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Stochastic resonance of small-world networks
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Stochastic resonand&R) of a coupled array of bistable oscillators with small-world connectivity is nu-
merically studied. At certain coupling strength, it is found that both temporal SR and spatial synchronization of
the oscillators can be considerably improved by increasing the order of randomness of the network due to the
long-range couplings. Moreover, our results show that a small fraction of long-range couplings is sufficient to
obtain great improvement in SR and synchronization.
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[. INTRODUCTION between the identical oscillators was regular, either local or
global.
Stochastic resonand¢&R) is a somewhat counterintuitive In this paper, we study SR in the systems with both local

phenomenon which has attracted increasing attention ovéregulay and random connectivities, and investigate how the
the last two decadd$or a review, see Refl]). In SR, noise  €xistence of randomness of the network connections affects
shows a surprising ability to optimize the response of a nonthe behavior of the systems. In order to do this, we use the
linear system to a subthreshold periodic signal. A canonicaldea of the so-called “small-world” networks, recently intro-
model for SR is an overdamped particle moving in a doubleduced by Watts and Strogafa5]. Such networks can be
well potential driven by a small periodic signal and an addi-oPtained by randomly rewiring a fractig of the connec-
tive noise. In this case, the output signal-to-noise r&giIR) tlpns of a regular Iattlce.. Thgrefore they are indeed a kind of
shows nonmonotonic behavior as a function of the inpu isordered networks which lie somewhere between the regu-

noise strength. Since the original work of Beezial.[2], SR ar (p=0) and the completely randonp € 1) networks, and

: . the parametep stands for a measure of the order of random-
has been shown to occur in a large variety of systems, from .

. . ) . ness of the connectivity. It has been shown that some real
biological and chemical to physical systef3s-11].

. " ’ . . networks, e.g., the neural network of the wo@aenorhab-
Among recent studies, an interesting and important toPiGitis elegansare small-world networkgL5]

is addressed on SR in coupled oscillator syst¢ti®-14. o6 \ve consider the double-well oscillators coupled in
Lindneret al. found that the resonance behavior of an oscil-gmaii-world networks. We find that the SNR of the output of
lator, measured by SNR, can be further enhanced by coys network can be further improved by increasing the order of
pling it into an array of oscillators, and they named thisrandomnesp of the network. In fact, increasing implies
phenomenon array enhanced stochastic resongi®é3.  that there are more “long-range” links in the network, which
For a coupled system, an additional parameter, the couplinghay lead to more efficient cooperations of the oscillators.
strength, is introduced which strongly affects the SR behavTherefore the SNR, as well as the degree of synchronization,
ior of the system. When the coupling is weak, the individualcan be enhanced. There are a number of param@tach as
oscillators behave almost independently. To the other exnoise intensity, coupling strength, and the fraction of random
treme, if the coupling is very strong, the whole array movesconnectionsaffecting the SR and synchronization behaviors,
as a single element. However, at an optimal value of theénd various optimization features are observed in varying
coupling strength, the best SNR and spatiotemporal synchréhese parameters.
nization are observed 2].
A coupled system can be considered as a network or || bESCRIPTION OF THE MODEL AND NUMERICAL
graph, where the vertices represent the elements of the sys- RESULTS
tem and the edges represent the interactions or couplings
between them. The topology of these networks may influ- The networks used here are constructed following Watts
ence the cooperative behavior of the systems. For example,dind StrogatZ15]. We first consider a one-dimensional regu-
has been found that the output of an array of double-wellar lattice with periodic boundary condition, composed\bf
oscillators can be significantly improved when the oscillatorsvertices with each vertex connected tokitsearest neighbors
are connected in a two-dimensional square array instead of[&ig. 1(a)]. So, there are;Nk edges in the entire graph.
one-dimensional chain, and much lower coupling strength§hen, with probabilityp, each edge is rewired at random
are needed to obtain the best SNR. However, in the bulk ofFig. 1(b)]. Specifically, we seN=100 andk=4, andp
the investigations on SR in coupled systems, the connectivitjakes different values between 0 and 1. Note that in the
rewiring process, the numbers of both vertices and edges
remain unchanged.
*Permanent address. The model for this study is made of an array of coupled
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FIG. 1. (a) A one-dimensional lattice with periodic boundary
conditions. Each vertex is connected to ktsieighbors, where in
this case&k=4. (b) A small fraction of the linkg(in this case five of
them are rewired to new sites chosen at random.

