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Transport and dynamics on open quantum graphs
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We study the classical limit of quantum mechanics on graphs by introducing a Wigner function for graphs.
The classical dynamics is compared to the quantum dynamics obtained from the propagator. In particular, we
consider extended open graphs whose classical dynamics generate a diffusion process. The transport properties
of the classical system are revealed in the scattering resonances and in the time evolution of the quantum
system.
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I. INTRODUCTION for studying the quantum properties of systems that present
transport properties such as diffusion in the classical limit.
In this article we study quantum properties of systems thaThese properties were previously studied in systems like the
present transport behavior such as normal diffusion in théicked rotor which has a classical dynamiggven by the
classical limit. For classical systems, transport phenomenstandard mappresenting deterministic diffusion for some
have been related to dynamical quantities by the escape ratalues of the parameters. In particular, the decay of the quan-
formalism[1]. In this formalism, the escape rate given by thetum staying probability, for an open version of the kicked
leading Pollicott-Ruelle resonance determines the diffusiomotor, has been compared to the classical decay obtained nu-
coefficient of the system in the large-system limit. Since themerically from simulation of the trajectories of the corre-
classical time evolution is a good approximation of the quansponding open standard mgl0]. It has been argued that the
tum evolution in the so-called semiclassical regime, one exdecay observed in the quantum staying probability is deter-
pects that kinetic properties such as the escape rate and thened by the Pollicott-Ruelle resonances but no direct evi-
diffusion coefficient will emerge out of the quantum dynam-dence has been reported. Here, we present results that show
ics. Connections between the quantum scattering resonanceat this is indeed the case. The continuous time evolution of
and the classical diffusive behavior are also expected behe wave function for graphs is obtained from the propagator
cause, for open quantum systems, the quantum scatteringat in turn is obtained from the Fourier transform of the
resonances determine the time evolution of the wave funcGreen function on the graph. We present here a derivation
tion. that allows us to compute this Green function and, therefore,
The purpose of the present paper is to explore these kthe propagator. On the other hand, the classical dynamics on
netic phenomena in model systems known as quanturgraphs developed in Ref9] allows us to compute the
graphs. These systems have similar spectral statistics of eRollicott-Ruelle resonances. The Pollicott-Ruelle resonances
ergy levels as the classically chaotic systd218]. Since the are of special importance because their quantum manifesta-
pioneering work by Kottos and Smilansky, several studiegion has been found in experimental measures of some cor-
have been devoted to the spectral properties of quantumelation functions in microwave scatteripgyl].
graphg4—6] and to their applications in mesoscopic physics Apart from the aforementioned time-dependent quantities
[7]. We have studied the level spacing distribution of quanwe have also studied spectral quantities like the quantum
tum graphs, getting some exact results in simple cf8ps scattering resonances. The quantum scattering resonances
They have also provided the first model with a semiclassicahave also been studied for the open kicked rotor. The distri-
description of Anderson localizatidi8]. Moreover, the clas- bution of their imaginary parts has been conjectured to be
sical dynamics of these systems was studied in detail in Refelated to the diffusion process observed for the classical
[9] where we introduced a time-continuous classical dynamsystem 12]. Here, we present numerical support for this con-
ics. In this way, the quantum and classical dynamics orjecture by showing that the widths of the quantum reso-
graphs—and the relationships between them—can be studiethnces have the power-law distribution of Héf2] for some
on the same basis as in other systems like billiards, for inmulticonnected diffusive graphs.
stance. In this article, we go further in studying the connec- The article is organized as follows. In Sec. I, we define
tion between the quantum and classical dynamics by showhe quantum graphs and we review some of their main al-
ing that the classical dynamics of RE9] emerges out of the ready known properties, namely, the formulation of their
guantum dynamics introduced in Refg,3]. quantization and its exact trace formula. Section Il presents
With this correspondence established, and thanks to thethe problem of scattering on quantum graphs. In Sec. Il B,
simplicity, the quantum graphs turn out to be good modelswve introduce a multiscattering expansion for the Green func-
tion on graphs. Green functions on graphs have been consid-
ered elsewherE7], but to our knowledge the multiscattering
*Present address: Chemical Physics Department, Weizmann Instéxpression and the resumed closed form that we obtain have
tute of Science, Rehovot 76100, Israel. not. Knowledge of the Green function allows us to obtain the

1063-651X/2001/64)/01620%21)/$20.00 65016205-1 ©2001 The American Physical Society



F. BARRA AND P. GASPARD PHYSICAL REVIEW B55 016205

propagator on graphs and therefore to have access to timgpnds. Note that we have the equalitip(sb)zq(ﬁ) and
dependent phenomena on graphs. The propagator is intr (b)=p(b).

duced in Sec. Il C. The emergence of the classical dynamic
out of the quantum dynamics is studied in Sec. IV. In Sec.
IV A, we introduce a Wigner function for graphs and com-
pute the classical limit by neglecting interference between On each bond, the component), of the total wave
different paths. This limit corresponds to the classical prob{function ¥ is a solution of the one-dimensional Sctirmger
ability density on the graphs, as we show in Sec. IV B, whereequation. This means that the dimension of the ved¥or
we also summarize the most important results about the clas=[ ;(x), . .. .g(x)]" is B, but when we consider directed
sical theory of graph$9]. The quantum time evolution of bonds as different it will be of dimensionB2 with B com-
open graphs is considered in Sec. IV D where we comparponents containing redundant informatifgee Eq.(3) be-
the decay of the quantum staying probability with the clasdow]. We consider the time-reversible cagee., without
sical decay of the density as obtained from the Pollicott-magnetic field
Ruelle resonances presented in Sec. IV E. We do this com-

parison for small systems and for large systems where a ) o
diffusion process dominates the classical escape. In Sec. V, - @‘/’b(x)zk Pp(X),  b=(i,]), 1)
we analyze the statistical properties of the distribution of

guantum scattering resonances. Here, we present a derivatimerek: J2mE/% is the wave number ank the energy.
of the resonance density using the concept of Lagrange mec'[\we use the shorthand notatiah,(x) for ¢y(x,) and it is

m°“°’? of an almost periodic function.' Examples are given,nqerstood tha is the coordinate on the borttito which

and discussed in Sec. VI. The quantities plotted there arg, componeni, refers] Moreover, the wave function must

dimensionless. Conclusions are drawn in Sec. VIl. satisfy boundary conditions at the vertices of each bdnd (
andj in the previous equationThe solutions will have the

Il. QUANTUM GRAPHS form
A. Definition of graphs Po(X) =, (b)exp(ikx) + ¢ (b)exp( —ikx), )

Let us introduce graphs as geometrical objects where a " . -
particle moves. Grap?]s Fz;dtlevertiges connected iﬁ bonds. Where the bour!dary conditions Impose restrictions/oifb)
Each bondb connects two verticelsandj. We can assign an gndk‘/’*(z)' Wh_'Ch are the a:rr:plltt)u%esz %f 1the forward and
orientation to each bond and define “oriented” or “directed PacKward moving waves on the bo q42,3,13. L
bonds.” Here, one fixes the direction of the bofidj] and If we consider oriented bonds, the waveA function in a
callsb=(i,j) the bond oriented fromto j. The same bond Pondb and in the corresponding reversed bdndhust sat-

but oriented fronj to i is denotedb=(j,i). We note thaé isfy the following consistency relation:

B. Quantum mechanics of a particle on a graph

2

=b. A graph withB bonds has B directed bonds. The va- () = | —
lencev; of a vertex is the number of bonds that meet at the V()= (15 =%). @
vertexi. N o »

Metric information is introduced by assigning a lengjth C. Boundary conditions and quantization conditions

to each bond. In order to define the position of a particle on A natural boundary condition is to impose the continuity
the graph, we introduce a coordinatg on each bond  of the wave function at all the vertices together with current

=[i,j]. We can assign either the coordinadg;) or X(ji).  conservation. This case was studied[ia,15, where the
The first one is defined such thef ;)=0 ati andx y=Ipat  most general form of current conservation for which the re-
J, whereasx(; ;y=0 atj andX;;y=Ip ati. Once the orienta- sulting Schrdinger operator is self-adjoint was obtained.

tion is given, the position of a particle on the graph is deter-There is, however, a general boundary condition, where we
mined by the coordinatg, where O<x,=<I,. The indexb  consider a scattering process at each vertex. In each vertex a
identifies the bond and the value xf the position on this  (unitary) scattering matrix relates outgoing waves to the in-
bond. coming ones. If we denote hy' the scattering matrix for the

For some purposes, it is convenient to consldlendb as  vertexi the condition is
different bonds within the formalism. Of course, the physical
guantities defined on each of them must satisfy some consis- POy = E o b%”it?(i),
tency relations. In particular, we should have that|, and a 5 °
Xp=lp—Xp-

