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Fractal properties of the lattice Lotka-Volterra model
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The lattice Lotka-VolterrgdLLV ) model is studied using mean-field analysis and Monte Carlo simulations.
While the mean-field phase portrait consists of a center surrounded by an infinity of closed trajectories, when
the process is restricted to a two-dimensiof2) square lattice, local inhomogeneities/fluctuations appear.
Spontaneous local clustering is observed on lattice and homogeneous initial distributions turn into clustered
structures. Reactions take place only at the interfaces between different species and the borders adopt locally
fractal structure. Intercluster surface reactions are responsible for the formation of local fluctuations of the
species concentrations. The box-counting fractal dimension of the LLV dynamics on a 2D support is found to
depend on the reaction constants while the upper bound of fractality determines the size of the local oscillators.
Lacunarity analysis is used to determine the degree of clustering of homologous species. Besides the sponta-
neous clustering that takes place on a regular 2D lattice, the effects of fractal supports on the dynamics of the
LLV are studied. For supports of dimensionali,<2 the lattice can, for certain domains of the reaction
constants, adopt a poisoned state where only one of the species survives. By appropriately selecting the fractal
dimension of the substrate, it is possible to direct the system into a poisoned or oscillatory steady state at will.
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[. INTRODUCTION simple bimolecular open reactive system, the lattice Lotka-
Volterra modelLLV ) [2]. The original Lotka-Volterra model
It is now well establishedl1] that mean-field approaches was first introduced in order to describe the dynamics of a
used traditionally for the description of reactive processes argystem of competitive biological speciésee Ref[27]). It
not adequate to describe the rich complex dynamical behawas very successful in the sense that due to its nonlinear
ior and the local fluctuations of processes restricted on lowstructure it was able to describe oscillatory schemes. At the
dimensional support2—7]. time the model was proposed, nonlinear oscillations had al-
In particular, catalytic chemical reactions are one categoryeady been recorded at ecological systeimsvivo. The
of restricted reactive processes where the reactions can onj\ytka-\olterra is a mean-field model that contains one bimo-
take place if the reactive species are adsorbed on the surfaggyjar autocatalytic reactive step, one creation step, and one
of the catalyst. For these processes basic mean-field requirgnninilation step. At the mean-field level it predicts a phase

ments such as homogeneity and high diffusivity do not hold,q5it consisting of a center surrounded by a continuum of
since reactions are only possible between neighboring mo Slosed curves

ecules. Well known catalytic reactions of this type are the
CO oxidization on the surface of P8—10], the NO reduc-
tion on the surface of At10—13, and the NG- CO reaction

on Pt[14,15. To overcome the difficulties arising at the
mean-field level, specific simulation models have been con

Simple, space-dependent, autocatalytic reaction models,
such as the general epidemic process, have been studied by
Grassberger28] using Monte Carlo methods. These models
predict criticality and propagating waves on 2D supports.

