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Fractal properties of the lattice Lotka-Volterra model
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The lattice Lotka-Volterra~LLV ! model is studied using mean-field analysis and Monte Carlo simulations.
While the mean-field phase portrait consists of a center surrounded by an infinity of closed trajectories, when
the process is restricted to a two-dimensional~2D! square lattice, local inhomogeneities/fluctuations appear.
Spontaneous local clustering is observed on lattice and homogeneous initial distributions turn into clustered
structures. Reactions take place only at the interfaces between different species and the borders adopt locally
fractal structure. Intercluster surface reactions are responsible for the formation of local fluctuations of the
species concentrations. The box-counting fractal dimension of the LLV dynamics on a 2D support is found to
depend on the reaction constants while the upper bound of fractality determines the size of the local oscillators.
Lacunarity analysis is used to determine the degree of clustering of homologous species. Besides the sponta-
neous clustering that takes place on a regular 2D lattice, the effects of fractal supports on the dynamics of the
LLV are studied. For supports of dimensionalityDs,2 the lattice can, for certain domains of the reaction
constants, adopt a poisoned state where only one of the species survives. By appropriately selecting the fractal
dimension of the substrate, it is possible to direct the system into a poisoned or oscillatory steady state at will.

DOI: 10.1103/PhysRevE.65.016204 PACS number~s!: 05.45.2a, 05.45.Df, 05.65.1b, 05.10.2a
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I. INTRODUCTION

It is now well established@1# that mean-field approache
used traditionally for the description of reactive processes
not adequate to describe the rich complex dynamical beh
ior and the local fluctuations of processes restricted on l
dimensional supports@2–7#.

In particular, catalytic chemical reactions are one categ
of restricted reactive processes where the reactions can
take place if the reactive species are adsorbed on the su
of the catalyst. For these processes basic mean-field req
ments such as homogeneity and high diffusivity do not h
since reactions are only possible between neighboring m
ecules. Well known catalytic reactions of this type are
CO oxidization on the surface of Pt@8–10#, the NO reduc-
tion on the surface of Pt@10–13#, and the NO1CO reaction
on Pt @14,15#. To overcome the difficulties arising at th
mean-field level, specific simulation models have been c
structed that take explicitly into account both the structu
properties of the support and the local nature of the inte
tions. One well known model is the ZGB model for the C
oxidation on Pt surface@16#. This model predicts periodic
and transient behaviors that correspond to poisoning p
nomena@6,17–22#. Along the same lines are simulation
with surface restructuring@6,7,23# and superlattice ordering
@24#. Also, the NO1H2 reaction has been studied using la
tice gas models@25# on substrates with different propertie
@26#. All these studies predict the appearance of comp
local patterns, poisoning transitions, and periodic or cha
oscillations.

In a recent work, the effort to study the origin of th
complexity of catalytic processes was undertaken usin
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simple bimolecular open reactive system, the lattice Lot
Volterra model~LLV ! @2#. The original Lotka-Volterra mode
was first introduced in order to describe the dynamics o
system of competitive biological species~see Ref.@27#!. It
was very successful in the sense that due to its nonlin
structure it was able to describe oscillatory schemes. At
time the model was proposed, nonlinear oscillations had
ready been recorded at ecological systemsin vivo. The
Lotka-Volterra is a mean-field model that contains one bim
lecular autocatalytic reactive step, one creation step, and
annihilation step. At the mean-field level it predicts a pha
portrait consisting of a center surrounded by a continuum
closed curves.

Simple, space-dependent, autocatalytic reaction mod
such as the general epidemic process, have been studie
Grassberger@28# using Monte Carlo methods. These mode
predict criticality and propagating waves on 2D suppor
Excitable media, most often modeled by reaction-diffusi
processes, are alternative examples exhibiting propaga
patterns on low-dimensional supports. Furthermore, ex
able media present a high degree of spatial organiza
@7,29# and have been studied as percolation problems@30,31#
exhibiting spontaneous fractality.