We introduce here some notation that we are going to usehere the sum is over all th@ondirectedi bonds that meet
next. For oriented bondswe define the functiong(b) and  ati. For a#b, o}, is the transmission amplitude for a
p(b) that give the vertex at the origin and at the encbpf wave that is incident at the vertéXrom the bondb and is
respectively. Thus, for the borto=(i,j), we haveq(b) =i transmitted to the bond. Similarly, o, is a reflection am-
and p(b)=j. These functions are well defined for graphs plitude. The matrixa’ has dimension; X v; wherew, is the
with multiple loops and bonds also. In the last case thesgalence of the vertekx This equation is imposed at all ver-
functions take the same values for two or more differentices and for all the bonds that meet in the vertex.
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Now we consider oriented bonds, which allows us toleads of the graph. In this section, we shall introduce the
write the previous boundary condition in the following way: scattering matrixS for graphs and we shall show that it has

a multiscattering expansion, closely related to the one we

ou _ a(a) shall obtain for the Green function. Scattering on graphs was

2 Ta(2)] % o3t 5@ pb)YELp(b)], (4 also studied by Kottos and Smilansky, who showed that they

display typical features of chaotic scatterifig].
where the sum is over all theB2directed bonds and the

equation is imposed on every directed bangecause the set

. . : ) A. Scattering matrix S
of all directed bonds is equivalent to the set of all vertices

with the (nondirectedl bonds that meet at the vertex. On each bond and lead the Soflirger equation allows
As a consequence of E(B) we have the relation counterpropagating solutions. We denotedithe scattering
. leads and by={c} the set of all the scattering leads. More-
i p(b)]=exp(iklp) ¥ Ta(b)]. (5  over, we denote byp={b} the set of all the bonds forming
. _ _ the finite part of the open graph without its leads. The
Setting the expressiofd) in Eq. (4) we get X L scattering matrixS relates the incoming amplitudes to
the outgoing ones as
ou _ H ou
vala(@]=2 Tapexplikly)ypTa(b)] W,(0)=SW,(0). (11
from which follows the quantization condition We shall derive the matrid starting from Eq.(4), which
together with Eq(9) reads
defl-R(k)]=0 (6)
with va"= 2 Tanty- (12
R=TD(k) (7)

This equation is valid for every directed bond and every
directed lead. We have dropped the explicit dependence on

a unitary matrix of dimension B where . "t
y the vertex in Eq.(12) [see Eq.(4)] because it is always

Dap= 5abe“"a with  1,=1, (8 understood that the incoming wayg' in the directed bont
is incident to the vertey(b) while the outgoing wavey"
and emanates frong(b). This convention is used throughout the
a(a) present paper. We assume that the scattering leads are ori-
Tap=03g5°0(A(a),p(b)). ®  ented from the graph to infinity. Since the leads are infinite

there is no scattering from the lead to the reversed lead, that
is, theL X L submatrixTg=0. Neither is there transmission
from a bond to a reversed lead, nor from a lead to a bond.
That is, thel X 2B submatrixTg=0 and the BXL subma-

trix T,.=0. Moreover,Tgz=0 andT..=0 due to thes func-

tion in definition (9) and the selection of the orientation of
the leads. Thus, in matrix form, E(¢L2) reads

Equation(6) gives the eigenenergigk2}. Note thatT,, is
the transmission amplitude froimto a [if they are oriented
such thatp(b) =q(a)]. The reflection amplitude is noWs,
and notT .., which vanishes due to th&function in Eq.(9).
From Eq.(6) an exact trace formula can be obtaif@¢:

d(k)—i‘+ 2 ALl cog(rkl ), (10) i i
q’out(c) 0 0 0 ‘I’in(c)

whereL /7 gives the mean density of levels and the oscil- Vo0 |=| Tee O Top|| Wis(c) |,
lating term is a sum over prime periodic orbits and their W, (b) Toe 0 Tpol| Wi(b)

repetitions.Ap=Tap,- - - T,4 is the probability amplitude of
the prime periodic orbit and plays the role of stability factorwhere T is anL X L matrix whose elements represent the
including the Maslov index. The Lyapunov coefficient per direct lead-to-lead transmission or reflection amplitudes. The
unit length of the orbitXp is defined by the reIatiothp|2 matrix T¢y, is anL X 2B matrix whose elements represent the
—ehplp, bond-to-lead transmission and, similarly, the maffjx is a
2BXL matrix whose elements represent the lead-to-bond
transmission. Finally, the matriXy, is the 2BX 2B matrix
that we have simply called for the closed graphs and it
So far we have considered bonds of finite length. Wherrepresents bond-to-bond transmission or reflection. Note,
we attach semi-infinite leads to some vertices, the physicdiowever, that, for a vertex with an attached scattering lead,
problem changes because there is now escape from the gragite bond-to-bond probability amplitude is different from the
and thus it must be analyzed as a scattering system. Thmne for the graph without the scattering lead because the
scattering matrix is a square matrix of a dimension thatvalence of the vertex has changed from to v,
equals the number of open channels. For graphs these chaf{no. of leads attached to}. The previous matrix equation
nels have a concrete meaning; they are ltheemi-infinite  can be rewritten as

III. QUANTUM SCATTERING ON GRAPHS
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W, (0) =TeWin(C) + T Win(b), (13

W (b) = TpeWin(C) + TppWin(b), (14)

and now we use the relation given in ). With the con-
vention introduced after Eq12), we can write Eq(5) in a
matrix form as

Win(b) =D(K)Wo(b) (15

with the diagonal (BXx2B) matrix D defined in Eq.(8).
Thus from Eq.(14) and Eq.(15) we get

Win(b)= (D™ = Tpp) " TpeWin(C).
Replacing this last equation in E(L3) we obtain

WoulC)= {TCE+ TeolI=R(k)]™ lD-I—bf:}\l"in( 6) )

PHYSICAL REVIEW B55 016205

0<X<|i:|1,

d2 ]
FGb(x,x’)Jrszb(x,x’):O, V b#{11}.
X

Note thatx’ is fixed to belong to the bond 1. The Green
function satisfies the same boundary condition as the wave
function.

In the spirit of a multi-scattering solution we assume that

Gp(X,X") =Go(X,X") 8p1+ Go(X, 11— X") Fp1
+Go(X,0) gy (X)) + Go(X,lp) spy(X'),
(17

where Go(x,x’) = (2m/£2) (e 112ik) is the free Green
function and represents an outgoing wave fremThe jus-
tification of this ansatz is the following. In the bond 1, the

where we wroteR(k):D(k)pr. That is,_ the 'outgoing wave function consists of the superposition of the wave ema-
waves on the leads are determined by the incoming waves amating from the source at’ plus waves that arrive from the

the leads. This gives the desired scattering matrix

S=Teet Tel 1= R(K)] DTz, (16)

borders of the bond. On the other bon@s., not 1 or}
only these waves are present. Since we are dealing with di-
rected bonds we call the vertices at the bordel af(b) and

which appears in Eq11) once we identify each lead and its P(P) as usual.. _ _
reverse as the same physical lead. The multiple scattering Ve have to impose on the Green function the consistency

expansion is obtained from

[I—R<k>1—1=n§0 R(k)".

In a similar way as was done for the trace formula we can get

that

Seer = [Tetleer + 2 Ap eXF[iklp(C,:C)]

€Fc'—c

with P,/ _,. the set of trajectories that go frool to c. As

usual A, is the amplitude with a phase of the path and
Ip(c’,c) the length of the path given by the sum of the tra-

versed bond lengths.

B. Green function for graphs

Following Balian and Bloch17] we seek for a multiscat-
tering expansion of the Green function. The Green functio

condition
Gp(x,X")=Gp(lp—x,x"). (18
The observation that
Go(X,11—=x")=Gp(l1—%x,X"),
Go(lp=%,00=Go(X,1p),
Go(lp—X,1p) =Go(x,0)
leads us to conclude from E(L8) that
Mab)(X) = mppy (X)),
Mpb)(X") = pgey(X).

Now, we impose the boundary condition that is given by Eq.
(12). With this aim we have to identify incoming and outgo-

r]ng components. The amplitude of the incoming wave func-

represents the wave function in the presence of a pointon trom the bond is

source. We shall identify the bond where the point source is

with the bond 1. In this bond, the point source is located atyin— G (| x")6,,+ Gy(ly,l1—X") 8pi+ Gg(l,0) (x')
x;=x'. Since we shall work with directed bonds the sourcewb Or b ATbL T EORTb b1 =0l b a(h)

also appears at the poin=I1;—x" on the bond 1 The
Green function satisfies the following equation:

¢ Gy(x,x")+K?G(x,x") Zma( N, 0<x,x' <l
—G(x,x X,X")=—38(x—x"), X, X ,
dX2 1 1 ﬁz 1

2 2m
~ ’ 20 ’ ’
dszl(X'X )+kGi(x,x")= P O(x—Ily+x"),

where the first two terms represent the incoming amplitudes

of a wave emanating from’ if we are on the bond 1 or.1
The third term is the incoming amplitude of the wave trans-
mitted to the origin of. For the outgoing amplitude on the
bondb we have

Po"=Gp(0,0) i gny (X'

Thus the boundary condition E¢L2) gives
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[e]lob=p1 ([€i]p=hi).- The solution to these equations

m
kﬁz,uq(a)(x )= 2 Ta[Gollp,X )81+ Gollp,l1—X")8p;  can be written as

+Go(15,0) (X', (X ) =[1=Ty(1,0)] [ Ty(I,x")- e+ Ty(l,1,—X") - €]

where we used thaf,(0,0)=m/ik%2. We defineg(x,x") (19)
= (ikAi2/m)Go(x,x"). If we agree to denote by,(l,0) the
matrix whoseab elements arel',,g(1,,0) and byT(l,x")

the matrix whoseab elements aré ,,9(l,,X’), we can re-
write the previous system of equations in the more conve-
nient vectorial form

Substitutingu iy (X') = pqepy(X') in EQg. (17), we have ob-
tained the Green function for graphs. We note thgtl,0)
=R(k) and thus the Green function has poles at the reso-
nances. The multiple scattering form follows from the well-
Ba(X)=To(1,X') - €+ Tg(l11=X') - €1+ To(1,0) - prg(X'), known expansionlt-R) ~*=I+R+R*+R°+- ... Remem-
bering that wpa)(X') =g (X’), we have that thea
wheree; (e;) is the 2B-dimensional vector of components component of the Green function is

Ga(X,X")=Go(X,X") 8a1+ Go(X,0[ Targ(l1,X") + Taig(0x") ]+ Go(X, 1) [ Ta19(l1.X") + T3ig(0x") ]

+Go(X, 0>2 Tand(1 5,0 Tp19(11,X") + Tpig(0x’ >]+Go<x,la>2 Tan9( 5,0 Tp19(11,X") + Tpig(0x")]

+Gy(X, 0>2 Tabd (1.0 Top (o, 0L Tpr1g(11, X" ) + T ig(0X )1+ Go(X,12) 2 Tapg(15,0) Top9(1pr,0)

b.b’
X[Tprag(l, X" ) +Tpag(0X" )]+ - -. (20
|
Noticing thatg(x,x’)=e€**~*'l we can write the previous ) - 1
result in the more convenient notation Ga'(xx"E)= ||m+_ﬁ dtexp(—et)
e—0
G (XX )= 2_m i S A eiklp0x) 21) Xex;{;,l—Et) Ka(x,x";1),
o 72 2ik fof ° P ,
1 i ,
where A, is the probability amplitude of the path that Ka(xx";)=5— C++C-dEex — 7 Et|Ga(x,x"E),

connects the initial poink’ on the bond 1 to the final point
x on the bonda. If the pathp is composed of th& bonds
1b,---b,_,a then

(22

where the contou€, goes from R& =+« to ReE=—o
with a positive imaginary part, whil€_ goes from R&=
—x to ReE= + with a negative imaginary part.