structed that take explicitly into account both the s,tructuraIEXC't"’Ible media, most (_)ften modeled by _re_gct|on-d|ffu3|o_n
properties of the support and the local nature of the interacd®’0Ce€sses, are alternative examples exhibiting propagating
tions. One well known model is the ZGB model for the CO Patterns on Iow—d|mensu_)nal supports. Furthermore, excit-
oxidation on Pt surfacé16]. This model predicts periodic aPle media present a high degree of spatial organization
and transient behaviors that correspond to poisoning phd7.29 and have been studied as percolation problg30s31]
nomena[6,17—23. Along the same lines are simulations exhibiting spontaneous fractality.
with surface restructuringg,7,23 and superlattice ordering ~ The original Lotka-Volterra model, being a mean-field
[24]. Also, the NO+ H, reaction has been studied using lat- model is space independent and cannot be directly realized
tice gas model$25] on substrates with different properties on lattice because the condition of conservation of syce
[26]. All these studies predict the appearance of complexal number of lattice sites where the reactions take place
local patterns, poisoning transitions, and periodic or chaotidoes not hold. For this reason one of the current authors
oscillations. (A.P.) and collaborators have introduced the LLV mop&l
In a recent work, the effort to study the origin of the In the LLV model there are two kinds of reacting molecules
complexity of catalytic processes was undertaken using as well as the empty lattice sites. All three reactions consist
of bimolecular steps and three specis, X,, and S are
participating. X; and X, are considered as on-lattice ad-
*Corresponding author. sorbed species, whil8 denotes the empty lattice sites. The
Email address: aprovata@mail.demokritos.gr LLV scheme is the followind 2]:
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ks 0.7
X1+X2—>2X2, (1a)
0.6
ky
X,+S—-28S, (1b) o5
ko
S+ X1—> 2X1 . (1C) X2 0-4
Step (1a) represents an autocatalytic reaction between 0.3
speciesX; andX, while the second steflb) denotes desorp-
tion of a particleX, and creation of an empty sitprovided 0.2
that there is a second empty s8@ the neighborhood. Simi-
larly, the third reactior{1c) stands for a cooperative adsorp- 0.1
tion. An empty siteSis filled by speciesX; provided that a
X, is already adsorbed on a neighboring site. ofl ]
If X1, X5, ands stand for the total concentration of mol- o 0.1 9.z 0.2 0.4 0.5 0.6 0.7
eculesXy, X,, and empty sites, respectively, then the dy- X
namics of the LLV model is represented by 1
dx, FIG. 1. Phase space of the LLV model fky=0.3, k,=0.3,
szles_ kSX]_Xz, (23) kszo.g (or a;=0.2,a,=0.2).
d By appropriate rescaling of the parameters and the time
9% _ K XX — K1Xo8 (2b) variable it is possible to obtain a minimal parameter space as
T follows:
®_k K 2 - 5
a_ 1X2S— KoX3S. ( C) al_k1+ k2+ ksl ( a)
This dynamical system has already been investigated thor- K,
oughly[2]. Due to its construction one can immediately rec- afm, (5b)
S

ognize that there is a constant of motion:

This constan€ corresponds to the total number of lattice Using Eqs.(5), Egs.(2) are reduced to
sites that either contain particleX{ or X,) or empty sites dx,

(S). ForC=1 the conservation condition, E(R), represents ar =Xy[a,s—(1—a;—ay)Xs], (6a)
the probability conservation on every lattice site: one lattice T

site contains eitheX; with probabilityx,, X, with probabil-

ity X5, or Swith probability s=1—X; —X. %:XZ[(l_al_aZ)Xl_als] (6b)
Using Eq.(3) one may eliminate the dynamical function dr ’
s(t) and obtain the following 2D nonlinear system g
s
dx k,+k —=S(a1X2—a2X1). (6C)
d_tl=k2X1<1_X1_ 2k—zsxz , (49) dr
Using Eq.(3), sis eliminated from Eqs(6) and the LLV
dx, Ky + kg system is finally reduced to
H=—klx2<1—x2— K xl) (4b)
1 Xm 1_31
. . . . - =aXy| 1-X;— X2 | (7a)
This dynamical system has four fixed points, three of dr
which are saddle points and one is a cefifdr The saddle
points are (0,0), (0,1), (1,0) while the center[is, /(k; dx; 1-a,
+Kky+kg), ko /(ky+ko+kg)]. The center is surrounded by a g - A 1o X7 Xz (70)

continuum of closed trajectories. The phase portrait of the

system is shown in Fig. 1. Further investigations have shown Equations(6) and(7) describe the dynamical system with
that the dynamical system is conservative for any values othe minimal number of parameters and it is not possible to
k1,ks,ks while for the special cask;=k,=k; it is Hamil-  further reduce the parametric space using any other rescal-
tonian[32,33. ing. In the new parameter space the center is now positioned
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. FIG. 3. A visual representation of the lattice for 30, 40, 50,
0'250 20 300 and 60 (MCS). The reaction constants aig=0.9, k,=0.3, ks
t (MCS) =0.1 (a,;=0.692,a,=0.231).
blTI(t;t'. 2. Oscillations on a 300300 lattice and on a 5050 In particular, in Sec. Il the fractal structures developed on

sublattice.

the square lattice as a result of local fluctuations are studied
and the characteristic length of the local oscillators is calcu-
at (a;,a,,1—a;—a,). Comparison with simulation data can lated. An explanation of the global lattice behavior based on
always be performed by inverting this parameter rescaling. this hypothesis is proposed. In Sec. Ill, in order to simulate

In order to study the local behavior of the system, Montethe LLV dynamics on microstructured catalytic surfaces both
Carlo simulations were used on a square lattice of Siz@eterministic and random fractal substrates are introduced
LxL, with periodic boundary conditions. The algorithm @nd the dynamical behavior that arises is examined. Finally,
chosen was the one originally used for studying LE2. in Sec. IV our main conclusions are recapitulated and certain

Specifically, at every timestep a random site is picked and it§SPECts concerning the reverse model and the effect of mix-
four nearest neighbors are checked for compatibility with thd"d O the system are further discussed.