The original Lotka-Volterra model, being a mean-fie
model is space independent and cannot be directly real
on lattice because the condition of conservation of space~to-
tal number of lattice sites where the reactions take pla!
does not hold. For this reason one of the current auth
~A.P.! and collaborators have introduced the LLV model@2#.
In the LLV model there are two kinds of reacting molecul
as well as the empty lattice sites. All three reactions con
of bimolecular steps and three speciesX1 , X2, and S are
participating. X1 and X2 are considered as on-lattice a
sorbed species, whileS denotes the empty lattice sites. Th
LLV scheme is the following@2#:
©2001 The American Physical Society04-1
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X11X2→
ks

2X2 , ~1a!

X21S→
k1

2S, ~1b!

S1X1→
k2

2X1 . ~1c!

Step ~1a! represents an autocatalytic reaction betwe
speciesX1 andX2 while the second step~1b! denotes desorp
tion of a particleX2 and creation of an empty siteSprovided
that there is a second empty siteS in the neighborhood. Simi-
larly, the third reaction~1c! stands for a cooperative adsor
tion. An empty siteS is filled by speciesX1 provided that a
X1 is already adsorbed on a neighboring site.

If x1 , x2, ands stand for the total concentration of mo
eculesX1 , X2, and empty sites, respectively, then the d
namics of the LLV model is represented by

dx1

dt
5k2x1s2ksx1x2 , ~2a!

dx2

dt
5ksx2x12k1x2s, ~2b!

ds

dt
5k1x2s2k2x1s. ~2c!

This dynamical system has already been investigated t
oughly @2#. Due to its construction one can immediately re
ognize that there is a constant of motion:

C5x11x21s51. ~3!

This constantC corresponds to the total number of lattic
sites that either contain particles (X1 or X2) or empty sites
(S). ForC51 the conservation condition, Eq.~3!, represents
the probability conservation on every lattice site: one latt
site contains eitherX1 with probabilityx1 , X2 with probabil-
ity x2, or S with probability s512x12x2.

Using Eq.~3! one may eliminate the dynamical functio
s(t) and obtain the following 2D nonlinear system

dx1

dt
5k2x1S 12x12

k21ks

k2
x2D , ~4a!

dx2

dt
52k1x2S 12x22

k11ks

k1
x1D . ~4b!

This dynamical system has four fixed points, three
which are saddle points and one is a center@2#. The saddle
points are (0,0), (0,1), (1,0) while the center is@k1 /(k1
1k21ks),k2 /(k11k21ks)#. The center is surrounded by
continuum of closed trajectories. The phase portrait of
system is shown in Fig. 1. Further investigations have sho
that the dynamical system is conservative for any values
k1 ,k2 ,ks while for the special casek15k25ks it is Hamil-
tonian @32,33#.
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By appropriate rescaling of the parameters and the t
variable it is possible to obtain a minimal parameter space
follows:

a15
k1

k11k21ks
, ~5a!

a25
k2

k11k21ks
, ~5b!

t5t~k11k21ks!. ~5c!

Using Eqs.~5!, Eqs.~2! are reduced to

dx1

dt
5x1@a2s2~12a12a2!x2#, ~6a!

dx2

dt
5x2@~12a12a2!x12a1s#, ~6b!

ds

dt
5s~a1x22a2x1!. ~6c!

Using Eq.~3!, s is eliminated from Eqs.~6! and the LLV
system is finally reduced to

dx1

dt
5a2x1S 12x12

12a1

a2
x2D , ~7a!

dx2

dt
52a1x2S 12

12a2

a1
x12x2D . ~7b!

Equations~6! and~7! describe the dynamical system wit
the minimal number of parameters and it is not possible
further reduce the parametric space using any other res
ing. In the new parameter space the center is now positio

FIG. 1. Phase space of the LLV model fork150.3, k250.3,
ks50.9 ~or a150.2, a250.2).
4-2
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FRACTAL PROPERTIES OF THE LATTICE LOTKA- . . . PHYSICAL REVIEW E 65 016204
at (a1 ,a2,12a12a2). Comparison with simulation data ca
always be performed by inverting this parameter rescalin

In order to study the local behavior of the system, Mon
Carlo simulations were used on a square lattice of s
L3L, with periodic boundary conditions. The algorith
chosen was the one originally used for studying LLV@2#.
Specifically, at every timestep a random site is picked and
four nearest neighbors are checked for compatibility with
LLV reactions~1a!, ~1b!, and~1c!. Reactions take place with
probability ki ,i 51,2,s. After completing this procedure
new random site is chosen. One Monte Carlo step~MCS! is
completed after a number of trials equal to the total num
of lattice sites (L3L).