Using expressiof21) for the Green function, we get from
Eq. (22) that

ApzTabn,lTb . 'Tb

n-1bn_2’ 21

The fact thatGy(x,x’) andg(x,x") depend on the modulus

of the differencegx—x’| implies that, in Eq.(20), we are
always adding lengths. Thug(x,x") is the total length of Ka(xX,X' 1) = \/ 50— >, A, eimlp(xx")?/2ht (23)
the paths that connectx’ to x. Z'Wﬁt {p}
The expression21) is like a path-integral representation
of the Green function: We add the probability amplitudes ofThis expression shows that the propagator is the sum over all
all the paths connecting’ to x in order to get the Green the pathgp} that joinx’ to x in a fixed timet. Each term is
function. composed of a free propagator weighted by the probability
amplitude of the given path. This result could have been
guessed from the general principles of quantum mechanics,
e., if there are many ways to obtain a given result then the
The Green functions and the propagator are related bgrobability amplitude is the sum of the probability ampli-
Fourier or Laplace transforms: tudes of the different ways of obtaining the result.

C. Propagator for graphs
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The closed form of the Green functipgiven by Eqs(17) On the other hand, if we set=y/2 in Eq. (26) we get
and (19)] and the fast Fourier transform allow us to obtain
the propagator numerically as a function of the titnand, f+

dpePYtf (yI2,p) = wa(y) %% (0),

—o0

therefore, the time evolution of a wave packet. We shall de-
velop this possibility after analyzing the classical limit of
guantum mechanics on graphs in the following section.
which is valid for 0<x=y/2<l,/2, i.e., O<y<l,, and we
IV. EMERGING CLASSICAL DYNAMICS ON QUANTUM recover the wave functiofor its conjugatgon all the bonds
GRAPHS except for a constant factor that is fixed by the boundary

. . condition and normalization. We could also have proceeded
The emergence of the classical dynamics out of the auang 3 similar way with Eq.(25). We notice that this result

tum dynamics can be studied by'introducing the concept Ofy s that there is redundant information in the Wigner
the Wigner function. Such a function should tend to the clasy,ncfion. The conclusion is that the wave function on all the

sical probability density in the classical limit. bonds is encoded in all the Wigner functioffs(x,p)}5_; .
Since a wave function can always be written in terms of
the propagatoftwhich is also a solution of the Schiimger
The so-called Wigner function was introduced by Wignerequation and represents the evolution frord lacalized ini-
in order to study systems with a potential extending over ariial statg we will compute the Wigner function for the propa-
infinite physical space. For graphs, we cannot use the sangator. Other cases are obtained by convenient averages over
definition since each bond is either finite or semi-infinite. Wethe initial conditions. Thus we need to compuke(x
define a Wigner function for a graph in the following way. —y/2x";t)K* (x+y/2x";t). With this purpose, we use the
On each(nondirectedl bond a the Wigner function is given expression(23) which expresses the propagator as a sum
by over pathgin this section we use the letteto refer to paths
in order to avoid confusion with the momentym:

A. Wigner functions on graphs

1 +2x .
fa(X,p):—ﬁ dyePY i (x—yI2) Pk (x+yI2)
2mh J - 2x Ka(X—=y2x" ;1)K (x+y/2x";t)

I
for 0<x<— (24

> E ASAS,eim[Is(x—y/Z,x’)z—Isr(x+y/2,x’)2]/2ht

ss’

. m
T 2mht

and
with 14(x,x") the length of the trajectorg that joinsx’ to x.

1 [+@g-2x We note that for a path that startsxdton a bondb, and

) )
_ 1
fap)=5— |  dyePyy(x—yl2) ends atx on the bondb the lengths can be as follows.
mh ) —(21,-2x) u
. Is(x,x’)=(lb0—x’)+ls+x, if the path goes fronx’ to
XY (x+yl2) the end otb, and then eventually traverses other bonds, add-

| ing a distancd s, and arrives at the positianof the bondb

for —<x<l,. (25)  via its origin.

2 l{(x,x")=x"+Ts+x, if the path goes fronx’ to the ori-

In this way, the argument of the wavefunctions always re-gin of bONand then eventually traverses other bonds, adding a

mains in the interval (0,) corresponding to the borel We  distancel ¢, and arrives at the positionof the bondb via its

notice thatf ,(x=0,p) =f,(x=1,,p) =0 with the definitions origin.

(24) and (29). o . Is(x,x’)=(Ib0—x’)+Ts+(Ib—x), if the path goes from
Th_e ngner function is a representation of the Wave ' to the end ob, and then eventually traverses other bonds,

function in phase space and it is essential to have a unique , . . ~ . o

correspondence between the Wigner function and the wav&ddingd a distancks, and arrives at the positionof the bond

function. In order to show that this is the case with our defi-° Via the end ob.

nition, we multiply Eq.(24) by e®¥" and integrate with ls(x,x") =x"+1s+(l,—X), if the path goes from" to the

respect top to get origin of by and then eventually traverses other bonds, add-

. ing a distancd , and arrives at the positionof the bondb
d épy/ﬁf , — +v/2 * —v/2). 26 via its end.
f—w b AP = Ya(XHYIDYL (x=YI2). (26 We now evaluate the differencéy(x—y/2x")—1g(x

+y/2x") for equal paths. We obtain
If we sety=0 we obtain the probability density on the bond

a [(X—yl2X")—l(x+yl2X")=—Yy,

+

2: o]
|12 f—oc dpfa(x.p). @ l(X—y2X" )= l(x+y2x")=+Yy.
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The first result holds for trajectories that arrive at the final _sin(Xe/R)(pEQ)

bond via its origin and the second result for trajectories that 0 =mo(pxQ) (29
arrive via the end. Now we compute the sum, which is in h=0 =

both cases

from which we obtain the Wigner function in the limit
[(X=Y/2X")+1s(x+y/2X")=2l4X,X"). —0. In the classical limit, the phase variations of the nondi-
agonal terms are so wild that the total sum is zero due to
Using the identitya?—b?=(a+b)(a—b) we have the re- destructive interferences. We thus have the result that, in the
sults classical limitz—0, the Wigner function defined for graphs

becomes
I2(x—yl2x" ) —12(x+yl2x") = —2yl{(x,x"),

12(x—y/2x" )~ 12(x+yI2x" )= + 2y 1(x,X") foxpi)= oo | S AZ S[p+mlg (/] + S A2
s ¥ s ¥ s i 1M 27Tﬁt S Sl 51 S 52

for paths that arrive through the origin or the end of the bond

b, respectively. We considered equal paths because we want X8 p—mls,(x)/t]
to separate their contribution to the Wigner function, which

we call the diagonal term

. (30

This limit corresponds to the motion of the classical density

[Ka(Xx—y2X" ;)KE (x+Y2X" ;1) Tgiag in the phase space of the corresponding classical system. In
the next section, we shall establish that, indeed, the classical
. m S A2 g ivmis (X't dynamics causes the probability density to evolve in phase

T 2wkt o Asle . space according to E@30).

+ z A§2e+iymlsz(x,x’)/ﬁt] ’ B. Classical dynamics on graphs
S2

We have computed the classical limit for the Wigner func-
tion on graphgsee Eq.(30)], which should be a solution of
the vertex at the origin of the boralands, are those paths the clas_5|cal L|ouv_|IIe equation. In tr_ns section, we shall

summarize the main result obtained in RE¥], where we

that arrive through the vertex at the end. o . . .
For the nondiagonal term the differences in the exponen?tUdIed in detail the C'a.SS'C"%' dynam|c§ on graphs, and we
are always of the form shall s_how that the densit0) |s.the solutlon of the cIaSS|_caI
equation. Therefore, the classical dynamics that we discuss
20y _ N2 / hereis the classical limit of the quantum dynamics on graphs
Is(x=yl2x) =l (xtyl2x’) as obtained from the classical limit of the Wigner functions.
=[1s(x,x") =g (X, x)I[1s(x,x") + g (X,x") +y] On a graph, a particle moves freely as long as it stays on
a bond. At the vertices, we have to introduce transition prob-
or abilities Py =|Ty,, |2, This choice is dictated by the
guantum-classical correspondence as we shall see in this sec-
12(x—yl2x")—12,(x+yl2x") tion. The dynamics is expressed by the following master

equation(we consider the notatiox,=[b,x]):
=[1s(x,x") =g (X, X" ) £y ][1s(X,X") + s/ (X,X")T;

wheres; is the set of paths that arrive at the bamthrough

) X+ 1 —x'
hence we get nondiagonal terms of the form p([b,X],t)ZZ Poopl [, X' ],t— — (31
b/

[Ka(Xx=y/2X";t)KZ (X+Y/2X";1) ]nondiag _ _ _
The time delay corresponds to the time taken to arrive from
S ASAS;eim[ls(X’x,)z_IS’(X’X’)Z]/Zﬁt x" in the bor_1db’ to x in the _bondb. _ _
The densityp([ b,x],t) defined on each directed bond is a
density defined on a constant energy surface of phase space.
X @Fiymlls(xx) 1y (xx)]/2ht, In fact, the conservation of energy fixes the modulus of the
momentum and, therefore, the points of the constant energy
The calculation of the Wigner functiai24),(25), requires the  surface are given by the position on the bond and the direc-
evaluation of integrals of the form tion on the bond, that is, by the position on directed bonds.

