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Fast Bayesian reconstruction of chaotic dynamical systems via extended Kalman filtering
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We present an improved Markov chain Monte Carlo~MCMC! algorithm for posterior computation in
chaotic dynamical systems. Recent Bayesian approaches to estimate the parameters of chaotic maps have used
the Gibbs sampler which exhibits slow convergence due to high posterior correlations. Using the extended
Kalman filter to compute the likelihood function by integrating out all unknown system states, we obtain a very
efficient MCMC technique. We compare the new algorithm to the Gibbs sampler using the logistic, the tent,
and the Moran-Ricker maps as applications, measuring the performance in terms of CPU and integrated
autocorrelation time.
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I. INTRODUCTION

In the physical sciences, experimental data often show
irregular, complicated, and ostensibly random time dep
dence. This led to the use of chaotic dynamical processe
order to explain and model the observed irregularities@1–4#.
In this paper we address the problem of reconstructing
nonlinear dynamic equations assumed to be underlying
observed noisy time series. These observations can
from laboratory experiments in the physical sciences or ‘‘r
world’’ systems.

Previous work on nonlinear noise reduction from a d
namical systems perspective uses probabilistic models to
count for uncertainties in the measurements@5–8#. It is gen-
erally assumed that the observations,yi , are conditionally
independent random variables given unknown system st
xi , i 51, . . . ,N. The time evolution of the systems states
determined by a parametric nonlinear functionxi

5 f (xi 21 ,a) that depends on the previous state and an
known p-dimensional parameter vectora. Least-squares
methods@9,10# to estimate the unknown model paramete
that minimize the sum of squared one-step prediction err
systematically under- or overestimate the parameters bec
they do not take into account that the values of the ‘‘ind
pendent’’ variable are subject to measurement errors. T
least-squares methods@11,12#, introduced by Kostelich@13#
to reduce this so-called errors-in-variables bias of LS, su
from so-called time-series bias since they ignore the se
correlation between successive observations. As show
@14#, both errors-in-variables bias and time-series bias ca
eliminated by allowing for stochastic errors in the dynami
thus casting the problem into the framework of nonline
state-space modeling. As shown for instance in@14# and@15#,
the Bayesian approach@16# to parameter estimation ca
quantify both process and observation errors through
posterior distribution of the model parameters and difficult
with Bayesian posterior computation can be overcome us
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computer-intensive Markov chain Monte Carlo~MCMC!
methods@17#.

The Gibbs sampler is used in@14# to generate a sampl
from the joint posterior distribution of unknown paramete
and unknown system states. However, due to the temp
dependencies between consecutive states, there are high
terior correlations that cause the Markov chain to traverse
state space in only very tiny steps and thus to mix ine
ciently. Therefore, convergence of the Markov chain to
equilibrium distribution is slow, a large number of iteration
are required to achieve a satisfactory precision of param
estimates, and the estimation procedure becomes very
consuming. A far more efficient MCMC method can be d
veloped by first integrating out the unknown states. This
duces the problem of sampling vectors in a hi
(N1p)-dimensional space to that of sampling in a lo
(p)-dimensional space. If the state transitions werelinear,
this integration could be performed using the Kalman fil
@18,19#. Due to the nonlinear chaotic dynamics, howev
this is not feasible here. Thus we suggest an approach
combines the extended Kalman filter@20# with the Laplace
approximation@21#. The extended Kalman filter~EKF! has
been developed for nonlinear non-Gaussian state-space
els whereas the Laplace approximation has a long traditio
Bayesian computation as an asymptotic approximation to
posterior distribution@22#. The proposed technique is no
restricted to Gaussian errors but can also be applied to m
models robust by allowing for outlying observations throu
heavy-tailed error distributions. This yields an extremely
fective and fast MCMC technique that provides a unifie
practical likelihood-based framework for the analysis of no
linear dynamical systems.

