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Fast Bayesian reconstruction of chaotic dynamical systems via extended Kalman filtering
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We present an improved Markov chain Monte Ca(MdCMC) algorithm for posterior computation in
chaotic dynamical systems. Recent Bayesian approaches to estimate the parameters of chaotic maps have used
the Gibbs sampler which exhibits slow convergence due to high posterior correlations. Using the extended
Kalman filter to compute the likelihood function by integrating out all unknown system states, we obtain a very
efficient MCMC technique. We compare the new algorithm to the Gibbs sampler using the logistic, the tent,
and the Moran-Ricker maps as applications, measuring the performance in terms of CPU and integrated
autocorrelation time.
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I. INTRODUCTION computer-intensive Markov chain Monte Car[MCMC)
methodg 17].

In the physical sciences, experimental data often show an The Gibbs sampler is used [d4] to generate a sample
irregular, complicated, and ostensibly random time depenf-rom the joint posterior distribution of unknown parameters
dence. This led to the use of chaotic dynamical processes f'd unknown system states. However, due to the temporal

order to explain and model the observed irregularities4], ~ dePendencies between consecutive states, there are high pos-
. . terior correlations that cause the Markov chain to traverse the
In this paper we address the problem of reconstructing th

i . . Vi State space in only very tiny steps and thus to mix ineffi-
nonlinear dynamic equations assumed to be underlying agiently. Therefore, convergence of the Markov chain to the

observed noisy time series. These observations can stegyyilibrium distribution is slow, a large number of iterations
from laboratory experiments in the physical sciences or “reakre required to achieve a satisfactory precision of parameter
world” systems. estimates, and the estimation procedure becomes very time
Previous work on nonlinear noise reduction from a dy-consuming. A far more efficient MCMC method can be de-
namical systems perspective uses probabilistic models to ageloped by first integrating out the unknown states. This re-
count for uncertainties in the measureme®ts8. It is gen-  duces the problem of sampling vectors in a high
erally assumed that the observatiogs, are conditionally ~(N+p)-dimensional space to that of sampling in a low
independent random variables given unknown system statd®)-dimensional space. If the state transitions wimear,
x;,i=1,... N. The time evolution of the systems states is'"'S Integration could be performed using the Kalman filter
determined by a parametic nonlinear functior [1.8,1'9|. Due to the nonlinear chaotic dynamics, however,

: this is not feasible here. Thus we suggest an approach that
=f(xi_1,a)_ that erends on the previous state and an UNzombines the extended Kalman filfg20] with the Laplace
known p-dimensional parameter vecta. Least-squares ,onroximation[21]. The extended Kalman filtefEKF) has
methods9,10] to estimate the unknown model parametersyeen developed for nonlinear non-Gaussian state-space mod-
that minimize the sum of squared one-step prediction errors|s whereas the Laplace approximation has a long tradition in
systematically under- or overestimate the parameters becauggyesian computation as an asymptotic approximation to the
they do not take into account that the values of the “inde-posterior distribution[22]. The proposed technique is not
pendent” variable are subject to measurement errors. Totgkstricted to Gaussian errors but can also be applied to make
least-squares methodi$1,12, introduced by Kostelichil3]  models robust by allowing for outlying observations through
to reduce this so-called errors-in-variables bias of LS, suffeheavy-tailed error distributions. This yields an extremely ef-
from so-called time-series bias since they ignore the serigective and fast MCMC technique that provides a unified,
correlation between successive observations. As shown ipractical likelihood-based framework for the analysis of non-
[14], both errors-in-variables bias and time-series bias can bknear dynamical systems.
eliminated by allowing for stochastic errors in the dynamics, The outline of the paper is as follows. In Sec. Il we de-
thus casting the problem into the framework of nonlinearscribe the theory underlying the calculation of the likelihood
state-space modeling. As shown for instancil#] and[15],  function via extended Kalman filtering and Laplace approxi-
the Bayesian approacfil6] to parameter estimation can mation. MCMC techniques to sample from the posterior dis-
quantify both process and observation errors through theibution are detailed in Sec. lIl. In Sec. IV we illustrate the
posterior distribution of the model parameters and difficultiesnew technique using the logistic, the tent, and the Moran-
with Bayesian posterior computation can be overcome usin@icker maps. Its performance is compared to that of the