. The properties of this classical dynamics for open and
ﬁsm(xolh)(piﬂ) closed systems are described in R6].where we also show

p=Q ' that it can be understood as a random suspended flow.

To establish the connection with the classical limit of the
where Q=mly(x,x")/t for the diagonal term and()  Wigner function we iterate the master equati®d). In Ref.
=m[l4(x,x") =14 (x,x")]/2t for the nondiagonal terms. In [9] we have shown that iterating the master equation allows
the classical limit we have that us to obtain the density at the current titim terms of the

:27Tfit

s#s/

f Ce=yingy_ o (28)

X0
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density at the initial timey= 0, which gives an explicit form
for the Frobenius-Perron operator:

p([b,X],t):E 2 Pbb'Pb’b”' .. Pb(nfl)b(n)
N p'p”...pM"N
(n) _(n)
Xp([b"",x""],0) (32)
with

n

X(”)=X—vt+2 [ -
i=1

Accordingly, p([b,x],t) is given by a sum over the initial

conditions[bn ,xn] and over all the paths that connect

(n ()

[b"",x "] to[b,x] in atimet. Each given path contributes to
this sum by its probability multiplied by the probability den-

sity p([b" x"™1,0).

If the initial distribution is concentrated at a point, i.e.,

p([b" x"1.0)= Sy, 8(x, —x(), (33

Eq. (32) can be expressed as

1
p([bx1,)==2 X PupyPppr - Ppo-1pm
U n b'p”...pM

n
X+2 [ty — X,
i=1

X o\ t— 5b(n)b*. (34

v

where we use the propertj(ax) = 6(x)/a.

C. Connection with the classical limit of Wigner functions

The probability density at a given tinteis provided by
the classical Frobenius-Perron operd®@f). For the particu-
lar initial condition(33) this leads to Eq(34). Remembering
that the probability of a patls was written asAg (we use
again the letters to denote a path sincp is used for the
momentum and noting that the sum in Eq34) is a sum
over all the paths connectirig. to b, we can rewrite E¢(34)
as

> A

s(by —b)

1 [s(X, Xy )
p([b,X],t)—; Nt=——)— (39

and by the property of thé function

5(U_ Is<x,x*>>

15
t

|
t_M):l

v t

m ( mls(x,x*)>
U — f ’

so that Eq(35) is equivalent to

PHYSICAL REVIEW B55 016205

3 mlg(X,X, )

: ) (36

p(bxl =2 3 Aﬁa(p

T s(b, —b)

wherep=mu. Equation(36) is (up to the normalization fac-
tor 1/27#h) the classical limit of the Wigner function as ob-
tained in Eq.(30). The Wigner function(30) also contains a
term with —p because in Sec. IV A we defined the Wigner
function for nondirected bonds although we deal with di-
rected bonds in the present section. Equat{d6) is the
probability density of being in the oriented bobdvith mo-

mentump. In the reversed bonid we also have a probability
density that is obtained from the densitylimy reversing the
sign of p. Therefore, the probability density of being in the
nondirected bondb is

TS aafp LT s
tosy(b, ~b) 2 t t s b, ~b) L
mls, (X, Xy)
X5 pt————

with s; ands, the set of paths defined for the Wigner func-
tion in Sec. IV A. The comparison with EG30) shows that
the quantum time evolution of the Wigner function corre-
sponds to the classical time evolution of the probability den-
sity given by the classical Frobenius-Perron operé@y in

the classical limit:

1
fb(x,p;t)zmp([b,x],t) for A—0. (37

Accordingly, the classical dynamics introduced in Réf]
and summarized in Sec. IVB is the classical limit of the
quantum dynamics on graphs of Sec. Il.

D. Quantum time evolution of staying probabilities

The preceding results show that the classical dynamics
emerges out of the quantum dynamics of quantities such as
averages or staying probabilities which can be defined in
terms of Wigner functions. Since the Wigner functions have
a Liouvillian time evolution according to the Frobenius-
Perron operator in the classical lindit- 0, we should expect
an early decay given in terms of the Pollicott-Ruelle reso-
nances, which are the generalized eigenvalues of the Liou-
villian operator. For graphs, the Pollicott-Ruelle resonances
have been described in RE®]. Our purpose here is to show
that indeed the Pollicott-Ruelle resonances control the early
quantum decay of the staying probability in a finite part of an
open graph.

The quantum time evolution of the wave function is ob-
tained from the propagator as

(1) =K(t) (0),

wherey,(0) represents the initial wave packet. As we said in
Sec. llIC the propagator can be obtained from the Green
function for graphs by Fourier transformation. Therefore we
can computal,(X,t).
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The quantum staying probabilifpr survival probability b

P(t) is defined as the probability of remaining in the Alb,x]=5— for beb,

bounded part of an open graph at timeince the particles

that escape cannot return to the graph, there is no recurrence, Alc,x]=0

and the staying probability is equal to the probability of be-

ing in the graph until the timé& which is the indicator function of the bounded part of the
| open graph. Using the spectral decomposition of the

_ b 2 Frobenius-Perron operator described in R, the quantum
P(t)_g jo dxX| (X, D% staying probability thus has the following early decay:

for cec,

To computeP(t) we can proceed as follows. First, we con- _ N\ st/ .
sider some initial wave packef,;(y,0) on the bond 1 and P 2,: (AlV))eT(Vilpo)  for -0 (41)

with mean energ§. The Green functiol,(x,y,E) (where | ) i i
the indexb refers to the coordinate on the bondb andy is in terms of the left and right eigenvectors of the Frobenius-

a coordinate on the bond is computed from Eqg17) and  Perron operator
(19). Then the propagator is obtained from the Fourier trans-

form IStVJ = eSJ'tV]- and |StT’\7j = eS}k tvj (42)
i (see Ref[9]). Since the leading Pollicott-Ruelle resonance is
Kb(X,y,t)Zf Gb(x,y,E)ex;< - —Et)dE the classical escape rate for an open graph, we can conclude
CytC h that the quantum staying probability will have an exponential

early decay according to

P(t)~exH — ya(v)t] (43)

and the wave function is given by

I
wb(x.t)=J dyKp(X,y,t) #1(y,0). . : — —
0 in terms of the classical escape ragg(v)=vyy(v=1),

P(t) is the quantum analog of the density distribution wherev = \2E/m is the velocity of the classical particle at

integrated over the graph, that is, the classical staying progl® mean energi =mo?/2.

ability. For a classically chaotic graph we know that the clas-

sical staying probability decays exponentially with a decayE. The classical{ function and the Pollicott-Ruelle resonances
rate given by the leading Pollicott-Ruelle resona(eee Ref. We have shown in Ref9] that the Pollicott-Ruelle reso-
[9]). From semiclassical arguments, the quantum stayingances of a classical particle moving with velocityon a
probability P(t) should follow the classical decay for short graph can be computed as the complex zdm} of the

times. Indeed, using E@27), the quantum staying probabil- ¢|assical Selberg-Smalefunction of the graph given by
ity can be expressed in terms of the Wigner functi@d)

according to Zy(s)=defl—Q(s)]=0
in terms of the matrix

Qppy (S)=Pppe s’ /,

In the classical limit: —0, Eq.(37) implies that the quantum \\ here Poo =|Toy |2 are the transition probabilities. This

staying probability evolves as classical/ function can be rewritten as a product over all the
prime periodic orbits on the graph B8]

Iy + oo
P(t)=% fo dxf_m dpfu(X,p;t). (38)

P()=3 f'bdxfwdpip([b,x],t). (39) e
=)o ). 2w Zy(s)=TI [1—e (olpFslp/v)], (44)

For an energy distribution well localized around the mean The zeros of the classicglfunction for a scattering sys-

energyE of the initial wave packet, we can suppose that thefem are located in the half plane Be<0 and there is a gap

classical evolution takes place essentially on the energy shedmpty of resonances below the axis 9xe 0. This gap is
of energyE determined by the classical escape rate, which is the leading

- . . Pollicott-Ruelle resonancsy,= — vy
If we denote byP! the classical Frobenius-Perron opera- 0 Vel
tor and byp, the initial probability density corresponding to

the initial wave packet, the quantum statying probability can F. Emerging diffusion in spatially extended graphs

be written as On spatially extended graphs, the classical motion be-
comes diffusive. We showed in Rd] that the diffusion
P(t)=(A|P'po) for #—0, (40)  coefficient for a periodic graph can be computed from the
Pollicott-Ruelle resonances of the extended system by intro-
where we have introduced the observahBldefined by ducing a classical wave numbegrassociated with the classi-
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cal probability density. Therefore, the leading Pollicott- In this and the following section, we shall consider units
Ruelle resonance acquires a dependence on this waweherefi=1 and 2n=1, so that the quantum wave numlber

number according to is related to the energy Bg=Kk>2. In these units, the width of
_ ) 4 a quantum scattering resonance I§=—4 Rek,Imk,
So(@)=—-Dg"+0(q"), (45 and the velocity of a resonance is,=2 Rek,, so that
I'y=-2v,Imk,.

whereD is the diffusion coefficient.