LLV reactions(1a), (1b), and(1c). Reactions take place with

probability k; ,i=1,2s. After completing this procedure a Il. CLUSTER FORMATION AND FRACTAL PROPERTIES

new random site is chosen. One Monte Carlo $MES) is

completed after a number of trials equal to the total number As ment|or_1ed_ m_the Introduction, Fhe 5|mulat_ed LLV pro-
. . cess shows intrinsically non-mean-field behavior. For rela-
of lattice sites [ XL).

. . tively large lattices the system globally realizes a unique
psm_g the ab(_)ve_method it has been demonstrated thfi\tonoscillatory steady state independent of the initial condi-
while kinetic oscillations are almost totally suppressed afte

S X . tons, while locally the system presents oscillations of finite
a certain time in large lattices, it appears that they are CO”émpIitude(Fig. 2).
served in small scalgfig. 2). It seems that for small regions To understand this unexpected feature one needs to look
there exist “local oscillators” that follow the behavior de- closely at the reaction scheme. Because all three reaction
scribed by mean-field equations quite closely. These locadteps are autocatalytic, spontaneous formation of clusters of
oscillators, however, tend to be out of phase and the nefomologous particles is favoredee Fig. 3 In Fig. 3 the
result is that throughout the lattice no global oscillations carplack particles represeiX;, the gray represerx,, and the
be observed. white particles represent empty sites. The reaction rates are
In the current work the characteristics of the local oscil-k,=0.9, k,=0.3, ks=0.1. Having started from random ini-
lators are studied, together with their sensitivity to initial tial conditions, at a certain time=30 MCS, formation of
conditions, variation of their size depending on the reactivityclusters ofX, (Gray) is observed surrounded by empty sites
constantsk; and possible fractal structure of the substrate (white) and a relatively small proportion of; sites(black)
Also certain spatiotemporal phenomena that are manifestlpetween them. As time passés; 40 MCS, someX, clus-
displayed by the system are investigated. ters grow, while others vanish. Note that g clusters that
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FIG. 4. Plot of the logarithm of number of boxBiscontaining at FIG. 5. The box-counting fractal dimensiah as a function of

least one p.article(1 as a function of the logarithm pf t.he box size a; =k, /(ky+k,+ke) in double-logarithmic scale. Each point rep-
/ for two dn‘fer_ent sets of the parameters. The solid line represent$ggents the average on a number of counts. The standard error on
a power law with exponent d;=—2. each point ford; is of the order of 0.04.

grow are in contact withX; clusters, which themselves
propagate through the empty sites. Instedg clusters that /,,;=40-50 there appears to be a sharp change of slope.
are not “protected” byX; vanish. As time grows further, This is a characteristic length in our problem and does not
t=50 MCS, theX, clusters percolate the system while the show explicit dependence on the actual size of the lattice or
empty regions are gradually reduced. %60 MCS, the on the initial conditions. Below the crossover length,y,
entire lattice is invaded by, while empty regions appear fractal local structuring is observed while above it the system
and start growing at the interior of thé, supercluster. resets to its original two-dimensiondD) structure. The ex-
From this description of the development of fluctuationsact shape of the curves in Fig. 4 does not change with time
one can deduce that the origin of clusters are isolated sites after the system has reached the steady state. It is especially
small clusters of one species, “left” within a large cluster of interesting to observe the change in slope shown in Fig. 4
another species. Because reactions can take place only bbat represent an abrupt change of dynamical behavior as one
tween different species, propagation of boundaries betweegpasses through the critical length scafg,,. The specific
clusters is the dynamical mechanism governing the procesbroken shape and the crossovedts-2 at sufficiently small
This effect is more prominent when the reactivity rates arescales of the curves in Fig. 4 indicate that the clusters have