Using the above method it has been demonstrated
while kinetic oscillations are almost totally suppressed a
a certain time in large lattices, it appears that they are c
served in small scales~Fig. 2!. It seems that for small region
there exist ‘‘local oscillators’’ that follow the behavior de
scribed by mean-field equations quite closely. These lo
oscillators, however, tend to be out of phase and the
result is that throughout the lattice no global oscillations c
be observed.

In the current work the characteristics of the local osc
lators are studied, together with their sensitivity to init
conditions, variation of their size depending on the reactiv
constantski and possible fractal structure of the substra
Also certain spatiotemporal phenomena that are manife
displayed by the system are investigated.

FIG. 2. Oscillations on a 3003300 lattice and on a 50350
sublattice.
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In particular, in Sec. II the fractal structures developed
the square lattice as a result of local fluctuations are stud
and the characteristic length of the local oscillators is cal
lated. An explanation of the global lattice behavior based
this hypothesis is proposed. In Sec. III, in order to simul
the LLV dynamics on microstructured catalytic surfaces b
deterministic and random fractal substrates are introdu
and the dynamical behavior that arises is examined. Fina
in Sec. IV our main conclusions are recapitulated and cer
aspects concerning the reverse model and the effect of m
ing on the system are further discussed.

II. CLUSTER FORMATION AND FRACTAL PROPERTIES

As mentioned in the Introduction, the simulated LLV pr
cess shows intrinsically non-mean-field behavior. For re
tively large lattices the system globally realizes a uniq
nonoscillatory steady state independent of the initial con
tions, while locally the system presents oscillations of fin
amplitude~Fig. 2!.

To understand this unexpected feature one needs to
closely at the reaction scheme. Because all three reac
steps are autocatalytic, spontaneous formation of cluster
homologous particles is favored~see Fig. 3!. In Fig. 3 the
black particles representX1, the gray representX2, and the
white particles represent empty sites. The reaction rates
k150.9, k250.3, ks50.1. Having started from random ini
tial conditions, at a certain timet530 MCS, formation of
clusters ofX2 ~Gray! is observed surrounded by empty sit
~white! and a relatively small proportion ofX1 sites~black!
between them. As time passes,t540 MCS, someX2 clus-
ters grow, while others vanish. Note that theX2 clusters that

FIG. 3. A visual representation of the lattice fort530, 40, 50,
and 60 ~MCS!. The reaction constants arek150.9, k250.3, k3

50.1 (a150.692,a250.231).
4-3
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G. A. TSEKOURAS AND A. PROVATA PHYSICAL REVIEW E65 016204
grow are in contact withX1 clusters, which themselve
propagate through the empty sites. Instead,X2 clusters that
are not ‘‘protected’’ byX1 vanish. As time grows further
t550 MCS, theX2 clusters percolate the system while t
empty regions are gradually reduced. Att560 MCS, the
entire lattice is invaded byX2 while empty regions appea
and start growing at the interior of theX2 supercluster.

From this description of the development of fluctuatio
one can deduce that the origin of clusters are isolated site
small clusters of one species, ‘‘left’’ within a large cluster
another species. Because reactions can take place onl
tween different species, propagation of boundaries betw
clusters is the dynamical mechanism governing the proc
This effect is more prominent when the reactivity rates
relatively different as in the case shown in Fig. 3.

To deduce whether or not the LLV system has spa
fractal properties the fractal dimensiondf is calculated using
the box-counting method@34,35#. In order to ensure a larg
number of counts a 7203720 lattice was used. In Fig. 4 th
value of N(l ) is plotted as a function ofl in a double-
logarithmic scale, whereN(l ) stands for the number o
boxes of lengthl covering the system and containing
least oneX1. The black triangles in this figure are for velo
ity constantsk150.2,k250.6,ks50.8 while the circles are
for k150.4,k250.2,ks50.6. The negative slope of thos
curves in double-logarithmic scale represents the fractal
mension of the system. It is quite clear that in the vicinity

FIG. 4. Plot of the logarithm of number of boxesN containing at
least one particleX1 as a function of the logarithm of the box siz
l for two different sets of the parameters. The solid line represe
a power law with exponent2df522.
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l up>40–50 there appears to be a sharp change of sl
This is a characteristic length in our problem and does
show explicit dependence on the actual size of the lattice
on the initial conditions. Below the crossover length,l up ,
fractal local structuring is observed while above it the syst
resets to its original two-dimensional~2D! structure. The ex-
act shape of the curves in Fig. 4 does not change with t
after the system has reached the steady state. It is espe
interesting to observe the change in slope shown in Fig
that represent an abrupt change of dynamical behavior as
passes through the critical length scale,l up . The specific
broken shape and the crossover todf52 at sufficiently small
scales of the curves in Fig. 4 indicate that the clusters h
measurable interior and that only the boundaries can be
proximately fractal.