If the spatially extended periodic chain is truncated to
keep onlyN unit cells and semi-infinite leads are attached to
the ends, we have furthermore shown in R&f that the
classical escape rate depends on the diffusion coefficient ac- The chaotic properties of classical dynamics can be char-

B. Topological pressure and the gap for quantum scattering
resonances

cording to acterized by quantities such as the topological entropy, the
Kolmogorov-Sinai entropy, the mean Lyapunov exponent, or

w2 the partial Hausdorff dimensiody, in the case of open sys-
yc,(N)me (46)  tems. All these quantities can be derived from the so-called

topological pressure per unit tim@(B;v) which we ana-

_ o lyzed in Ref.[9] for graphs.
in the limit N— . _ In addition to these important properties, the topological

The previous results on the classical-quantum corresponsressyre also provides information for the quantum scatter-
dence show that this diffusive behavior is expected in the;ng problem. In fact, the quantui function has a structure
early time evolution of the quantum staying probability for very similar to a Ruellef function with some exponens
such spatially extended open graphs. This result will be il-— 1/5 (see Refs[9,18)). As a consequence, the quantym
lustrated in Sec. V1. function is known to be holomorphic for Ik]>l3(,8) where

P(B) is the so-called topological pressure per unit length.
Therefore the poles of thé function are located in the half
A. Scattering resonances plane

V. THE QUANTUM SCATTERING RESONANCES

The scattering resonances are given by the poles of the 1 /1 1
scattering matrixS in the complex plane of the quantum Im an—P<—;vn)EP(—)-
v, \2 2
wave numbek. These poles are the complex zeros of

Z(k)=defI-R(k)]. The following result can thus be deducgB—22;: If P(3)

<0 or equivalently if 0<dy<3 the lifetimes {7,} are
This function can be expressed as a product over periodismaller than a maximum quantum lifetimg and there is a
orbits, using the identity Indet{ R)=trIn(I-R) and the  gap in the resonance spectrumPif)=0 or equivalently if

series In(—R)=—ZX,-;R"/n. One gets i<dy=<1, the quantum lifetimes may be arbitrarily long.
In the first case, the partial Hausdorff dimension is small
~ 1 .
Z(K)= 1— e Nplp/2gi (Klp=mup/2)) 4 (OsdH<5)_ and ‘we can talk about a flla_mentary set of
(k) l_p[ ! ] @0 trapped trajectories. In the second case withd,<1, the

set of trapped trajectories is bulky. Hence, the result shows
wherel, is the length of the prime periodic orbjt X its thatagap appears in the dis_tribution of quantum scatteri_ng
Lyapunov exponent per unit length, and its Maslov index. resonances in th_e case of a filamentary set o_f trapped trajec-
This formal expression is equally valid for open and closed©r€s: The gap is determined by the topological pressure at
graphs and thus its zeros give the eigenenergies in the fir&=1/2 which is the exponent corresponding to quantum me-
case(zeros on the reak axi9 and the quantum scattering chanics, as opposed to the expongrt1 that corresponds
resonances in the second case, but, as for the trace formulg, classical mechanidd8,22. _
the product over primitive periodic orbits does not converge ' "€ properties of the topological pressure yield the fol-
everywhere. lowing |mportz;nt meqpahty between the quantum lifetime

Aremark is in order here about the difference between thé&nd the classical lifetime=1/yq:

guantum scattering resonances and the classical Pollicott-
Ruelle resonances. The quantum scattering resonances con-
trol the decay of the quantum wave function and are defined
either at complex energids, or at complex wave numbers
or momentak,,. In contrast, the Pollicott-Ruelle resonanceswhere the equality stands only for a set of trapped trajecto-
control the decay of the classical probability density, whichries that reduces to a single periodic orfi8,19. Accord-
is as the square of the modulus of the quantum wave fundngly, the quantum lifetime equals the classical lifetime only
tion. Accordingly, the Pollicott-Ruelle resonances are relatedor a periodic set of trapped trajectories. On the other hand,
to the complex Bohr frequencies,,=(E,—E,)/A and the quantum lifetime is longer than the classical lifetime for
have units of the inverse of time. a chaotic set of trapped trajectories. This result—which has

1
—=-2pP
Tq

1 P(1 1
—_ = — N = —
2,U (Lv) o
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previously been proved for billiards and general Hamiltonianin 1781 and there are still only a few general results. For an
systems in the semiclassical lin{it8—22—thus also ex- almost periodic function formed by three frequencies there is
tends to open graphs. an explicit formula given by Bohl. Weyl proved the existence
We note that it is thanks to the time-continuous classicabf mean motion for functions with a finite number of incom-
dynamics that we can compute the above estimate of the gapensurate frequencies and also gave a formula to compute it.
of resonances. Examples of this will be considered in The simplest result holds for the so-called Lagrangian

Sec. VI. case considered by Lagrange in his original work. We quote
the result because it is important for what follows.
C. Mean motion and the density of resonances Consider a function
In addition to the possibility of a gap in the distribution of f(t)=ape ot +a e+ . .. +a,elnt, (50)

the scattering resonances, we also want to obtain the distri-

bution of the imaginary parts, which give the widths of theIf

scattering resonances. For this purpose, we first determine

the mean density of resonances. This can be obtained ana- |aol=[ay| +[as] + - - +|ay|
lytically for a general graph and was done by Kottos andh
Smilansky, who obtained a trace formula for the resonanc%'1
density. Here, we proceed in a different way. Th&inction
for a k-independent matrixX (e.g., with Neumann boundary
conditiong is an almost periodic function df and several
results are known about its properties. In particular, the mean
density of resonancdﬂ(yl,yz) (Or zeros of thq function) Let us consider the expanSion of the determinant involved
in a Strip y1<|m k<y2 of the Comp|ex p|ané(:x_iy is in the§ funCtion [See Eq(6)] If 2B iS the dimension Of the
determined from the number of resonandés;,x,,y;,y,)  Sduare matriR, then

in the rectangle X;,%5,y1,Y,) by the following relation 2B

[27]: de‘()\I—R)=|ZO Myg_ \!

enf has a mean motiol which isM = w,. We shall show
at the density of resonances is determined by the mean
motion of the function in Eq(48) in the Lagrangian case.

2. The density of resonances(ke)

H _ | N(Xllxzyyl!yZ)
(yl'yZ)_‘X _')[n‘_m Xo— X1 where mg=1m;=tr(—R), ..., and myg=det(—R). The
2 secular equation i&2%,m =0. The general term

g e D
me=__ > , (—R)<. ) )
1<iy<ip,=<---<iy<2B [

p

1
= Z[M(yZ)_M(yl)]:

whereM(y) is the mean motion of the function af

where
fy(x)=2Z(k=x—1iy). (48
i e
The function (—R)( .1 .p)
h(y)=H(0y)= zi[M (y)—M(0)] (49) is the principal minor of ordep obtained by eliminating the
a

n—p rows and columns of {R) different fromi,---i,.
This coefficientm, is the homogeneous symmetric polyno-

g et ot sk vt T 1 s 7 v o o
y 9 : values ofR; thereforem,, is of the fornt

pute this number using the general properties of the function
Z(Kk). _
mpZE a elk_z .
. p jeld
1. Mean motion Upt P
An almost periodic functiorf:te R—C whereJ, stands for a set gf different integers in the interval
_ () [1,2B] and{J,} the set of elementd,. The important point
f(h=r(te to notice is that inm, there arep lengths.
It is clear that the only term that involves all the lengths of
the graph in the expansion

fy(x)=defl-R(x—iy)]
=1+m1+~~-+mp+---+m25_1+m23 (51)

with realr(t) and ¢(t) has a mean motiom

M:Iim@

t—oo

if the limit exists.
The problem of computing the mean motion has a long
history and is a difficult problem. It was posed by Lagrange 'Remember thaR(k)=TD(k) according to Eq(7).
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is and

m,g=detR = e?L ok detT = e?Lo*e? oy detT.  (52) Myg_ 1~ € Lot ImDkdet T/ iy .
For y—, m,g is exponentially larger than the remaining Thus the Lagrangian case holds approximately when

terms in Eq.(51) and the next leading termm,g_;, which

can be estimated as
2Lty > g(Liot Imin)Y

min
_ detT
ol (2L mink
Mzg—1~ €7 min 3 that is, for
with X\ i the minimum eigenvalue of, is exponentially ~iln 1 (56)
larger thanm,, with p=1, ... ,8B—2. Therefore we have Ymax lmin \ [ Nminl |
[myg|>|myg_q|+---+]1 for y—oo, This estimate turns out to be quite good as we shall see.

This result can be obtained also from the following argu-

Thus, the functiorf,(x) is in the Lagrangian case. The term Ment. The largesy=|Im k| that can be a solution of E¢6)

m,g corresponds to the terape' ot (heret is replaced b) 1S @pproximately given by the equation

of the expansion Eq50) and the mean motion is given by _

the frequency ofn,g given by Eq.(52). Accordingly, we find 1—eXImingYmalmin) =0

that M (%) = 2L 4.

In order to compute the density of resonanbés) [see  from where we obtain the result of E(56).