double-well oscillators which are driven by a periodic force 0 ! 2 3 4 3

and white noise. The couplings between the oscillators are D

considered to have the small-world topologies mentioned _ _ ) o —
above. The dynamics of each oscillator is described by FIG. 2. (a) The signal-to-noise rati®, defined in Eq(2); (b) &

defined in Eq.(4) versus the input noise intensiti€s for several

values ofp. e=3.98. The inset ir(b) is o versusD with £=0.16

3 ] andp=0.1. All quantities are dimensionless.
dx=| kx,—k'x; +Asmwt+; &ij(Xj—x;) |dt

B (signal powe}_(total powej — (noise power 5
+DdW(t), i=12,...N, (N ~ (noise power (noise power - @

The SNR measures the temporal periodicity of the output of
wherek andk’ are positive to ensure a double-well potential, the array, i.e., the response of the oscillators to the periodic
A andw are the amplitude and the frequency of the externaforcing. Figure 2a) illustrates the SNR versus the input
periodic force which serves as the input signal(t) (i noise strengtl for the cases of =3.98 andp=0.01, 0.16,
=1,2,...N) are independent standard Wiener processeg).40, and 1.0. The curves show typical SR character in the
andD is the noise strength;; is the coupling between the sense that there exists an optimal noise strength, at which the
two oscillatorsi andj, and its value is determined by the SNR is maximized. From the figure, one can also see that the
coupling pattern of the system. If these two oscillators areSNR peak rises very rapidly as the randomness of the net-
coupled to each other, we hawg =e¢, and otherwiseg;; work increases.
=0. All the quantities in Eq(1) are dimensionless. Through-  In Eq. (1), noise is applied locally, i.e., the noise is uncor-
out this work, we choose the parametdrs 2.1078, k' related from site to site. Intuitively, this noise tends to make
=1.4706, A=1.3039, andf=w/277=0.1162, which were the array more spatially disordered. At the same time, the
used in Ref[12], and takes, D, andp as our varying control  couplings between the elements help the whole array be syn-
parameters to exam the response of the array system to tleronized. The competition between the noise and the cou-
external signal and driving noise. plings determines the spatial organization of the system.

For each set of values pfande, we typically generate 50 The degree of spatial synchronization can be quantified by
different networks. A specific network defines a couplingthe mean square deviation
pattern of the system. We take the full Runge-Kutta weak LN LN
method[16] for numerically integrating the stochastic differ-
ential equation1). The time series of the oscillators are re- ‘T(t):<xi(t)2>_<xi(t)>2:ﬁ 21 Xi(t)z_[ﬁ ;1 Xi(1)
corded over 32 periods of the external force. Then, the power 3
spectral densitfPSD is calculated and averaged over dif-
ferent elements of the array and the networks with differentr(t) is a periodic function of time whose period is half a
connectivities. It should be mentioned that because we arfrcing period.o(t) is a good quantity for measuring spatial
only interested irinterwell motion of the oscillators, the ef- synchronization of oscillators. For a fixedlarge o(t) rep-
fect of intrawell motion is filtered out by setting the output to resents large deviations between various oscillators, and
be binary values of: 1 [12]. small o(t) demonstrates strong collective motion and, con-
The PSD has two components, i.e., the output signal and sequently, better synchronization. Extremetyt) =0 shows
background noise. The SNR, denoted Rycan be simply complete synchronization. For measuring SNR we discretize
defined a417] the variable values ta- 1. Now, o(t) is defined by the con-
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FIG. 4. The best SNRR;, versuse for several values op. All
01 1 1 quantities are dimensionless.