The outline of the paper is as follows. In Sec. II we d
scribe the theory underlying the calculation of the likeliho
function via extended Kalman filtering and Laplace appro
mation. MCMC techniques to sample from the posterior d
tribution are detailed in Sec. III. In Sec. IV we illustrate th
new technique using the logistic, the tent, and the Mor
Ricker maps. Its performance is compared to that of
Gibbs sampler. We measure performance in terms of C
time, integrated autocorrelation time, and a variety of ot
diagnostic measures. We conclude in Sec. V with a disc
sion on the efficiency of this approach.
©2001 The American Physical Society06-1
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II. EXTENDED KALMAN FILTERING FOR NONLINEAR
STATE-SPACE MODELS

Following the notation of@14#, we model the noisy obser
vationsyi , i 51, . . . ,N, of a time series as being cond
tionally independent Gaussian random variables given un
served sufficient true statesxi , i.e.,

yi uxi5xi1v i , v i;
iid

N~0,e2!, i 51, . . . ,N, ~1!

with known error variancee2 and where iid denotes indepen
dent and identically distributed. The time evolution of t
system states is itself assumed to be Markovian,

xi uxi 21 ,a5 f ~xi 21 ,a!1ui , ui;
iid

N~0,t2!,

i 51, . . . ,N, ~2!

where f (xi 21 ,a) is a nonlinear function ofxi 21 , a is a
p-dimensional parameter, andx0 a starting value. For ease o
notation, we assume that the observations as well as
states are one dimensional, but it is straightforward to ext
this to thed-dimensional case.

Here, the focus is on estimating the unknown parame
u5(a,t2,x0) given the observationsyi , with the parameter
~vector! a that defines the nonlinear function being the ma
parameter~vector! of interest. A fully Bayesian approac
specifies the joint distribution of all observables@y
5(y1 , . . . ,yN)# and parameters@u5(a,t2,x0)#. The joint
probability density function~PDF! p(y,u) can be factorized
into the product of the PDF of parameters,p(u), referred to
as theprior PDF, and the conditional PDF of the observ
tions given the parameters,p(yuu), referred to as the sam
pling distribution or likelihood, i.e., p(u,y)5p(yuu)p(u).
The prior PDF contains all pre-experimental informati
about the parameters stemming from substantive knowle
and expert opinion. After observing the data, prior know
edge about the parameters, as quantified through theprior
PDF of u, is updated to theposterior PDF, p(uuy), via the
Bayes theorem:

p~uuy!5
p~yuu!p~u!

p~y!
, ~3!

wherep(y)5*p(yuu)p(u)du is the marginal PDF ofy. Due
to the conditioning on unobserved states in a state-sp
model, the likelihoodp(yuu) is not available in closed form
but requiresN-dimensional integration over the state vec
x5(x1 , . . . ,xN) as

p~yuu!5E p~yuu,x!p~xuu!dx. ~4!

Taking the temporal structure of the observations into
count, we can factorize the likelihood by successive con
tioning into
01620
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p~yuu!5p~y1uu!)
i 52

N

p~yi uyi 21 ,u!, ~5!

where yi 215(y1 , . . . ,yi 21) collects all the observable in
formation obtained up until time i 21. Thus, the
N-dimensional integration in Eq.~4! can be reduced toN
successive 1-dimensional integrations, starting with

p~y1uu!5E p~y1ux1 ,u!p~x1uu!dx1 ~6!

and, subsequently, fori 52, . . . ,N:

p~yi uyi 21!5E p~yi uxi ,u!p~xi uyi 21 ,u!dxi . ~7!

This also implies that the data can be processed in a si
sweep, updating knowledge about states as we receive m
information. For instance, in the light of just the first obse
vation y1, we update the priorp(x1uu) of the unknown state
x1 to thefiltering PDF via Bayes theorem

p~x1uy1 ,u!5
p~y1ux1 ,u!p~x1uu!

p~y1uu!
~8!

@where the denominator is just the first factor in the like
hood decomposition in Eq.~4!, given in Eq.~6!#. As both
likelihood, p(y1ux1 ,u), and prior, p(x1uu), are Gaussian
N(x1 ,e2) andN„f (x0 ,a),t2

… PDF’s, respectively, the poste
rior filtering PDF p(x1uy1 ,u) is again Gaussian with mea
x̂1 and varianceŝ1

2 given by

x̂15
t2

e21t2
y11

e2

e21t2
f ~x0 ,a!, ~9!