Eg. (49)] we have to evaluat# (0*). Since the upper half A similar argument was used by Kottos and Smilansky

of the complex plane is empty of resonances we have thdt 6] to obtain the gap empty of resonances Y< Vi, with

M(0*)=0 and thus from Eq(49) we get the density of

resonances 1
Ymin™ |_ In

max

mo
] Nmad |
h()=—2. (54)

™ In Sec. V B, we presented a lower bound for this gap that
is very accurate. Chaotic systems with a fractal set of trapped

This result prevails as long as de£ 0. In the opposite case trajectories of partial Hausdorff dimensiaty<1/2 have a
the density is given by gap empty of resonances below the axiskRgven by

h(oc): 2Lt0t_|min (55) ymin: - P(llz)
2
This bound is based on the classical dynamics. In this case,

if the corresponding constant factor does not vanish. the cumulative functionh(y) vanishes for 6y<Ymin

From this argument, it is clear that, once the functign — P(1/2). . _ o
belongs to the Lagrangian caéibat is, wheny=y,,,,), N0 The existence of the functioh(y) in Fhe limit x=Rek
further resonance appears belgps,. This allows us to es- —* for the case of graphs and the relati¢b4) and(55) are
timate how deep in the complex plane lies the shortest-livingompatible with a conjecture by Sjvand[23] and by Zwor-

resonance. With this aim, we consider the largest terms of theki [24,29 that the distribution of scattering resonances
expansion51), i.e., should obey a generalized Weyl law expressed in terms of

the Minkowski dimension of the set of trapped trajectories,
because this Minkowski dimension is equal to 1 for the

fy(})=Mg+mpg_1+ - quantum graphs.

with 3. Width distribution

_ The density of resonances with a given imaginary part
myg=e?t ok detT P(y) is defined by

_ {no. of resonancek, =X, iy, such thaty<y,<y-+dy}
B {total no. of resonance$

(57)

P(y)dy
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or in terms of the previously defingdy) This qualitative argument can be criticized on various
points. In particular, the constant factaris not determined
dh(y) and the assumption that the result holds for the quantum case
P(y)= d—y is questionable because of the use of classical considerations.

A complete theoretical validation of this law is thus lacking.
However, the numerical results presented below give support
to this conjecture in the case of a multiconnected graph that
S spatially extendedsee Sec. VIE

The power lawP(y)~y 2 was conjectured in Ref12]
to be a generic feature of the density of resonances for sy
tems with diffusive classical dynamics. The system studie
in Ref. [12] was the quantum kicked rotor whose classical
limit is the standard map. For some values of the parameters
that appear in this map, the phase space is filled with chaotic A. Simple graphs with two leads
trajeqtories and no Iargg quasiperiodic islands are observed. For the first two examples in this section, we consider the
Working with these particular values, the standard map proNeumann boundary conditidi8] o, — 2/ — &
duces a deterministic diffusion. In R¢f.2], the kicked rotor In Figs. 1) dyl ) ab h Id ab- fh
has been turned into an open system by introducing absortt)- nrigs. 1a anb b'(I:' ’ we_c;]orr;]parel e elcgy 0 ebqu_an—d
ing boundary conditions at some fixed values, saj/2 and um staying probability with the classical decay obtaine

—N/2. The distributionP(y) for the scattering resonances fFrlonS’l tjf(\g) zgg'?g;’glejes"ee(r;rsuorgag}cejaﬁ?udmvggtse?ir?err)g:sto'_n
obtained in Ref[12] is not identical to the one we observe gs. P q 9

: ' : .- nances for the corresponding graph. The initial wave packet
for a graph given in Sec. VI C. In particular, the density A ) .
P(y) of el 2] staris wihp(y~0)~0 sl rows il .~ 150 POUEA ) e, ) anc 1 efines  specyal o
maximum value is reached gt- vy, with vy the classical 9 . G .
. i the quantum and classical lifetimes of the resonances coin-
escape rate. It is the tail dP(y) that decreases fromy

L cide. In fact, for the simple graphinset of Fig. 1a)], the
~ Yo as the power lawP(y) ~y == . __scattering matrix is ple oraph o 12l
The conjecture is that the power law holds for the tail of

VI. EXAMPLES AND DISCUSSION

P(y), that is, for largey. We present here the argument of 1 2
Ref. [12] that motivates this conjecture for systems with a -5 3 2ik
o h . L 3 3 49 11 1
diffusive classical limit. S= +— (59
Consider a classical open diffusive system that extends 2 1 9+3e?k9|1 1
from x=—N/2 to x=+N/2. We set absorbing boundary 3 3

conditions atx=—N/2 and x=+N/2. Consider at=0 a

particle in the interval ¢ N/2,+N/2). Since the particle es- Wwith I,=g. The resonances are given by the polesSah
capes by a diffusion process the mean time that the particlEq. (59), which are the zeros of 93e?*9, that is,

takes to arrive at the border, starting at a distakddeom it,

is the diffusion timety~X?/D. We suppose that the resonant K =+ 2n+1 =i |”_3 (60)
states are more or less uniformly distributed along the chain T 29 29

and that their quantum lifetime is proportional to the mean . ) o

time taken by the particle to move froMto the border, so  With n integer. These resonances have a lifetime: 1",

that [Im k| = Y~ L/tg~D/X2. Since the chain is symmetrical With I'n=—2v,Imk,=v(In 3)/lg where we used =2 Rek.
underx— —x, we can assume a uniform distribution Xf This means that all the resonances have a lifetime given by

from the borderx= —N/2 to the middlex=0. The probabil-

ity that the imaginary part is smaller thans thus Tn:%_ (61)
vlin
_ a This result could have been obtained using &J) and the
Prok{Y<y}—Prob{ 7<y] classical Pollicott-Ruelle resonances from Etf).
In fact, for this graph, the only periodic orbit is the one
aD that bounces on the bora The length of this periodic orbit
=Pro 7<X is 1,=2g. The stability coefficient is given byA|?

=exp(—)~\plp)=[a§ba§5]=1><$ and we obtaink )l ,=In9. At
-1 E /@ the vertex 2 the particle is reflected with trivial backscatter-
N y '’ ing and thus the analog of the Maslov indgx=2 for the
periodic orbit. Thus the quantum scattering resonances are
wherea is a dimensionless constant. Therefore, the probabilthe solutions of
ity density of the imaginary parts of the resonankgs X,

LT —In9
—iy, is given by 1—exp< 5 +2igk+im|=0
d ab f hich Eqg.(60) foll hile the classical Pollicott-
P(V)= —ProlY<vi= " -312 58 rom which Eq.(60) fo ows, while the classical Pollicott
) dy oY <y} N Y (58) Ruelle resonances are given by the solutions of
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FIG. 1. (a) Decay of the quantum staying probability for the graph of the inset. The straight line is the exponential decay of the classical
density for the same grapth) The dots represent the quantum scattering resonances of the gr@phTihe line superposed on the dots is
the corresponding value associated with the classical decay rates of the classical Pollicott-Ruelle resonances. The curved line on the real axis
is the initial wave packeic) The same as ifg) for the graph of the inset ift). The steepest slope corresponds to the classical decay while
the line with the smaller slope corresponds to the decay determined from the isolated resonance that is closest to the (dal(dxiShe
same agb) for the graph of the inset ifc).

1—exp(In9—2gs/v)=0 1(d), there is an isolated resonance very near the real axis
under the window given by the initial wave packet. The de-
which follows from Eq.(44). These solutions are cay rate given by this resonandg,= —4 Rek, ImKk,, gives
the straight line with the smaller slope.
~In9 +2in7r 5
Sn= 2g/v ~ 2glv’ 62

B. Triangular graphs
Therefore, all the Pollicott-Ruelle resonances have the life-

time 74q=2g/v In9=g/vIn3. This lifetime coincides with The following example is a nice illustration of the role
the quantum lifetime obtained from the resonances of thglayed by the Lagrangian mean motion in the density of
same graph in Eq61). resonances described in Sec. V C. Consider a graph with the

The second graph in Figs(d and Xd) has chaotic clas- form of a triangle, that is, we have three vertices and every
sical dynamics. In this case, we also observe a very goouertex is connected to the two other vertices. The lengths of
agreement for short times between the quantum stayinthe bonds are, b, andc (see Fig. 2
probability and the classical prediction, and then a transition Now we add a semi-infinite scattering lead to each vertex
to a pure quantum regime. The decay in the quantum regimand use the Neumann boundary condition at the verfses
is again exponential because there is an isolated resonanEeay. 2(@)]. In this case, the resonances are determined by the
that controls the long-time decay. In fact, as we see in Figzeros of
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@) (b)

FIG. 2. The open triangle quantum gragh) One scattering
lead is connected to each verték) Two scattering leads are con-
nected to each vertex.

f(k)= g2ik(a+b+c) _ 1 gaik(at+b+c) _ g2ik(a+b) _ g2ik(b+c)
_ g2ik(a+c) _ 3(eika+ elkb eikC) +27=0.
Replacingk=x—iy we have that the mean motion Bf(x)

for y—o is M(y—»)=2(a+b+c) and the density is
given byh(e«)=(a+b+c)/m, which illustrates Eq(54).

Now, consider the same graph but with two semi-infinite

leads attached to each vertesee Fig. 20)]. In this case, the
resonances are determined by the equation

e2ika_y g2ikb 4 g2ike | gik(atb+c)— 4

Replacingk=x—iy we have that the mean motion Bf(x)
for y—o is given by mafa+b+c,2a,2b,2c} and therefore
the density of resonances is given Iye«)=maxX(a+b
+c)/2m,al w,blw,c/ 7}, which illustrates Eq(55).

An interesting observation is the following. The matfix

that contains the transmission and reflection amplitudes for

the triangular graph can be written as

0 0uouvoO0
0 0v Ouo
Uuo0o0UO0O0ouw

6=, 0 0 0 0 u
0 uowov 00
0 v 0 u o0 O

with u=—B/2—(1—-8)/3 andv=p/2+2(1-B)/3 where

B=1 for the graph connected to two scattering leads at eac
vertex andB=0 when there is only one scattering lead per

vertex. Note that def=0 if 8=1. We have computed the
zeros of the functiorZ z(k) =def|—TzD(k)] for 0<=pB=<1.