4 . . .
oscillator has morgnot necessarily neargstneighbors.”

FIG. 3. The best SNRR;, as a function op ande. Both axes  This is indicated by the rapid decrease of the characteristic-
are in log scale. All quantities are dimensionless. path length of the network with the increasing op [15].

Herel is defined as the number of edges in the shortest path

tinuous variables, such provides additional information ofbetween two vertices, averaged over all pairs of vertices.

measuring. We are not interested in the oscillationr¢f), I(p) measures the typical separation between two vertices
and then the time average oft), and hence serves as the characteristic length scale of the
network. So, ap increases, the motion of an individual os-
— 17 cillator can influence darger number of other oscillators
= ?fo o(t)dt, (4 more quickly. Therefore when the coupling strength is not

very large, the SR phenomenon can be considerably en-

will be used to quantitatively measure the synchronization mhancec[see Fig. Sa)_]. On the other hand, if the cquplings are
the array. Now the quantity SNR defined in H@) repre- very strong, all oscillators behave almost as a single one, and

sents the order parameter for the order behavior of the oufficreasingp may even'help this trend. So, in this case, one
may expect that the disorder of the network may reduce SR

put, while o defined in Eq(4) denotes the spatial synchro- [see Fig. B)]
nization of the output. These two quantities will be_the The SR behavior of Figs. 3—5 shows the temporal order

central focus of our investigation. In Fig(ll we plot o of the system output. For demonstrating the spatial synchro-
versusD for differentp and fixede =3.98. We also show a

curve for the case=0.16 andp=0.1 in the inset of Fig. 1200

2(b), where minimume (the best synchronizatiprcan be 1000 I . ] *
clearly seen for certain optimal noise strength. However, if | *

and/orp are not very small, the couplings between the oscil- . 800 | °

lators will be strong enough to pull the oscillators to the 54 | @

same potential well even without the help of noise, and, in 600 | ®

this case, the best synchronization occurs at very low noise Lo (a)
level. This feature is also observed in FigbR 400 #

In Fig. 3, we show the best SNIRg, as a function of the 20 | e —
coupling strengttz and the randomness of the netwqkBy o (b)
the best SNR we mean the largest SNR dbepr each pair 220 8
of (e,p). Note, bothe andp are in log scale. It can be found 200 4
that at certain values of and largep, Rs has very large =" g0 [@
values, where SR is greatly enhanced. 6ol @

From Fig. 3, it is obvious thaRg is small for both too . ®
small and too larges. And large Rg can be identified at H4OF & o e . *
certain optimal coupling strength as shown in Fig. 4. The 120 —_—
explanation of the peaked curves in Fig. 4 has already been 0.0 2 4 -6 3 1.0

given in Ref[12]. In this paper, we are most interested in the p
influence of parametep on the SR behavior. Increasing

means that more edges are rewired and thus more long-range FIG. 5. The best SNRR, as functions ofp. The coupling
connections are introduced. In this case, the elements betength isa) ¢ =3.98 andb) £ =100. All quantities are dimension-
come much closer to each other or, in other words, eacless.
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parable to that of a completely random network. As a result,

27 ? —o-g=100 D=17.0 the collective behaviors of the systems also show such small-
Tk —e— £=398 D=1.52 world property as shown in Figs. 5 and 6.
24 H

i) IIl. SUMMARY AND DISCUSSION

In conclusion, with proper coupling strength, the random
connectivity of the networks may induce improvement in
both SR and spatial synchronization due to the long-range
couplings. However, in order to obtain a good result, only a
few long-range couplings are needed, i.e., the connectivity
has a small-world topology. It should be mentioned here that
a higher dimensional regular lattice can be considered as a
lower dimensional lattice with additionapecificlong-range

p connections. These long-range connections can also reduce
the distance between two vertices. So, one can expect to find