ŝ1
25S 1

e2
1

1

t2D 21

, ~10!

respectively. Furthermore, the denominator in Eq.~8! is

p~y1uu!5E p~y1ux1 ,u!p~x1uu!dx1 ~11!

5A2pe2c1(y1 ,x̂1)uD2c1~y1 ,x̂1!u21/2, ~12!

where

c1~y1 ,x1!52 log@p~y1ux1 ,u!p~x1uu!#

5
1

2
log~2pe2!1

1

2e2
~y12x1!2

1
1

2
log~2pt2!1

1

2t2
@x12 f ~x0 ,a!#2,

andD2c1(y1 ,x1) denotes the second-order derivative of t
function c1(y1 ,x1) with respect to x1. Note, that x̂1

5argminx1
c1(y1 ,x1) and ŝ1

25uD2c1(y1 ,x̂1)u21. If either
6-2
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likelihood @p(y1ux1 ,u)# or prior @p(x1uu)# were not Gauss-
ian, the identity~12! would become an approximation to th
integral ~11!, the so-called Laplace approximation, an
asymptotic approximation of the posterior distribution th
dates back to the work of Laplace in the eighteenth cen
@21,22#. This is easily seen by a second-order Taylor se
expansion ofc1(y1 ,x1) at x̂15argminx1

c1(y1 ,x1).

We now learn about a state at timei, successively fori
52, . . . ,N, given comtemporaneously available inform
tion. This is done repeatedly in a two-stage procedure
on-line extended Kalman filtering. In the first stage of t
extended Kalman filter, after observingyi 21 but before ob-
servingyi , thepredictivePDF of xi uyi 21 ,u is approximated
by a normal PDFp̃(xi uyi 21 ,u) with mean and variance
given by

b i5 f ~ x̂i 21 ,a! ~13!

and

g i
25@ f 8~ x̂i 21 ,a!#2ŝ i 21

2 1t2, ~14!

respectively, using a first-order Taylor series expansion
f (xi 21 ,a) at the meanx̂i 21 of xi 21uyi 21 ,u. Here, f 8(x,a)
denotes the first derivative off (x,a) with respect tox. In the
second stage, after observingyi , the filtering PDF
p(xi uyi ,u) is updated via Bayes theorem to

p~xi uyi ,u!}p~yi uxi ,u!p~xi uyi 21 ,u!

'p~yi uxi ,u! p̃~xi uyi 21 ,u! ~15!

and approximated by a normal distribution with mean a
variance given by

x̂i5
g i

2

e21g i
2

yi1
e2

e21g i
2
b i , ~16!

ŝ i
25S 1

e2
1

1

g i
2D 21

. ~17!

Using the Laplace approximation then yields an approxim
tion to thei th likelihood contribution in Eq.~7!

p~yi uyi 21 ,u!5E p~yi uxi ,u!p~xi uyi 21 ,u!dxi

'E p~yi uxi ,u! p̃~xi uyi 21 ,u!dxi

5A2pe2c i (yi ,x̂i )uD2c i~yi ,x̂i !u21/2, ~18!

where
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c i~yi ,xi !52 log@p~yi uxi ,u! p̃~xi uyi 21 ,u!#

5
1

2
log~2pe2!1

1

2e2
~yi2xi !

2

1
1

2
log~2pg i

2!1
1

2g i
2 ~xi2b i !

2.

Note that

x̂i5argminxi
c i~yi ,xi !, ~19!

ŝ i
25uD2c i~yi ,x̂i !u21. ~20!

Completion of this sequential two-stage procedure yie
a closed-form approximate expression for the likelihood
Eq. ~5! that no longer depends on the latent system statex.
More precisely, this likelihood is given by

p̃~yuu!5expH 2
N

2
log~2pe2!2

1

2e2 (
i 51

N

~yi2 x̂i !
2

2
1

2 (
i 51

N

log~2pg i
2!2(

i 51

N
1

2g i
2 ~ x̂i2b i !

2

2(
i 51

N

logS 1

ŝ i
2D J ~21!

with b15 f (x0 ,a) andg1
25t2. From Eq.~3! we then obtain

the posterior PDF up to normalization constant:

p̃~uuy!}p~u!p̃~yuu!. ~22!