relatively different as in the case shown in Fig. 3. measurable interior and that only the boundaries can be ap-
To deduce whether or not the LLV system has spatiaproximately fractal.
fractal properties the fractal dimensidnis calculated using The fractal dimension for £ /'</,, has been calculated

the box-counting methofB4,35. In order to ensure a large using the box-counting method for different values of the
number of counts a 720720 lattice was used. In Fig. 4 the parameters and the results are shown in Fig. 5. In double-
value of N(/) is plotted as a function of” in a double- logarithmic scale the curve is approximated by a power law
logarithmic scale, wheréN(/) stands for the number of of the formd;=Q[k;/(k;+k,+ks)]P. The exponent equals
boxes of length” covering the system and containing at p=0.151+0.006. For consistency the value @f must be
least oneX;. The black triangles in this figure are for veloc- equal to 2 since fok,=ks=0 the species; covers the

ity constantsk;=0.2k,=0.6k,=0.8 while the circles are entire lattice and thud;=2. From the simulations the value
for k;=0.4k,=0.2ks=0.6. The negative slope of those of Q was found to b&=2.1, which is within the acceptable
curves in double-logarithmic scale represents the fractal dierror limits, due to the finite size of the lattice. Inversely,
mension of the system. It is quite clear that in the vicinity ofwhenk;—0, X, species poisons the lattice and consequently
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the fractal dimension measured on ke species is zero. 3 .
It appears that the parameter regulatihgas counted for
the populationX,) is the quantitya;=Kk;/(k;+ks,+Kg),
which is the effective parameter defined in Ef). The re-
sults are taken after the system has reached its steady sta
and low values ofl; are computed when the system has low = X{(LLV)
interaction probability forX;. The same results were ob- > -~ Random
tained when instead oX;, X,, or Sis considered as the
“active” population. This is expected because of the symme-
tries of the LLV model. 2r 1
To calculate the degree of clustering in the system la-
cunarity analysi§34,36—38 is used that distinguishes be-
tween systems with different degree of “clumping.” The la-
cunarity analysis used is based on the gliding-box algorithm
proposed by Allain and CloitrE86]. Square boxes of various
sizes ¢ Xr) are placed on the system and the numibér)
of sites within the box occupied by, particles are recorded
for different values of the box size The lacunarity is then
defined as

A(l)

(mg(r))+(m(r))?
A(r)=-— s ®)
(m(r))
where(m?) is the variance of the number ¥ particles per 1 10 To0
box. ]

Lacunarity was calculated for a 5512 square lattice
and fork,;=k,=k;=0.8 (a;=a,=0.333). The system was FIG. 6. LacunarityA for speciesX; for the LLV model(solid
given enough time to reach its steady stdt800 MCS and I?ne), and for a.random set with Fhe‘ same conce.ntrlatidmshed
then lacunarity was computed f, and the results are pre- line) as a function of the blqck _snzé. The graph is in double-
sented in Fig. Gsolid line). For comparison, the lacunarity '09arithmic scale and the kinetic constants #e=k,=ks=0.8
for a random set of the same lattice size and concentratiofft=22=0-333).
was calculatedFig. 6, dashed line From Fig. 6, it is evident
that the LLV has much higher lacunarity than the corre-properties of the surface. Also the effect of boundaries on
sponding random set for all values ofthus indicating ex- catalysts of finite size has been studj&§)].
tensive clustering, a fact that is fully compatible with the Earlier simulations on fractal supports have been used to
“local oscillators” hypothesis. Analogous results are ob-demonstrate the dramatic effects of the support geometry on
tained for different values of the parameters, @,) or  various processes including chemical wave propagation on
equivalently kq,ks,kg). fractals[30], coupled map dynamics on fractal lattide],
and chemical dynamics on fractal sg83. It is thus interest-
ing to explore the behavior of the LLV dynamical system on
self-similar substrates of fractional dimensi@y, 1<Dg