Gibbs sampler. We measure performance in terms of CPU

time, integrated autocorrelation time, and a variety of other
*Email address: meyer@stat.auckland.ac.nz diagnostic measures. We conclude in Sec. V with a discus-
"Email address: nchriste@carleton.edu sion on the efficiency of this approach.
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Il. EXTENDED KALMAN FILTERING FOR NONLINEAR N
STATE-SPACE MODELS pY0=p(yil 11 pyilyi-1.0), (5)
Following the notation of14], we model the noisy obser-
vationsy;, i=1,... N, of a time series as being condi- wherey;_;=(y, ...,yi—1) collects all the observable in-
tionally mdependent Gau53|an random variables given unokformation obtained up until timei—1. Thus, the
served sufficient true states, i.e., N-dimensional integration in Eq4) can be reduced tdl

successive 1-dimensional integrations, starting with
iid
Yibi=xi+vi, =N, 1=1.. N (D) p(y1|0)=f P(yalx1, O)p(x1| O)dx; ®)

with known error variance? and where iid denotes indepen-
dent and identically distributed. The time evolution of the
system states is itself assumed to be Markovian,

and, subsequently, for=2, ... N:

p(Yi|Yi—1):J p(YilXi, ) p(Xi|yi—1,0)dX; . (7)
iid

Xi|Xi_1,a=f(xi_1,a)+u;, u~N(0,7), This also implies that the data can be processed in a single
sweep, updating knowledge about states as we receive more
i=1,...N, ) information. For instance, in the light of just the first obser-

vationy,, we update the priop(x,| ) of the unknown state

where f(x;_1,a) is a nonlinear function ok; _,, ais a Xy to thefiltering PDF via Bayes theorem

p-dimensional parameter, ang a starting value. For ease of p(Y1l%1,0)p(xy] 0)

notation, we assume that the observations as well as the p(xily.,0) = 0 (8

states are one dimensional, but it is straightforward to extend P(y1/0)

this to thed-dimensional case. %where the denominator is just the first factor in the likeli-
Here, the focus is on estimating the unknown parameter ood decomposition in Eq4), given in Eq.(6)]. As both

0=(a,%,%,) given the observationg; , with the parameter
(vecto) a that defines the nonlinear function being the main
parameter(vecton of interest. A fully Bayesian approach
specifies the joint distribution of all observabldy
=(yy, ..., yn)] and parameterg@=(a,7%,xo)]. The joint

likelihood, p(y1|x;,6), and prior, p(x,|6), are Gaussian
N(x;,€%) andN(f(xq,a),7%) PDF’s, respectively, the poste-
r|or filtering PDF p(x1|yl,0) is again Gaussian with mean
xl and vr:mancc—:er1 given by

probability density functiofPDF) p(y, #) can be factorized 2 2

into the product of the PDF of parametepg @), referred to oo T + f (9)
. ” X1=—> Y1t (Xg,@),

as theprior PDF, and the conditional PDF of the observa- e+ e+ 72

tions given the parameterp(y|6), referred to as the sam-
pling distribution or likelihood i.e., p(8,y)=p(y|0)p(6). ~, (101 !
The prior PDF contains all pre-experimental information 1= —2+; ; (10
about the parameters stemming from substantive knowledge €

and expert opinion. After observing the data, prior knowl-

o respectively. Furthermore, the denominator in Bj).is
edge about the parameters, as quantified througlptios P y =