III. METROPOLIS-HASTINGS ALGORITHM

Various techniques are feasible to obtain a sample fr
the posterior~22!, e.g., importance resampling and MCM
algorithms. We suggest the Metropolis-Hastings~MH! algo-
rithm, developed by Metropoliset al. @23# and generalized
by Hastings@24#. It is a MCMC method which means that
generates a Markov chain whose equilibrium distribution
just the target posterior distribution. The MH algorith
shares the concept of a generating PDF with the well-kno
simulation technique ofrejection sampling@22#. However,
the candidate generating PDF q(uuuc), *q(uuuc)du51,
can now depend on the current stateuc of the sampling pro-
cess. A new candidateu* is accepted with a certainaccep-
tance probabilitya(u* uuc) also depending on the curren
state uc , and chosen such that the transition probabil
p(uc ,u* )5q(u* uuc)a(u* uuc) satisfies detailed balance
This is met by setting

a~u* uuc!5minH p̃~u* uy!q~ucuu* !

p̃~ucuy!q~u* uuc!
,1J .
6-3
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FIG. 1. Posterior means and 95% poster
probability intervals for increasing noise leve
obtained using the EKF, based on 100 obser
tions from the logistic map with true paramete
a51.85 andx050.3.
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The steps of the MH algorithm are therefore
~1! Step 0: Start with an arbitrary valueu0.
~2! Step k11: Generateu* from q(•uuk) and u from

U(0,1). If u<a(u* uuk) set uk115u* ~acceptance!. If u
.a(u* uuk) setuk115uk ~rejection!.

Note that the MH algorithm does not require the norm
ization constant of the target PDF. The outcomes from
MH algorithm can be regarded as a sample from the inv
ant PDF only after a certain ‘‘burn-in’’ period. A menu
driven collection of SPLUS functions,CODA @25#, is avail-
able for analyzing the samples obtained from MCM
Besides trace plots and convergence diagnostics base
@26#, CODA calculates statistical summaries of the poster
distributions and kernel density estimates.CODA can be
downloaded from site in Ref.@35#.

The efficiency of the MH algorithm depends crucially o
the choice of the proposal PDF. Similar to rejection sa
pling, the efficiency can be improved by choosing a propo
that is ‘‘close’’ to the posterior PDF. Once more, we ma
use of the Laplace approximation top̃(uuy) to determine a
good proposal PDF. This means that we use a multivar
normal PDF with meanm equal to the posterior mode, an
covariance matrixS equal to the inverse of the Hessian m
trix of the log posterior, i.e., defining

f~u!52 log@p~u! p̃~yuu!#,

the mean and covariance matrix are

m5argminu f~u!,

S5uD2f~m!u21.

The covariance matrix is dynamically scaled until a reas
able acceptance rate in the MH algorithm is observed.

Thus, to determine the multivariate normal proposal PD
we need to find the posterior mode, or alternatively minim
f(u). To this end, we employ the Newton-Raphson alg
rithm @27#, and make use of automatic differentiation@28# to
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calculate the first- and second-order partial derivatives
f(u). This can be done to the same degree of accuracy a
function evaluation itself. We use automatic differentiati
implemented in a C11 class library which combines an arra
language with the reverse mode of automatic differentiat
supplemented with precompiled adjoint code for the deri
tives of common array and matrix operations@29#.

IV. EXAMPLES

A. Logistic map

In order to compare results to those in@5# and @14#, we
simulatedN5100 observations from Eq.~1! and underlying
system evolution given by the logistic mapxi512axi 21

2

with true parametersa51.85, x050.3, and noise levelsl
5snoise/ssignal ranging from 0.05 to 0.5. Assuminga priori
independence of the parametersa, x0, andt2, we specified a
prior uniform distribution fora on @0,4#, a uniform distribu-
tion for x0 on @0,1#, and a diffuse inverse-gamma distributio
for t2 with mean 0.005 and standard deviation 0.05. Co
bining this with the likelihood calculated by the EKF in Eq
~21!, we performed 6000 MCMC iterations using the M
algorithm as described in Sec. III. We discarded the fi
1000 observations as a burn-in period so that estimates
based on a final sample size of 5000. These will be refer
to as Bayesian EKF estimates in the sequel.