The fractal dimension for 1,l ,l up has been calculated
using the box-counting method for different values of t
parameters and the results are shown in Fig. 5. In dou
logarithmic scale the curve is approximated by a power l
of the formdf5Q@k1 /(k11k21ks)#p. The exponent equals
p50.15160.006. For consistency the value ofQ must be
equal to 2 since fork25ks50 the speciesX1 covers the
entire lattice and thusdf52. From the simulations the valu
of Q was found to beQ52.1, which is within the acceptabl
error limits, due to the finite size of the lattice. Inverse
whenk1→0, X2 species poisons the lattice and consequen

ts

FIG. 5. The box-counting fractal dimensiondf as a function of
a15k1 /(k11k21ks) in double-logarithmic scale. Each point rep
resents the average on a number of counts. The standard err
each point fordf is of the order of 0.04.
4-4
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FRACTAL PROPERTIES OF THE LATTICE LOTKA- . . . PHYSICAL REVIEW E 65 016204
the fractal dimension measured on theX1 species is zero.
It appears that the parameter regulatingdf ~as counted for

the populationX1) is the quantitya15k1 /(k11k21ks),
which is the effective parameter defined in Eq.~5!. The re-
sults are taken after the system has reached its steady
and low values ofdf are computed when the system has lo
interaction probability forX1. The same results were ob
tained when instead ofX1 , X2, or S is considered as the
‘‘active’’ population. This is expected because of the symm
tries of the LLV model.

To calculate the degree of clustering in the system
cunarity analysis@34,36–38# is used that distinguishes be
tween systems with different degree of ‘‘clumping.’’ The l
cunarity analysis used is based on the gliding-box algorit
proposed by Allain and Cloitre@36#. Square boxes of variou
sizes (r 3r ) are placed on the system and the numberm(r )
of sites within the box occupied byX1 particles are recorded
for different values of the box sizer. The lacunarity is then
defined as

L~r !5
^ms

2~r !&1^m~r !&2

^m~r !&2
, ~8!

where^ms
2& is the variance of the number ofX1 particles per

box.
Lacunarity was calculated for a 5123512 square lattice

and for k15k25k350.8 (a15a250.333). The system wa
given enough time to reach its steady state~1500 MCS! and
then lacunarity was computed forX1 and the results are pre
sented in Fig. 6~solid line!. For comparison, the lacunarit
for a random set of the same lattice size and concentra
was calculated~Fig. 6, dashed line!. From Fig. 6, it is evident
that the LLV has much higher lacunarity than the cor
sponding random set for all values ofr thus indicating ex-
tensive clustering, a fact that is fully compatible with th
‘‘local oscillators’’ hypothesis. Analogous results are o
tained for different values of the parameters (a1 ,a2) or
equivalently (k1 ,k2 ,k3).

III. FRACTAL SUBSTRATES

In a previous work@2# the LLV model was simulated via
the Monte Carlo method on a linear 1D substrate and o
2D square lattice. It was shown that on the 1D lattice
system never reaches the nontrivial mean-field fixed po
but after very long times only one of the three species s
vives depending on the kinetic constants and on the in
concentrations. Thus, in a 1D lattice, the oscillatory behav
is suppressed and the nontrivial steady state is never m
fested. In contrast, for realizations on a 2D square lattice
nontrivial steady state is realized and oscillations are loc
manifested. Dimensionality of the substrate seems to pla
major role in the selection of the steady state. It is thus p
sible and technologically interesting to be able to control
outcome of the reaction by controlling the dimensionality
the substrate. Along these lines, there have been earlie
perimental works on nanostructured catalysts@39# that dem-
onstrate the effects of such fractal substrates on the cata
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properties of the surface. Also the effect of boundaries
catalysts of finite size has been studied@39#.