PDF of 0, is updated to theosterior PDF, p(d]y), via the
Bayes theorem: P(Y1|0):f P(y1/X1,0)p(x1|0)dxy (11
(0| )= p(Y| 0)p( 0)’ 3) = \/ﬁe_“(yl’mD2¢1(Y1-;<1)|_1/2- (12)
p(y)
where

wherep(y)=fp(y|0)p(0)d @ is the marginal PDF of. Due _
to the conditioning on unobserved states in a state-space Ya(y1:x1) =~ log[p(y1[X1, 0)p(x1|0)]
model, the likelihoodp(y| @) is not available in closed form

but requiresN-dimensional integration over the state vector = 1|og(27-r52)+ i(yl—xl)2
X=(X1, ... Xy) @S 2 262
1I 5 1 ¢ ,
p(y|6)= f p(y|0.)p(x| B)dx. (4 alogmTr ST

Taking the temporal structure of the observations into acandD #1(y1,x,) denotes the second-order derivative of the

count, we can factorize the likelihood by successive condifunction :(y;,x;) with respect tox;. Note, that X,
tioning into =argmin, ¢1(y1,X;) and o2=|D?yy(y1,%,)| 1. If either
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likelihood [ p(y;|x;,6)] or prior [p(x,|6)] were not Gauss- gi(yi %) =—log[ p(yi|x;,0)p(xi|yi_1,0)]

ian, the identity(12) would become an approximation to the

integral (11), the so-called Laplace approximation an

asymptotic approximation of the posterior distribution that

dates back to the work of Laplace in the eighteenth century

[21,22). This is easily seen by a second-order Taylor series 1 1

expansion ofi;(yy,x;) at >A<1=argmir;(1 P1(Y1.X1). + §|09(27T%2)+ F(Xi - Bi)>.
We now learn about a state at timesuccessively for !

=2,... N, given comtemporaneously available informa- Note that

tion. This is done repeatedly in a two-stage procedure by

on-line extended Kalman filtering. In the first stage of the

1 2 1 2
§|09(27Tf )+ E(Yi_xi)

extended Kalman filter, after observiryg ; but before ob- iizargmir;(i Li(Yi %), (19
servingy;, the predictivePDF of x;|y; _1, @ is approximated

by a normal PDFp(x|y;_;,6) with mean and variance o?=|D?y(y; x| % (20)
given by

Completion of this sequential two-stage procedure yields
Bi=f(x_1,a) (13)  a closed-form approximate expression for the likelihood of
Eq. (5) that no longer depends on the latent system states

and More precisely, this likelihood is given by

. . - N 1 .
V=" (X_y1.@)]%07 ,+ 7, (14) p<y|0>=exp|—§|og<2we2>——22 (yi—%i)?
2¢e°i=1

respectively, using a first-order Taylor series expansion of
f(x;_1,a) at the mean;_; of x,_4|y;_1,0. Here, f'(x,a)
denotes the first derivative éfx,a) with respect tox. In the
second stage, after observing;, the filtering PDF N 1
23|
i=1 (of

N N 1 A
> log(2my))— >, —(x—Bi)?
=1 =1 27i

N| =

p(xily;, ) is updated via Bayes theorem to (21

XilYi, 0 iIXi, Op(Xi|yi-1,0 , .
POXi[Yi 0)>P(yilxi OP(Xlyi-1.0) with 8;="f(x,,a) andy=72. From Eq.(3) we then obtain
~p(yilxi 10)5(Xi|)’i71,0) (15)  the posterior PDF up to normalization constant:

and approximated by a normal distribution with mean and P(Oly)xp(0)p(y|6). (22
variance given by

IIl. METROPOLIS-HASTINGS ALGORITHM
2 2
€

X = Y Vi B, (16) Various techniques are feasible to obtain a sample from
e+ yiz e+ yiz the posterion(22), e.g., importance resampling and MCMC
algorithms. We suggest the Metropolis-HastirilydH) algo-
1 rithm, developed by Metropolist al. [23] and generalized
P (17) by Hastingg24]. It is a MCMC method which means that it
Ple 2 generates a Markov chain whose equilibrium distribution is

just the target posterior distribution. The MH algorithm

ina the Laol imation th ield .__shares the concept of a generating PDF with the well-known
Using the Laplace approximation then yields an approximag;n,, |ation technique ofejection sampling22]. However,