Figure 1 displays the posterior means of the parameta
together with 95% credibility intervals for varying degrees
noise levels. A comparison with Fig. 2 of@14# shows an
equivalent precision of the Bayesian EKF estimates co
pared to the one in@14# using the Gibbs sampler implemen
tation in BUGS @30#. BUGS ~Bayesian inference using Gibb
sampling! is a software package for Bayesian posterior sim
lation using the Gibbs sampler. It is freely available and c
be downloaded from the site of Ref.@35#. Note that param-
eter estimates in@14# were based on 100 000 iterations of th
Gibbs sampler after a burn-in period of 10 000. This lar
sample size was necessary because of the slow converg
of the single-update Gibbs sampler. However, the Gib
sampler seems to handle larger signal-to-noise ratios be
6-4
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FAST BAYESIAN RECONSTRUCTION OF CHAOTIC . . . PHYSICAL REVIEW E 65 016206
For a more detailed comparison of the efficiency of t
EKF to that of the Gibbs sampler, we selected the simula
time series for noise level 0.1 and performed 6000 iterati
of the Gibbs sampler as described in@14# usingWINBUGS, the
BUGS version for theWINDOWS operating system. Again, th
first 1000 iterations were discarded. Figure 2 and Fig. 3
play trace plots and kernel density estimates of the th
parametersa, t2, and x0 based on 5000 iterations of th
extended Kalman filter and the Gibbs sampler, respectiv
We base the comparison on a variety of convergence d
nostics detailed in the sequel.

The Markov chain generated by the EKF passed
Heidelberger and Welsh@31# stationarity and halfwidth test
but the Gibbs sampling chain failed, indicating that the nu
ber of iterations needs to be increased by an order of m
nitude to achieve convergence to the stationary distribut
However, 5000 iterations are sufficient for the EKF.

We used the Raftery and Lewis@32# convergence diagnos
tic to provide a sample size estimate needed to achiev
certain accuracy of estimated quantiles of parameters.
instance, to obtain an estimate of the 2.5th quantile of
parametera to an accuracy of60.01 with a probability of
0.9, one would need a minimum ofn54764 iterations of the
EKF but a minimum ofn528 932 iterations of the Gibb
sampler. If one could generateindependentsamples, only

FIG. 2. Trace~left! and kernel density~right! plots of the mar-
ginal posterior distributions generated by EKF for the parametera,
t2, and x0 based on 100 observations from the logistic map w
true parametersa51.85,x050.3, and noise level 0.1.
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nmin5660 values would be required. Thus, the so-calledde-
pendence factor I5n/nmin that measures the increase in t
number of iterations needed to reach convergence du
dependence between the samples in the Markov chain eq
7.2 for the EKF but 43.8 for the Gibbs sampler.

Figure 4 and Fig. 5 display the correlograms, i.e., t
graphs of the autocorrelation functions within each chain
each of the three parameters. The autocorrelation functio
a time series xt , t51, . . . ,N, is a function of the
time distances orlags t50,1, . . . ,N, defined by c(t)
5( t(xt2 x̄)(xt1t2 x̄)/( t(xt2 x̄)2. High autocorrelations in-
dicate slow mixing which will be reflected by plots o
sample traces which ‘‘snake’’ slowly up and down, as o
posed to showing more rapid fluctuations over the sam
space. Such a feature can be clearly discerned from Fig. 3
the Gibbs sampling chain. Also, while the lag 50 autocor
lation for the Gibbs sampling chain for parametera is still
0.566, it is merely 0.0163 for the EKF chain.

The integrated autocorrelation time~IACT or tc) @33#,
also referred to as ‘‘autocovariance time,’’ ‘‘autocorrelatio
time,’’ and ‘‘inefficiency factor,’’ is the number of correlate
samples with the same variance-reducing power as one i
pendent sample. This is seen as follows: the estimate of
posterior mean of a parameterx is the average ofn corre-

FIG. 3. Trace~left! and kernel density~right! plots of the mar-
ginal posterior distributions generated byBUGS for the parametersa,
t2, and x0 based on 100 observations from the logistic map w
true parametersa51.85,x050.3, and noise level 0.1.
6-5
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RENATE MEYER AND NELSON CHRISTENSEN PHYSICAL REVIEW E65 016206
latedsamples from a Markov chain, its variance is a factor
IACT larger than the variance of the sample mean based
the same number of independent samples, i.e.,

var~ x̄MC!5tc

var~x!

n
.

