggest authors have deliberately adopted a tact somewhat comple-
that uncertainties in the computation of these time scales amentary to that adopted by Casedtial. Rather than focus-
principally associated with uncertainties in the autocorrelaing on the differential geometry of spaces admitting an
tion time, and that these time scales are comparatively inserisenhart metric, the discussion has, to the extent possible,
sitive to the choice of the invariant measure that weights théeen couched in the language of conventional Hamiltonian
statistical averages. More importantly, however, our exdimechanics. Such an approach serves to make the ideas un-
amples reinforce the idea advanced by Cerruti-Sola and Petlerlying the general approach more transparent physically
tini [23] that rapid mixing originates from parametric insta- and, it is hoped, will make the picture of chaotic motion as a
bility due to positive-curvature fluctuations along the random process comprehensible to a substantially larger au-
geodesic trajectories of the particles over the configurationeience.
space manifold. Cerruti-Sola and Pettini conjectured that,
“This mechamgm is apparently the .m.osF reIeva_mt—and in ACKNOWLEDGMENTS
many cases unique—source of chaoticity in physically mean-
ingful Hamiltonians.” The diverse set of examples presented This research was supported in part by NSF Grants Nos.
here would seem to corroborate their conjecture. AST-0070809 and AST-0087666, and in part by the Univer-
The statistical analysis, however, does carry samaee-  sities Research Association, Inc., under Contract No. DE-
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