tion to theith likelihood contribution in Eq(7) the candidate generating PDF (@|6,), [q(6l6,)d6=1,
can now depend on the current stéteof the sampling pro-

cess. A new candidat@* is accepted with a certaiaccep-
IO(Yi|Yi—1,0)=f p(YilXi, O)p(xi|yi-1,0)dx tance probability «(6*|6,) also depending on the current
state 6., and chosen such that the transition probability
%f p(Yi|Xi, OP(Xiyi_1,0)dx, p(6; ,.0*)=q(0*|0c)a(0*|0(3) satisfies detailed balance.
This is met by setting

-2 - giyi ) D2i i,Ai -2 18 D
V2me IRy R (18 wl]

a(0*|0c)=min{~ :
p(Oly)a( o |6

where
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The steps of the MH algorithm are therefore calculate the first- and second-order partial derivatives of
(1) Step 0: Start with an arbitrary valug. ¢(60). This can be done to the same degree of accuracy as the

(2) Stepk+1: Generate@* from q(-|6,) andu from  function evaluation itself. We use automatic differentiation
U(0,1). If u<a(6#6) set 6., ,=6¢ (acceptance If u  implemented in a C* class library which combines an array
> a(6*|6,) setb = 6 (rejection. language with th_e reverse m_ode of_ a_utomatic differentia_tion

Note that the MH algorithm does not require the normal-SUPplemented with precompiled adjoint code for the deriva-
ization constant of the target PDF. The outcomes from thdives of common array and matrix operatidi2s)].

MH algorithm can be regarded as a sample from the invari-
ant PDF only after a certain “burn-in” period. A menu-
driven collection of SPLUS functionsopA [25], is avail- A. Logistic map
able for analyzing the samples obtained from MCMC.
Besides trace plots and convergence diagnostics based Q
[26], cODA calculates statistical summaries of the posterio
distributions and kernel density estimatesoDA can be it true parametera=1.85, x,=0.3, and noise levels
downloadt_ac_l from site in Ref35]. . . = Onoise! Tsignal FaNging from 0.05 to 0.5. Assumirgpriori

The gﬁ|0|ency of the MH algorlthm (_jepends _cruplally ON independence of the parameters,, and 2, we specified a
the choice of the proposal PDF. Similar to rejection sam-yior uniform distribution fora on [0,4], a uniform distribu-
pling, the efficiency can be improved by choosing a proposaﬁon for xo on[0,1], and a diffuse inverse-gamma distribution
that is “close” to the posterior PDF. Once more, we makefor 72 with mean 0.005 and standard deviation 0.05. Com-
use of the Laplace approximation ff#éy) to determine a bining this with the likelihood calculated by the EKF in Eq.
good proposal PDF. This means that we use a multivariat€21), we performed 6000 MCMC iterations using the MH

IV. EXAMPLES

In order to compare results to those[B] and[14], we
[MulatedN = 100 observations from Eq1) and underlying
rsystem evolution given by the logistic mapzl—axiz_1

normal PDF with meanu equal to the posterior mode, and algorithm as described in Sec. Ill. We discarded the first
covariance matrix equal to the inverse of the Hessian ma- 1000 observations as a burn-in period so that estimates are
trix of the log posterior, i.e., defining based on a final sample size of 5000. These will be referred
to as Bayesian EKF estimates in the sequel.
(0)=—log p(O)P(y|0)], Figure 1 displays the posterior means of the paraneter
together with 95% credibility intervals for varying degrees of
the mean and covariance matrix are noise levels. A Comparison with Flg 2 @ﬂ.4] shows an
equivalent precision of the Bayesian EKF estimates com-
p=argmiry ¢(0), pared to the one ifil4] using the Gibbs sampler implemen-
tation in BUGS [30]. BUGS (Bayesian inference using Gibbs
3=|D%¢p(m)| 2. sampling is a software package for Bayesian posterior simu-