A reasonable estimate of the TIAC can be obtained by div
ing the estimated squared Monte Carlo standard e
~MCSE! of x̄ by the the estimated standard deviation a
multiplying by the sample size~here,n55 000). We calcu-
lated the Monte Carlo standard error by Geweke’s@34#
method, often referred to as ‘‘numerical standard error’’
‘‘time-series standard error’’ which is based on estimat
the spectral density.

Table I compares the posterior means, time series stan
errors, posterior standard deviations of the parameters,
grated autocorrelation times, and CPU time of the EKF w
the Gibbs sampling chain. All computations were perform
on a Pentium III, 700-MHz PC.

The computational efficiency of an algorithm is dete
mined principally by its autocorrelation time. If one wish
to compare two alternative MCMC algorithms, the better
the one with smaller IACT. For parametera, the IACT is a
factor of almost 5 higher for the Gibbs sampler than for EK

FIG. 4. Correlograms generated by EKF for the parametera,
t2, and x0 based on 100 observations from the logistic map w
true parametersa51.85,x050.3, and noise level 0.1.
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Of course, in practice there may arise a tradeoff betw
‘‘physical’’ autocorrelation time~i.e., IACT measured init-
erations! and computational complexityper iteration. But
even here, the CPU time for EKF is a third lower than CP
time for the Gibbs sampler.

More striking is the difference in efficiency if estimatio
is based on 1000 instead of 100 observations. The G
sampler now has to sample from the full conditional pos
rior distributions of 1003 instead of 103 parameters. T
causes an increase in CPU time by a factor of'10 as seen in
Table II. Table II compares the results obtained from us
the extended Kalman filter with those using the Gibbs sa
pler as implemented inWINBUGS on the basis of 1000 obser
vations from the logistic map for a noise level of 0.
Whereas the IACT for parametera for the EKF increases
only marginally from 6.5 to 7.3 and even decreases from
to 7.5 for t2, it almost doubles and triples for the Gibb
sampling chain fora andt2, respectively. The CPU time fo
EKF also increases but only to 30 s instead of 78 s for
Gibbs sampler.

Overall, all convergence diagnostics demonstrate a m
improved efficiency of the EKF over the Gibbs sampler.

B. Other Maps

We also simulated observations with other underlying s
tem evolutions. Here we report on results obtained for

FIG. 5. Correlograms generated byBUGS for the parametersa,
t2, and x0 based on 100 observations from the logistic map w
true parametersa51.85,x050.3, and noise level 0.1.
6-6
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TABLE I. Comparison of Bayesian estimates obtained using the extended Kalman filter with those
the Gibbs sampler~WINBUGS! based on 100 observations from the logistic map for noise level 0.1.

BUGS EKF
Mean MCSE IACT SD Mean MCSE IACT SD

a 1.84 1.5531023 29.2 2.0331022 1.84 7.7431024 6.5 2.1531022

t2 8.2131024 1.4331025 13.4 2.7731024 8.1331024 1.0931025 8.9 2.5831024

x0 2.9331021 5.8531024 1.8 3.0631022 2.9031021 1.0831023 6.8 2.9231022
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tent and Moran-Ricker map. Since our results are consis
with those from the logistic map we will only briefly sum
marize the results.

The so-called ‘‘tent map’’ has much in common with th
logistic map @8#. We simulatedN5100 observations from
Eq. ~1! and underlying system evolution given by

xi5H axi 21 , if 0<xi 21,0.5,

a~12xi 21!, if 0.5<xi 21<1

with true parametersx050.25, a52, and noise levell
5snoise/ssignal50.05. Using the same prior as in the pr
vious example, we performed 6000 MCMC iterations us
the EKF andBUGS. Both techniques estimated the paramet
with reasonably high accuracy. Our results demonstrate
the Gibbs sampler requires a longer burn-in period. It has
reached equilibrium until about 3000 iterations. Again, au
correlations are much lower for the EKF than the Gibbs sa
pler. The lag 50 autocorrelation for the main parameter
interesta, for instance, is 0.0528 for the EKF as opposed
0.641 for the Gibbs sampler. This is also reflected in
IACT of 6.9 for EKF versus 12.4 for the Gibbs sampler.