FIG. 6. The dependence ofon p. All quantities are dimension- improvement in SR of higher dimensional lattices over their
less. lower dimensional counterparts. As evidenced, an increase of

SNR of two-dimensional lattices compared with that of one-
o — - dimensional chains has been observed recémady; In addi-
m;aﬂon featur.es we show versusp in Figs. &a) a”‘?' &b) tion, a negative role to the SR behavior playedyby increasing
with the coupling strengtk =3.98 and 100, respectively. In anqom connections at large coupling strength is observed
Fig. 6(a), we takeD =1.52, while in Fig. 6b), D=7.0. For  gpq intuitively understood.
other noise levelsg has similar behaviofsee Fig. 2b)].

From these figures, we observe tlaalways decreases as
increases. This feature is different from the dependenég, of This work is supported in part by grants from the Hong
on p [Figs. §a) and 3b)]. Kong Research Grants Coun¢RGC) and the Hong Kong
Moreover,| drops very rapidly ap increases from (Q15]. Baptist University Faculty Research GraiRG). Z.G. is
This implies that only a few long-range connections are sufalso supported by the National Basic Research Project “Non-
ficient to considerably shorten the distance between the eldinear Science,” the National Nature Science Foundation of
ments in an array. For our choosing of paramet&ts(00  China, and the State Education Department Grant for Doc-
andk=4), only about one-fifth of the total edges needs to beoral Study. Z.G. would like to thank L. Q. Zhou, C.-S. Zhou,
rewired in order to obtain a characteristic-path length com3.-H. Xiao, and J.-Z. Gu for their helpful discussions.

ACKNOWLEDGMENTS

[1] L. Gammaitoni, P. Haggi, P. Jung, and F. Marchesoni, Rev. 675(1999.

Mod. Phys.70, 223(1998. [10] S. Barbay, G. Giacomelli, and F. Marin, Phys. Rev. L8&8,
[2] R. Benzi, A. Sutera, and A. Vulpiani, J. Phys. 14, L453 4652 (2000.

(1981). [11] M.I. Tsindlekht, I. Felner, M. Gitterman, and B.Y. Shapiro,
[3] D.F. Russell, L.A. Wilkens, and F. Moss, Natutendon 402 Physica C341, 1191(2000.

291(1999. [12] J.F. Lindner, B.K. Meadows, W.L. Ditto, M.E. Inchiosa, and
[4] P.E. Greenwood, L.M. Ward, D.F. Russell, A. Neiman, and F. A.R. Bulsara, Phys. Rev. Leff5, 3 (1995.

Moss, Phys. Rev. LetB4, 4773(2000. [13] J.F. Lindner, B.K. Meadows, W.L. Ditto, M.E. Inchiosa, and
[5] I. Hidaka, D. Nozaki, and Y. Yamamoto, Phys. Rev. L&, A.R. Bulsara, Phys. Rev. B3, 2081(1996.

3740(2000. [14] N. Sungar, J.P. Sharpe, and S. Weber, Phys. Reé2,H413

[6] T. Amemiya, T. Ohmori, and T. Yamamoto, J. Phys. Chem. A
103 3451(1999.

[71Y. Jiang, S. Zhong, and H. Xin, J. Phys. Chem1®4, 8521
(2000.

[8] P.E. Strizhak, A.B. Basylchuk, I. Demjanchyk, F. Fecher, F.W.
Schneider, and A.F. Munster, Phys. Chem. Chem. PRys.
4721(2000.

[9] G. Giacomelli, F. Marin, and I. Rabbiosi, Phys. Rev. L&8, sults.

(2000.

[15] D.J. Watts and S.H. Strogatz, Natuteondon 393 440
(1998; D.J. Watts,Small World(Princeton University Press,
Princeton, 1999

[16] M.V. Tretyakov, Phys. Rev. 57, 4789(1998.

[17] Variations of this definition do not qualitatively affect the re-

016209-4