lation using the Gibbs sampler. It is freely available and can
The covariance matrix is dynamically scaled until a reasonbe downloaded from the site of R¢B5]. Note that param-
able acceptance rate in the MH algorithm is observed. eter estimates ifiL4] were based on 100 000 iterations of the
Thus, to determine the multivariate normal proposal PDFGibbs sampler after a burn-in period of 10000. This large
we need to find the posterior mode, or alternatively minimizesample size was necessary because of the slow convergence
¢(6). To this end, we employ the Newton-Raphson algo-of the single-update Gibbs sampler. However, the Gibbs
rithm [27], and make use of automatic differentiati®8] to  sampler seems to handle larger signal-to-noise ratios better.
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FIG. 2. Trace(left) and kernel densityright) plots of the mar-
ginal posterior distributions generated by EKF for the parameters
72, andx, based on 100 observations from the logistic map with
true parametera=1.85,x,=0.3, and noise level 0.1.

FIG. 3. Trace(left) and kernel densityright) plots of the mar-
ginal posterior distributions generated tyGs for the parameters,
72, andx, based on 100 observations from the logistic map with
true parametera=1.85,x,=0.3, and noise level 0.1.

For a more detailed comparison of the efficiency of the .
EKF to that of the Gibbs sampler, we selected the simulatefimin=660 values would be required. Thus, the so-catled
time series for noise level 0.1 and performed 6000 iterationendence factor+n/np;, that measures the increase in the
of the Gibbs sampler as described 1] usingwiNnBUGS, the ~ Number of iterations needed to reach convergence due to
BUGS version for thewINDOWS operating system. Again, the dependence between the samples_ln the Markov chain equals
first 1000 iterations were discarded. Figure 2 and Fig. 3 dis?-2 for the EKF but 43.8 for the Gibbs sampler.
play trace plots and kernel density estimates of the three Figure 4 and Fig. 5 display the correlograms, i.e., the
parametersa, 72, and X, based on 5000 iterations of the 9raphs of the autocorrelation functions within e_ach chal_n for
extended Kalman filter and the Gibbs sampler, respectively¢ach of the three parameters. The autocorrelation function of
We base the comparison on a variety of convergence diagt time seriesx;, t=1,... N, is a function of the
nostics detailed in the sequel. time distances orlags 7=0,1,... N, defined by c(7)

The Markov chain generated by the EKF passed the=3,(x,—X)(X;+,—X)/Z¢(x,—x)2. High autocorrelations in-
Heidelberger and Wels81] stationarity and halfwidth test, dicate slow mixing which will be reflected by plots of
but the Gibbs sampling chain failed, indicating that the num-sample traces which “snake” slowly up and down, as op-
ber of iterations needs to be increased by an order of mageosed to showing more rapid fluctuations over the sample
nitude to achieve convergence to the stationary distributionspace. Such a feature can be clearly discerned from Fig. 3 for
However, 5000 iterations are sufficient for the EKF. the Gibbs sampling chain. Also, while the lag 50 autocorre-

We used the Raftery and Lewi82] convergence diagnos- lation for the Gibbs sampling chain for parameteis still
tic to provide a sample size estimate needed to achieve @566, it is merely 0.0163 for the EKF chain.
certain accuracy of estimated quantiles of parameters. For The integrated autocorrelation tim@ACT or 7.) [33],
instance, to obtain an estimate of the 2.5th quantile of thalso referred to as “autocovariance time,” “autocorrelation
parametera to an accuracy oft0.01 with a probability of time,” and “inefficiency factor,” is the number of correlated
0.9, one would need a minimum of= 4764 iterations of the samples with the same variance-reducing power as one inde-
EKF but a minimum ofn=28932 iterations of the Gibbs pendent sample. This is seen as follows: the estimate of the
sampler. If one could generatadependentsamples, only posterior mean of a parameteris the average oh corre-
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FIG. 4. Correlograms generated by EKF for the parameders FIG. 5. Correlograms generated byGs for the parameters,
72, andx, based on 100 observations from the logistic map with 72, and x, based on 100 observations from the logistic map with
true parametera=1.85,x,=0.3, and noise level 0.1. true parametera=1.85,x,=0.3, and noise level 0.1.