It is observed that for some zeros in the lower half of the

complexk plane the imaginary part decreases very fasg as

increases. Therefore, we interpret the lowering of the density
for the triangle connected to two scattering leads per verteg

)

FIG. 3. Open graph built out of a periodic chain by attaching
semi-infinite leads on a graph made Wfunit cells. The figure
shows a chain wittN==6 unit cells.
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FIG. 4. Quantum scattering resonances for the graph in Fig. 3
with N=5 unit cells.

as the effect of resonances withmk|—c. However, it
should be noted that, even in the case thatTded, the
analysis leading to Eq56) [i.e., the competition between the
two leading terms of the functiofy(x) for y—co] permits
one to obtain an approximate upper boung,.

C. Spatially extended multiconnected graph

Here, we consider the multiconnected graph of Fig. 3. The
classical dynamics on this graph was studied in Ref.
where we showed that the escape is controlled by diffusion.

For this particular graph th& matrix is

5 if the particle is reflected, i.e., b=b’,

Thp

)=

for bonds b#b’ that are connected,

5
0 otherwise.

The spectrum of quantum scattering resonances of this graph
is depicted in Fig. 4 for the chain withN=5 unit cells.

1. Width distribution

For this graph, we have computed the dengitfy) of
resonance widths defined by E§7). The histogram of reso-
nance widths is plotted in Fig. 5 for different sizisof the
chain. Note that no resonance appears bejqw=2.276
Which is the value computed from E¢6). This value is
independent of the system sikefor N=3. We have com-
puted the eigenvalues of the matiixfor different values of
N and we show the minimum eigenvalue in the following
table:

|7\min| Ymax

0.200 4.553

0.392 2.655

3 0.447 2.276

As we said, forN=3, this eigenvalue is independent Nf
and is given by the case witki= 3.

Figure 5 depicts the density of the imaginary parts on a
log-log scale and the power laR(y)~y %2 conjectured in
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FIG. 5. P(y) on normal and log-log scales for the chain of Fig. 3 wah(b) N=6; (c),(d) N=7. The continuous line shows the power
law y~%2 The distribution stops at the valyg,,«. The dashed line indicates the valyre [Im k| = y,/2 associated with the classical escape
rate yg .

Ref.[12] is observed. This is shown for chains of different

lengths in these figures. The power law holds for not too ;|
small sizesN. This observation is therefore a support for the M%W
conjecture of Ref[12] in the case of multiconnected graphs Con oS L T s e -,
like that of Fig. 3. " ot e .

2. Detailed structures in the resonance spectrum

Im &

Let us now discuss the details of the distribution of reso-
nances.

First of all, we notice that the statistical description we
have considered, that is, the distributionypfs based on the
homogeneous character of the resonance distribution alon - ,
the x=Rek axis. This homogeneity indeed holds on large 1005 10010 Re k 10015 10020
scales as we see in Fig. 4. Nevertheless, at small scales, we
can see in Fig. 6 the formation of bands of quantum reso- FIG. 6. Quantum scattering resonancdsts and transmission
nances characteristic of a periodic system for which theprobability amplitudeTs s (solid line) for the chain of Fig. 3 with
Bloch theorem applie$26]. The reason is that, for long N=7 unit cells.
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FIG. 7. () Resonances for the chain of Fig. 3 with=7 (circles andN=8 (crosses (b) The distribution of resonance widths for the
chain withN= 7. The straight line irfa) and(b) separates the two families of resonances: those that depeMdrom those that do not. This
figure shows that the change in the distribution of the imaginary parts of the resonances is associated with the different families of
resonances.

times, the system is able to resolve finer scales in wave num- In Fig. 7(a), we superpose the resonance spectrum for
ber (or energy and thus after a given time the system will chains with two different sizes. The figure shows that, for
“feel” the periodic structure and evolve ballistically as fol- resonances with large values p#|ImKk|, neither their po-
lows from the Bloch theorem. sition nor their number changes with but resonances with
The distributionP(y) shows a peak at the origifie.,y  small values oflImk| converge to the real axis as we in-
=0) which grows with the number of unit cellN. This  creaseN. Therefore, the relative number of resonances in the
behavior tells us that “bands” of resonances with snyare (4| of the distribution decreases as compared to the number
created when we increase the size of the chain. In fact as fQ§f resonances with small valuesyfwhich increases with.
the resonances of one-dimensional open periodic potentialfe can conclude that the resonance spectrum converges to
[26], we haveN -1 resonances per ba”?' and the ban.ds-confhe real axis in probability when we increaseThis behav-
Verge as— 1/.N to the r.ea.\I axis W.he”N increases. This is ipr is in contrast with that of the simple systems analyzed in
pon5|stent Wlth the _balllstlc behavior that should be observe<£ef_ [26], for which we observed thatachresonance con-
in the long-time fimit. erges to the real axis a&¢increases.

On the other hand, the resonances with larger values of : . .
y=|ImKk| are not arranged in a band structure and their num: Equation(58) predicts a relative decrease{y) as IN.

ber does not increase when we change the bizef the This_ law is verified as shown in Fig. 8, where we plot for
system. In fact, these resonances are located at the safi@ty the functionNxP(Imk) for only a few cases. Ac-
position in the complex plane for every valueNifTherefore ~ cording to  the theﬁogr/tzatlcal distribution of EqS8) N
we interpret such short-lived resonances as metastable statéd(Imk)e/D|Imk|~*?Z where the right-hand side is inde-

that decay without exploring the whole system. pendent ofN and, moreover, the proportionality factor is
determined by the diffusion coefficient of the chain. We have
1000.000 . . . computed the diffusion coefficient for this graph in Ref].
\ The continuous straight line in Fig. 8 corresponds to the
100000 F diffusion coefficient of the infinite chain. The good agree-
ment shows that the proportionality constarin Eq. (58) is
of order 1, as expected.
10.000 £ . ..
In Fig. 5, we observe deviations from the power law at
small and large values ¢fmk|. The dashed lines in Fig. 5
1000 indicate the value corresponding to the classical escape rate.
We see from the figure that the distribution of imaginary
0.100 parts is well described by the power law fgr=|Imk|
> v4/2 and the classical escape ratgis near the transition
0019 - e o to this power law. On the other hand, the tail of the distribu-

y ' tion also deviates from the power law. The distribution fol-
lows the power law until a value which decreases when
FIG. 8. Superposition of the log-log plots bifx P([Imk|) as a  increases. Beyond this value the distribution seems to fluc-
function ofy=|Imk| for N=5, 6, and 8 and the same graph as in tuate around an almost constant value, and then drops rapidly
Fig. 3. to zero.
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FIG. 9. Open graph built out of a periodic linear chain with a
unit cell made of two bonds with scattering matridé8) at each
vertex. The figure shows a chain with=2 unit cells.

The region where the distribution of imaginary parts fluc-

tuates around some value corresponds to the region where

the resonances are independéntnumber and in position
of the value ofN. This can be seen in Fig. 7. In Fig&y, we
depict the resonances fd¢=7 andN=8 and draw a line

that separates resonances that belong to bands and change

with N from those that are independent Nf This line is
given byy=|Imk|=0.5. In Fig. 1b), we depict the density
of resonances foN=7; the valuey=|Imk|=0.5 is indi-

cated by the vertical straight line. This line marks the sepa
ration between the two families of resonances and thus th

limit of the power lawy %72,

D. Linear graph with emerging diffusion

PHYSICAL REVIEW B55 016205

%]

10 15

N2
FIG. 10. Plot of the lifetimery(N)=1/y,(N) for the chain of
Fig. 9 withN=1, 2, 3, and 4 unit cells as a function NE. The
dashed line corresponding to the diffusion coefficiBrt 0.506
given by Eq.(65) is approached by the classical lifetimes for in-
reasing sizeN of the open graphs. We have used the parameters
7,=0.1, 7,=(y5—-1)/2,1,=0.5, andl,= /2.

Therefore, the transmission and reflection probabilities for

For extended periodic open graphs, the classical decathe classical dynamics afie=cos(7) and R, = sir’(z,).
given by the leading Pollicott-Ruelle resonance corresponds Figure 9 depicts an open graph by considering dxly

to the decay of a diffusion procef8]. Here, we analyze the
decay of the quantum staying probability for such a graph.

Here, we consider a linear periodic graph with a unit cell

composed of two bonda andb of incommensurate lengths
I, andl,, respectively. At the vertex that join these two
bonds we have a scattering matax 7,) and the vertices
that join two unit cells have a scattering mateiX#,). These
scattering matrices are of the form

units cells connected to semi-infinite leads at the left-hand
and right-hand sides of the finite graph.

1. Classical diffusive behavior

In the limit N—oo of an infinitely extended chain, the
graph becomes periodic and the motion is diffusive. The dif-
fusion coefficient can be calculated by considering the
Frobenius-Perron-type matri@(s,q) defined in Ref[9] in

_|isiny cosy terms of the classical wave numbgand the rates. For the
o(n)= N (63)
cosy isinyg present graph, we have that
|
0 e+iqefs|b/v-|-:L efsla/le 0
e_SIa/UTZ 0 0 e_SID/URZ
Q(S:Q): e_SIa/URz 0 O e—5|b/UT2 ’ (64)
0 efslb/le e*iqefsla/v-l-l 0
|
wher(::‘ }he columns and rows are arranged in the order 1 #%s4(q) oT,T,
(a,b,a,b). The diffusion coefficient is obtained from the T2 ¢ | T ARTATRY (65

second derivative of the first branch @q&=0. Developing
defl—Q(s,q)] for small values ofj ands, we get

S
defl—Q(s,q)]=2I (R1T2+T1R2); +T,T,0%+0(s?)

+0(sf)+0(g*).