A similar gain in efficiency could be observed when t
EKF was applied to the Moran-Ricker map. Again, we o
served that the Gibbs sampler seems to cope better
higher (.0.5) signal-to-noise ratios. We simulatedN5100
observations from Eq.~1! and underlying system evolutio
given by the Moran-Ricker mapxi5xi 21 exp@a(12xi21)#
with true parametersx050.5, a53.7, and noise levell
5snoise/ssignal50.1.

Again, both EKF and Gibbs sampler are capable of ac
rately estimating the unknown parameters. Our results re
that the Gibbs sampler requires a much larger burn-in pe
and has not reached equilibrium as quickly as the EFK ch
The correlograms reveal a higher efficiency of the EKF. T
lag 50 autocorrelation for the main parameter of interesa,
01620
nt
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-
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e

for instance, is 0.0072 for the EKF as opposed to 0.867
the Gibbs sampler. In this example, the IACT for the para
eter a is 8.1 for the EKF compared to 17.9 for the Gibb
sampler.

V. DISCUSSION

The single-update Gibbs sampler for posterior compu
tion in nonlinear chaotic state-space models@14# is very
simple to implement, reliable, and easily generalizab
However, it can have poor convergence properties t
prompted us to develop a more efficient sampler that expl
the time-series structure of the model.

The Gibbs sampler samples from thejoint posterior dis-
tribution of the statesand the model parameters. Slow con
vergence of the Gibbs sampler is due to high posterior c
relations between the unknown system states that cause
Markov chain to make only tiny moves from one iteration
the next. Thus, it will take a long time to traverse the who
state space. By integrating out the latent states and samp
from themarginalposterior distribution of the parameters
interest (a,t2,x0) the dimension of the problem can be r
duced enormously. Instead of sampling from the jointN
1p-dimensional posterior PDF, one only needs to sam
from the marginalp dimensional posterior PDF. Thus, th
gain in efficiency is even greater the larger the sample sizN,
as demonstrated for the logistic map in Sec. IV.

For the integration, we make use of the time-series str
ture. Although nonlinearity in the state equation prohibits t
use of the Kalman filter for sequential integration, a vers
of the extended Kalman filter in combination with a Lapla
approximation performs well. The simulations conducted
this paper show that our proposed method can achieve
nificant efficiency gains over the Gibbs sampler for estim
ing the parameters of nonlinear chaotic dynamics.

The formulas in the paper are not restricted to the Gau
using
TABLE II. Comparison of Bayesian estimates obtained using the extended Kalman filter with those
the Gibbs sampler~WINBUGS! based on 1000 observations from the logistic map for noise level 0.1.

BUGS EKF
Mean MCSE IACT SD Mean MCSE IACT SD

a 1.84 4.2831025 41.2 4.7131023 1.83 1.9931025 7.3 5.2231023

t2 2.3131024 3.0631026 33.5 3.7431025 2.5131024 1.6931026 7.5 4.3531025

x0 2.9731021 3.2731024 2.2 1.5531022 2.9731021 5.7231025 7.1 1.5131022

Time ~s! 78 30
6-7
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ian error distribution but can be applied to other distrib
tions. One important extension would be thet distribution or
a mixture of a normal and at distribution~with low degrees
of freedom! to allow for outliers in the observations. In th
case, the defining Eq.~16! and Eq.~17! would have to be
substituted by Eq.~19! and Eq.~20!, respectively. The re-
quired minimum could be obtained using the Newto
Raphson algorithm. Using a heavy-tailed error distribut
has the potential of making the parameter estimates ro
with respect to crude measurement errors. The benefit
s

rc

h.

s

s
,

,

nd
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-

-
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of

such models still have to be explored and this will be a to
for further research.
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@2# J.-P. Eckmann and D. Ruelle, Rev. Mod. Phys.57, 617~1985!.
@3# D. Ruelle, Chaotic Evolution and Strange Attractors~Cam-

bridge University Press, New York, 1989!.
@4# R. L. Devaney,Introduction to Chaotic Dynamical System