Earlier simulations on fractal supports have been use
demonstrate the dramatic effects of the support geometry
various processes including chemical wave propagation
fractals@30#, coupled map dynamics on fractal lattices@40#,
and chemical dynamics on fractal sets@3#. It is thus interest-
ing to explore the behavior of the LLV dynamical system
self-similar substrates of fractional dimensionDs , 1<Ds
<2. In such substrates each reacting particle has on the
erage fewer neighbors and thus less freedom for reac
than when the substrate is two dimensional. In the curr
work a fractal substrate is considered that consists of ac
and inactive sites. Both deterministic fractal~Sierpinski car-
pet! and random fractals are used withDs51.8935 ln 8/ln 3.
The three speciesX1 , X2, and S are adsorbed only on th
active sites, which constitute the fractal.

We implemented the LLV scheme onto three kinds of l
tices~normal 2D square lattice, deterministic fractal, and ra
dom fractal!. Due to the limitations in the number of neare
neighbors, during the evolution, one of the reactants wo
normally undergo a period of very low concentration. Th
the fractal substrates can cause the total disappearance o
reactant and the catalytic surface will be poisoned by
remaining substance. This is demonstrated in Fig. 7 wh
the evolution ofX1 is presented for a normal 5123512 lat-

FIG. 6. LacunarityL for speciesX1 for the LLV model ~solid
line!, and for a random set with the same concentration~dashed
line! as a function of the block sizel . The graph is in double-
logarithmic scale and the kinetic constants arek15k25ks50.8
(a15a250.333).
4-5
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G. A. TSEKOURAS AND A. PROVATA PHYSICAL REVIEW E65 016204
tice and a 7293729 fractal lattice (Ds51.893) for k1
50.9,k250.3,ks50.1. These two particular lattice sizes we
chosen in order to have the same number of active lat
sites. While in the 2D latticeX1 is dominant, in the fracta
lattice X1 disappears. This poisoning phenomenon was
surprising since previous works@2# have shown that poison
ing is always demonstrated by the 1D model. As the frac
substrates have dimension between one and two it ca
expected that a reactive process on these substrates s
also act as a hybrid between the 1D and the 2D model.
difference was observed between the random and the d
ministic fractal substrate and it seems that the crucial fa
regulating catalytic effects is the fractal dimension of t
substrate as well as the statistical existence of boundaries
not its precise topology. It is also remarkable that in ca
where the probabilities of the reactions were chosen clos
each other, no significant effect of the fractal substrates
observed.

A logical explanation for the poisoning phenomena
fractal substrates may be as follows, reactions take p
only within the border areas between clusters. The existe
of impurities distributed in a fractal scheme upon the ca
lytic surface is triggering some boundary effects that invo
the shrinking of the clusters because of the inactive ar
introduced. When one of the species reaches a very low
centration, clusters of this species may be trapped in
borders of the fractal impurities and, as they will be una

FIG. 7. Evolution ofX1 on a 2D lattice substrate~dotted line!
and on a random fractal lattice~solid line!. The 2D lattice size is
5123512 and the fractal lattice size is 7293729. The reaction con-
stants arek150.9, k250.3, ks50.1 (a150.692,a250.231).
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to grow further, they will be ‘‘eaten up’’ by other species th
will finally dominate. Note that for small values ofk2 , X1
particles are produced very infrequently; as a resultX2 at-
tains very low concentrations and at a certain point,S can
almost dominate the lattice by destroying allX2. At the same
time, the remaining clusters ofX1 start to grow and gradually
they invade the entire lattice. By the same mechanism w
low k1 is considered,X2 particles poison the lattice an
when for lowks , Sdominate. When a fractal lattice is intro
duced the extra impurities—boundaries can enhance
above procedure thus extending the poisoning regions of
parameter space.