L . . Of course, in practice there may arise a tradeoff between

lated samples from a Markov chain, its variance is a factor of. hysical” autocorrelation time(i.e., IACT measured ifit-

IACT larger than the variance of the sample' mean based Oéﬁations) and computational complexitper iteration But

the same number of independent samples, i.e., even here, the CPU time for EKF is a third lower than CPU

time for the Gibbs sampler.

) More striking is the difference in efficiency if estimation

n is based on 1000 instead of 100 observations. The Gibbs
sampler now has to sample from the full conditional poste-

A reasonable estimate of the TIAC can be obtained by divid+ior distributions of 1003 instead of 103 parameters. This

ing the estimated squared Monte Carlo standard errotauses an increase in CPU time by a factordi0 as seen in

(MCSE) of x by the the estimated standard deviation andTable Il. Table Il compares the results obtained from using

multiplying by the sample sizéhere,n=5 000). We calcu- the extended Kalman filter with those using the Gibbs sam-

lated the Monte Carlo standard error by Gewekggd] Pler as implemented iwiNBUGS on the basis of 1000 obser-

method, often referred to as “numerical standard error” orvations from the logistic map for a noise level of 0.1.
“time-series standard error” which is based on estimatingWVhereas the IACT for parameter for the EKF increases

the spectral density. only marginally from 6.5 to 7.3 and even decreases from 8.9

Table | compares the posterior means, time series standaf@ 7-5 for 7%, it almost dzoubles and triples for the Gibbs
errors, posterior standard deviations of the parameters, inté2mpling chain foa and 7%, respectively. The CPU time for
grated autocorrelation times, and CPU time of the EKF withEKF also increases but only to 30 s instead of 78 s for the

the Gibbs sampling chain. All computations were performed>ibbs sampler. _ _
on a Pentium IlI, 700-MHz PC. Overall, all convergence diagnostics demonstrate a much

The computational efficiency of an algorithm is deter-improved efficiency of the EKF over the Gibbs sampler.
mined principally by its autocorrelation time. If one wishes
to compare two alternative MCMC algorithms, the better is B. Other Maps
the one with smaller IACT. For parameteythe IACT is a We also simulated observations with other underlying sys-
factor of almost 5 higher for the Gibbs sampler than for EKF.tem evolutions. Here we report on results obtained for the

var(x)

var(Xyc) = 7c
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TABLE |. Comparison of Bayesian estimates obtained using the extended Kalman filter with those using
the Gibbs samplefwiNnBuGS) based on 100 observations from the logistic map for noise level 0.1.

BUGS EKF
Mean MCSE  IACT SD Mean MCSE  IACT SD
a 1.84 155%10°% 292 2.0%10°2 1.84 774104 6.5 2151072

72 8.21x10° 4 1.43x10°° 134 27x10“ 8.13x10 % 1.09x10° 8.9 25810 *
Xo 2.93x10°! 585<10°% 1.8 3.06<10°2 2.90x10°' 1.08<10°° 6.8 2.9%10?
Time (s) 6 4

tent and Moran-Ricker map. Since our results are consisterior instance, is 0.0072 for the EKF as opposed to 0.867 for

with those from the logistic map we will only briefly sum- the Gibbs sampler. In this example, the IACT for the param-

marize the results. etera is 8.1 for the EKF compared to 17.9 for the Gibbs
The so-called “tent map” has much in common with the sampler.

logistic map[8]. We simulatedN= 100 observations from

Eq. (1) and underlying system evolution given by V. DISCUSSION

X, = axi-1, ?f0$xi,l<0.5, The single-update Gibbs sampler for posterior computa-
a(l-xj_q1), if0.5=x_;=1 tion in nonlinear chaotic state-space modgld] is very

simple to implement, reliable, and easily generalizable.

with true parameter,=0.25, a=2, and noise level However, it can have poor convergence properties that