~Benjamin-Cummings, Menlo Park, CA, 1989!.
@5# P. E. McSharry and L. A. Smith, Phys. Rev. Lett.83, 4285

~1999!.
@6# E. J. Kostelich and J. A. Yorke, Phys. Rev. A38, 1649~1988!.
@7# S. M. Hammel, Phys. Lett. A148, 421 ~1990!.
@8# M. Berliner, J. Am. Stat. Assoc.86, 938 ~1991!.
@9# P. Grassberger, T. Schreiber, and C. Schaffrath, Int. J. Bifu

tion Chaos Appl. Sci. Eng.1, 521 ~1991!.
@10# H. D. I. Abarbanel, R. Brown, J. J. Sidorowich, and L. S

Tsimring, Rev. Mod. Phys.65, 1331~1993!.
@11# S. Van Huffel and J. Vandewalle,The Total Least Square

Problem~SIAM, Philadelphia, 1991!.
@12# E. J. Kostelich and T. Schreiber, Phys. Rev. E48, 1752~1993!.
@13# E. J. Kostelich, Physica D58, 138 ~1992!.
@14# R. Meyer and N. L. Christensen, Phys. Rev. E62, 3535~2000!.
@15# M. E. Davies, Chaos8, 775 ~1998!.
@16# B. P. Carlin and T. A. Louis,Bayes and Emperical Baye

Methods for Data Analysis~Chapman and Hall, London
1996!.

@17# W. R. Gilks, S. Richardson, and D. J. Spiegelhalter,Markov
Chain Monte Carlo in Practice~Chapman and Hall, London
1996!.

@18# R. E. Kalman, J. Basic Eng.82, 34 ~1960!.
@19# R. J. Meinhold and N. D. Singpurwalla, Am. Stat.37, 123

~1983!.
@20# A. C. Harvey,Forecasting, Structural Time Series Models a
a-

the Kalman Filter~Cambridge University, Cambridge, 1990!.
@21# P. S. Laplace, Stat. Sci.1, 364 ~1986!.
@22# D. Gamerman,Markov Chain Monte Carlo, Stochastic Simu

lation for Bayesian Inference~Chapman & Hall, London,
1997!.

@23# N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H
Teller, and E. Teller, J. Chem. Phys.21, 1087~1953!.

@24# W. K. Hastings, Biometrika57, 97 ~1970!.
@25# N. G. Best, M. K. Cowles, and S. K. Vines,CODA Manual

Version 0.30~MRC Biostatistics Unit, Cambridge, 1995!.
@26# M. K. Cowles and B. P. Carlin, J. Am. Stat. Assoc.91, 883

~1996!.
@27# L. Fahrmeir and G. Tutz,Multivariate Statistical Modelling

Based on Generalized Linear Models~Springer-Verlag, New
York, 1994!.

@28# A. Griewank and G. F. Corliss,Automatic Differentiation of
Algorithms: Theory, Implementation, and Application~SIAM,
Philadelphia, 1991!.

@29# D. Fournier,AD Model Builder, Version 5.0.1.~Otter Research
Ltd, Canada, 2000!.

@30# D. J. Spiegelhalter, A. Thomas, N. Best, and W. R. Gilks,BUGS

0.5, Bayesian Inference using Gibbs Sampling, Manual~Ver-
sion ii! ~MRC Biostatistics Unit, Cambridge, 1996!.

@31# P. Heidelberger and P. Welch, Oper. Res.31, 1109~1983!.
@32# A. L. Raftery and S. Lewis, Stat. Sci.7, 493 ~1992!.
@33# A. D. Sokal, in Lectures at the Cargese Summer School

‘‘Functional Integration: Basics and Applications,’’ 1996.
@34# J. Geweke, inBayesian Statistics 4: Proceedings of the Four

Valencia International Meeting, edited by J. M. Bernado, J. O
Berger, A. P. Dawid, and A. F M. Smith~Oxford Univerity
Press, 1992!.

@35# http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml
6-8