The diffusion coefficienD is thus given by

wherel =1,+1 is the total length of the unit cell.

In Ref. [9], we considered other examples and showed
that the classical escape ratg(N) for a finite open chain of
sizeN is well approximated by Eq46) in the limit N—oo.

For the present linear graph, Fig. 10 illustrates that the clas-
sical lifetimes of the chain are indeed determined by the
diffusion coefficient according te=1/y4~N? in the limit

N-— o0,
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FIG. 11. Scattering resonances of the chain of Fig. 9 With1, 2, 3, and 4 unit cells i), (b), (c), and(d), respectively. We have used
the parametersy;=0.1, 7,=(y5—-1)/2,1,=0.5, andl,= /2.

2. Spectrum of scattering resonances and its gap these graphs. We see that the chains With1 andN=2
The resonance spectrum is depicted in Fig. 11 for differunit cells have a valud>(1/2)<0 and, therefore, a gap
ent chain sized=1, 2, 3, and 4. empty of resonances. This gap appears in Fig$a)1and

The structures of the resonance spectrum and the presené&b). For the chains withN=3 and N=4 unit cells,
of a gap for the sizedl=1 andN=2 can be understood P(1/2)>0 and we do not have this upper bound for Figs.
thanks to the topological pressure plotted in Fig. 12 forll(c) and 11d).
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cape ratesy= — y(v) at the velocity corresponding to the
mean energ¥ of the Gaussian wave packet. The agreement
observed in Fig. 13 for short times between the classical
decay and the quantum decay shows that for short times the
\ quantum evolution follows a diffusion process. The deviation

that appears in Fig. 13 for longer times corresponds again to
the decay determined from an isolated resonance and is
T therefore a pure quantum effect.

P)

A

VII. CONCLUSION

-2
We have studied dynamical and spectral properties of
) open quantum graphs with emphasis on their relation to the
FIG. 12. From bottom to top, we plotted the topological pres-( st properties of the corresponding classical dynamics.
sure for the chain of Fig. 9 with the same parameter values as BHhe classical dynamics has been obtained as the classical
Fig. 11 and the sizell=1, 2, 3, and 4 unit cells, respectively. limit of the quantum dynamics.
The time evolution of the quantum system is obtained
from the propagator which is computed as the Fourier trans-
For these open graphs, we have calculated the quantufgrm of the Green function. A closed expression and a mul-
staying probability in order to illustrate the emergence of atjscattering representation for the Green function have been
diffusive behavior. presented. We want to emphasize that both the classical and
The quantum time evolution was computed by using thequantum evolution are considered with continuous time, in
method described in Sec. IVD. The propagator was calcugpposition to the discrete time evolution often considered in
lated by fast Fourier transform from the Green function. Thethe literature of lattice networks.
staying probability was calculated by considering an initial  |n particular, we have computed the quantum staying
Gaussian wave packet located on a bond 1 inside the grappiobability. For short times, this quantity decays exponen-
1o tially in time with the classical escape rate. This classical
\E 1 . \/E (y—yo)2Aa? escape rate is obtained from the classi¢alunction and
Wa(l—e*ZE"z) sin(VEy)e ' corresponds to the leading Pollicott-Ruelle resonance. For
large open periodic graphs the leading Pollicott-Ruelle reso-

This wave packet is built by the modulation of a Gaussiarfl@nce determines a decay dominated by diffusion, and the

with a sine function of wave numbaE The wave packet is decay of the quantum staying probability reveals the emerg-

h d ay— q kev-—1./2). Th ing diffusion process at the quantum level.
thus ce_ntere ?‘Y—Vo (and we takeyo=I,/2). The wave On the other hand, the quantum spectral properties are
packet is effectively on the bond 1 Xy=20<l,.

. he d f th . also related to transport. The resonance spectrum reveals
In Fig. 13, we compare the decay of the quantum staying,, g features related to both the ballistic propagation in the
probability with the decay obtained from the leading

Poli Ruell for diff . Fig. 1 periodic system for the long-time evolution and the diffusive
ollicott-Ruelle resonance for different sizéssee Fig. 10 |asqjcal dynamics that is an approximation for the quantum

This leading Pollicott-Ruelle resonance is the classical esdynamics for times shorter than the Heisenberg time
Indeed, the Fourier transform relates the long-time behav-

3. Decay of the quantum staying probability

$1(y,0)=

10 ior to the variations at small energy scales. At small scales,
10" the resonance spectrum is arranged in bandsd-efl reso-
10” nances that converge asl/N toward the real axis. There-
10° fore the lifetime of each resonance in a band is proportional
= 10" to the size of the system, reflecting the ballistic transport that
& 10° characterizes a periodic system as stated by the Bloch theo-
“ rem[26]. Nevertheless, this ballistic propagation affects the
107 long-time dynamics. Indeed, the Bloch theorem gives infor-
10 mation about stationary states. The short-time dynamics is
10° determined by the large fluctuations of the resonance spec-
10° trum. At a large scale, the resonance spectrum is uniform

000 004 008 012 016 over the Rék axis (see Fig. 4 This distribution displays a
t power law P(y)~y~%? obtained earlier in Ref[12] and
FIG. 13. From bottom to top: Decay of the quantum stayingConjectured to be a general law for open quantum systems
probability for the chain of Fig. 9 with 1, 2, 3, and 4 unit cells and With a diffusive classical limit. Our numerical results support
the same parameter values as in Fig. 11. The straight lines give tH8is conjecture for multiconnected spatially extended graphs.
corresponding classical decay as obtained from the Pollicott-Ruelle Moreover, we have presented an alternative derivation of
resonances. the density of resonances obtained in Réf6], which is
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based on general properties of the secular equations, namebf, diffusion at the quantum level. The diffusion process is
that the density is an almost periodic function whose mearnhus encoded in the distribution of scattering resonances.
motion in the appropriate limit is Lagrangian. This method

allows us to obtain an approximate lower bound for the dis- ACKNOWLEDGMENTS

trllbu_tlon_ of y=[Imk|. Morpever, an upper bour_ld for this The authors thank Professor G. Nicolis for support and
E'St“b”t"?” has been obtained from the topological PreSSUr&ncouragement in this research. Discussions with Professor
P(B). This bound creates a gap in the resonance spectrufy. zworski are acknowledged. F.B. is financially supported
under the conditiorP(1/2)<0 and is absent otherwise. by the “Communautdrancaise de Belgique” and P.G. by the

In summary, we have studied quantum properties of exNational Fund for Scientific Resear@RNRS Belgiun). This
tended open periodic graphs. We have shown that theesearch is supported, in part, by the Interuniversity Attrac-
Pollicott-Ruelle resonances determine the decay of the quarion Pole program of the Belgian Federal Office of Scientific,
tum staying probability, which in turn shows the appearancélechnical and Cultural Affairs, and by the FNRS.

[1] P. GaspardChaos, Scattering and Statistical Mechani€am-  [15] P. Exner and P. Seba, Phys. Lett128 493(1988.

bridge University Press, Cambridge, UK, 1998 [16] T. Kottos and U. Smilansky, Phys. Rev. Le86, 968 (2000.
[2] T. Kottos and U. Smilansky, Phys. Rev. L€t8, 4794(1997). [17] R. Balian and C. Bloch, Ann. Phy$§N.Y.) 60, 401 (1970.
[3] T. Kottos and U. Smilansky, Ann. Phy@\.Y.) 273 1(1999.  [18] P. Gaspard and S. A. Rice, J. Chem. PI9@5.2225(1989; 90,
[4] H. Schanz and U. Smilansky, Philos. Mag8B, 1999(2000. 2242(1989; 90, 2255(1989; 91, 3279(1989.
[5] G. Berkolaiko and J. P. Keating, J. Phys38 7827(1999. [19] P. Gaspard, iQuantum Chagsedited by G. Casati, I. Guarn-
[6] F. Barra and P. Gaspard, J. Stat. Piiy3l, 283(2000; e-print eri, and U. SmilanskyNorth-Holland, Amsterdam, 1993pp.

[7] E. Akkermans, A. Comtet, J. Desbois, G. Montambaux, and C[ZO] P. Gaspard, D. Alonso, and I. Burghardt, Adv. Chem. PBgs.
Texier, Ann. Phys(N.Y.) 284, 10 (2000.

105(1995.
8] H. Schanz and U. Smilansky, Phys. Rev. L8#.1427(2000.
%9% F. Barra and P. Gaspard )F/>hysy Rev6E 0?6 21522003 [21] P. Gaspard and |. Burghardt, Adv. Chem. Phg81, 491
e-print nlin.CD/0011045. (1999 . . o
[10] G. Casati, G. Maspero, and D. L. Shepelyansky, Phys. Rev. l12;22] P. Gaspard ibynamics: Models and Kinetic Methods for Non-
56 R6233”(1997) ' ' equilibrium Many-Body Systemedited by J. KarkheckKlu-
[11] K.,Pance, W. Lu, and S. Sridhar, Phys. Rev. L&, 2737 wer Academic Publishers, Dordrecht, 200pp. 425—456.
(2000. [23] J. Sjestrand, Duke Math. B0, 1 (1990.
[12] F. Borgonovi, I. Guarneri, and D. L. Shepelyansky, Phys. Rev[24] M. Zworski, Invent. Math.136 353 (1999.
A 43, 4517(1991). [25] K. K. Lin and M. Zworski, University of California at Berke-
[13] J. Avron, A. Raveh, and B. Zur, Rev. Mod. Phyg0, 873 ley report, 2001.
(1988. [26] F. Barra and P. Gaspard; J. Phys32 5852 (2000.
[14] P. Exner and P. Seba, Rep. Math. PH38.7 (1989. [27] B. Jessen and H. Tornehave, Acta Maifi, 137 (1945.

016205-21