= Onoise! Tsignai= 0.05. Using the same prior as in the pre- prompted us to develop a more efficient sampler that exploits
vious example, we performed 6000 MCMC iterations usingthe time-series structure of the model.

the EKF and3uGs. Both techniques estimated the parameters The Gibbs sampler samples from tjoént posterior dis-
with reasonably high accuracy. Our results demonstrate thatibution of the statesind the model parameters. Slow con-
the Gibbs sampler requires a longer burn-in period. It has notergence of the Gibbs sampler is due to high posterior cor-
reached equilibrium until about 3000 iterations. Again, auto+elations between the unknown system states that cause the
correlations are much lower for the EKF than the Gibbs samMarkov chain to make only tiny moves from one iteration to
pler. The lag 50 autocorrelation for the main parameter othe next. Thus, it will take a long time to traverse the whole
interesta, for instance, is 0.0528 for the EKF as opposed tostate space. By integrating out the latent states and sampling
0.641 for the Gibbs sampler. This is also reflected in thefrom themarginal posterior distribution of the parameters of
IACT of 6.9 for EKF versus 12.4 for the Gibbs sampler. interest @,7%,xo) the dimension of the problem can be re-

A similar gain in efficiency could be observed when theduced enormously. Instead of sampling from the jdit
EKF was applied to the Moran-Ricker map. Again, we ob-+ p-dimensional posterior PDF, one only needs to sample
served that the Gibbs sampler seems to cope better witfiom the marginalp dimensional posterior PDF. Thus, the
higher (>0.5) signal-to-noise ratios. We simulatét=100 gain in efficiency is even greater the larger the samplelsjze
observations from Eq(1) and underlying system evolution as demonstrated for the logistic map in Sec. IV.

given by the Moran-Ricker mapx;=x;_;exga(l—x_1)] For the integration, we make use of the time-series struc-
with true parameterx,=0.5, a=3.7, and noise level ture. Although nonlinearity in the state equation prohibits the
= Onoise! Tsigna= 0-1. use of the Kalman filter for sequential integration, a version

Again, both EKF and Gibbs sampler are capable of accuef the extended Kalman filter in combination with a Laplace
rately estimating the unknown parameters. Our results reveapproximation performs well. The simulations conducted in
that the Gibbs sampler requires a much larger burn-in periothis paper show that our proposed method can achieve sig-
and has not reached equilibrium as quickly as the EFK chaimificant efficiency gains over the Gibbs sampler for estimat-
The correlograms reveal a higher efficiency of the EKF. Theng the parameters of nonlinear chaotic dynamics.
lag 50 autocorrelation for the main parameter of inteegst The formulas in the paper are not restricted to the Gauss-

TABLE II. Comparison of Bayesian estimates obtained using the extended Kalman filter with those using
the Gibbs samplefwinBUGS) based on 1000 observations from the logistic map for noise level 0.1.

BUGS EKF
Mean MCSE IACT SD Mean MCSE IACT SD
a 1.84 4.2810°° 41.2 4.71x10°3 1.83 1.9%10°° 7.3 522103

72 2.31X10°% 3.06x10°% 335 3.7410° 251104 1.69x10°® 7.5 4.3510°
Xo 2.97x10° 1 3.27x104 22 155102 29710 ! 572<10° 7.1 1.51x10°?
Time (s) 78 30
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ian error distribution but can be applied to other distribu-such models still have to be explored and this will be a topic
tions. One important extension would be thaistribution or  for further research.

a mixture of a normal and adistribution (with low degrees

of freedon) to allow for outliers in the observations. In this

case, the defining EC(J.G) and Eq<17) would have to be ACKNOWLEDGMENTS

substituted by Eq(19) and Eq.(20), respectively. The re-

quired minimum could be obtained using the Newton- This work was supported by the Royal Society of New
Raphson algorithm. Using a heavy-tailed error distributionZealand Marsden Fund, the University of Auckland Research
has the potential of making the parameter estimates robu§tlommittee, National Science Foundation, Grant No. PHY-
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