Figures 8 and 9 present the results from a set of L
simulations that were performed with very low values ofk2
(k250.05,0.075) and different values ofk1 andks for fractal
(Ds51.893) and 2D substrates. The lattice sizes are
same as in Fig. 3. In this domain of the parameters sp
poisoned states appear frequently. We investigated the e
of the dimensionality of the substrate in the poisoning p
nomenon. The points marked with a box are the set of
rameters for whichX1 poisoning is observed aftert
51500 MCS while the circles representX2 poisoning at the
same time. For the remaining~white! points oscillatory be-
havior was observed up to that time. In Fig. 8~a! k250.05,
which is relatively small and for most values ofk1 andks the
system is poisoned withX1. As the value ofk2 increases,
Fig. 8~b!, more-and-more oscillatory states appear at l
values ofk1 andks . Similarly, in Fig. 9 the same tendency
observed for the poisoning of the 2D lattice. Comparison
Fig. 8 ~fractal lattice! and Fig. 9~2D lattice! shows that the
poisoning states are more favored in the fractal lattice
identical parameter values. The change of the poisoning s
due to the fractality of the substrate leads to the followi
conclusion: if one wishes to direct a system into a spec
state without changing the kinetic constants it is enough
adjust the fractal dimension of the substrate appropriatel

IV. CONCLUSIONS

The lattice Lotka-Volterra model is studied using th
mean-field approach and Monte Carlo simulations. In p
ticular, the origin and development of local oscillators a
clustering is studied using fractal and lacunarity analysis
addition the effects of the fractal substrates on the dynam
of the system are studied. The main conclusions of this w
are:

~1! There are indeed, as suggested in@2#, spatial forma-
tions that act as local oscillators. We have concluded t
those formations have fractal boundary structure and that
fractal dimensiondf depends on the reaction probabilitie
Local oscillators have a characteristic length of about 40–
lattice sites that is independent of the size of the lattice
shows very weak dependence on the reaction probabili
High lacunarity is observed that indicates clustering of h
mologous species.

~2! The mean-field behavior is different from the Mon
Carlo simulations due to local fluctuations that cause spa
formations.

~3! The oscillations are suppressed globally but are c
4-6
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FRACTAL PROPERTIES OF THE LATTICE LOTKA- . . . PHYSICAL REVIEW E 65 016204
served locally. Because of the fact that the local oscillat
have random phases, in large lattices no oscillations are
served around the steady state.

~4! For very large lattices the steady state demonstra
by the Monte Carlo method is very close~mean error of less

FIG. 8. Poisoning states fork250.05~a!, k250.075~b!, andk1 ,
ks varying from 0.1 to 0.9. Black boxes representX1 poisoning,
black spheres stand forX2 poisoning, and the gray spaces corr
spond to oscillatory behavior. The simulations were performed
random fractal substrate withDs51.893 fort51500 MCS.
01620
s
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than 6% depending on the lattice size and parameters! to the
coordinates of the center as calculated from the mean-fi
theory. This indicates that when the problem is transferred
lattice globally this center is transformed to an attractor.

~5! Both random and deterministic fractal substrates d

n

FIG. 9. Poisoning states fork250.05~a!, k250.075~b!, andk1 ,
ks varying from 0.1 to 0.9. Black boxes representX1 poisoning,
black spheres stand forX2 poisoning, and the gray spaces corr
spond to oscillatory behavior. The simulations were performed
2D substrate fort51500 MCS.
4-7
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G. A. TSEKOURAS AND A. PROVATA PHYSICAL REVIEW E65 016204
play catalytic action on the LLV system especially when
action probabilities differ significantly. This can even lead
poisoning of the catalytic surface by a certain reactant
could be used as a ‘‘selection filter.’’

The LLV model was tested under mixing conditions. Th
was performed by forcing each reacting particle to excha
positions with another random particle of the lattice. Th
procedure leads the system very quickly to its steady s
and the oscillations are further reduced depending on
mixing rates.

The reverse model was also examined, namely,

2X2→
ks

X11X2 ,

2S→
k1

X21S,

2X1→
k2

X11S.
n,

R.

s

rf

01620
-

d

e

te
e

The Monte Carlo simulations here produce exactly
same results as the mean field~the mean-field predicts an
attractor!. This is due to the fact that in the reverse model
local formations are supported and thus the whole lat
retains an excellent mixing~if a cluster is formed as a statis
tical fluctuation it is unstable and is soon destroyed!.

Further studies on the LLV and on other minimal mode
are needed in order to clarify the mechanism under which
local oscillators are created and conserved and the influe
of their local structure on the actual kinetics of the reactio
It is also an open problem to examine the use of frac
substrates as filters for specific reactants.
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