In a previous worK 2] the LLV model was simulated via =<2. In such substrates each reacting particle has on the av-
the Monte Carlo method on a linear 1D substrate and on arage fewer neighbors and thus less freedom for reaction
2D square lattice. It was shown that on the 1D lattice thethan when the substrate is two dimensional. In the current
system never reaches the nontrivial mean-field fixed pointwork a fractal substrate is considered that consists of active
but after very long times only one of the three species surand inactive sites. Both deterministic fract&lierpinski car-
vives depending on the kinetic constants and on the initiaped and random fractals are used with=1.893=In 8/In 3.
concentrations. Thus, in a 1D lattice, the oscillatory behavioiThe three specieX;, X,, andS are adsorbed only on the
is suppressed and the nontrivial steady state is never maractive sites, which constitute the fractal.
fested. In contrast, for realizations on a 2D square lattice the We implemented the LLV scheme onto three kinds of lat-
nontrivial steady state is realized and oscillations are locallyices(normal 2D square lattice, deterministic fractal, and ran-
manifested. Dimensionality of the substrate seems to play dom fractal. Due to the limitations in the number of nearest
major role in the selection of the steady state. It is thus posheighbors, during the evolution, one of the reactants would
sible and technologically interesting to be able to control thenormally undergo a period of very low concentration. Then
outcome of the reaction by controlling the dimensionality ofthe fractal substrates can cause the total disappearance of this
the substrate. Along these lines, there have been earlier exeactant and the catalytic surface will be poisoned by the
perimental works on nanostructured cataly89] that dem- remaining substance. This is demonstrated in Fig. 7 where
onstrate the effects of such fractal substrates on the catalyttbe evolution ofX; is presented for a normal 5512 lat-

Ill. FRACTAL SUBSTRATES
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to grow further, they will be “eaten up” by other species that
will finally dominate. Note that for small values &, X,
particles are produced very infrequently; as a reXyltat-
tains very low concentrations and at a certain pofhtan
almost dominate the lattice by destroying ¥}. At the same
time, the remaining clusters &f; start to grow and gradually
they invade the entire lattice. By the same mechanism when
low k; is considered X, particles poison the lattice and
when for lowkg, Sdominate. When a fractal lattice is intro-
duced the extra impurities—boundaries can enhance the
above procedure thus extending the poisoning regions of the
parameter space.

Figures 8 and 9 present the results from a set of LLV

| simulations that were performed with very low valueskef
i (k,=0.05,0.075) and different values lof andk; for fractal
(Dsg=1.893) and 2D substrates. The lattice sizes are the
same as in Fig. 3. In this domain of the parameters space
poisoned states appear frequently. We investigated the effect
of the dimensionality of the substrate in the poisoning phe-
nomenon. The points marked with a box are the set of pa-
rameters for whichX; poisoning is observed aftet
=1500 MCS while the circles represexy poisoning at the
same time. For the remainingvhite) points oscillatory be-
havior was observed up to that time. In FigaBk,=0.05,
which is relatively small and for most valueslof andkg the
system is poisoned witlX;. As the value ofk, increases,
Fig. 8b), more-and-more oscillatory states appear at low
values ofk, andks. Similarly, in Fig. 9 the same tendency is
observed for the poisoning of the 2D lattice. Comparison of
Fig. 8 (fractal lattice and Fig. 9(2D lattice shows that the
poisoning states are more favored in the fractal lattice for
identical parameter values. The change of the poisoning state
tice and a 72%729 fractal lattice Ds=1.893) for k;  due to the fractality of the substrate leads to the following
=0.9k,=0.3ks=0.1. These two particular lattice sizes were conclusion: if one wishes to direct a system into a specific
chosen in order to have the same number of active latticsétate without changing the kinetic constants it is enough to
sites. While in the 2D latticéX; is dominant, in the fractal adjust the fractal dimension of the substrate appropriately.
lattice X, disappears. This poisoning phenomenon was not
surprising since previous work&] have shown that poison-
ing is always demonstrated by the 1D model. As the fractal
substrates have dimension between one and two it can be The lattice Lotka-Volterra model is studied using the
expected that a reactive process on these substrates shouodéan-field approach and Monte Carlo simulations. In par-
also act as a hybrid between the 1D and the 2D model. Nticular, the origin and development of local oscillators and
difference was observed between the random and the detestustering is studied using fractal and lacunarity analysis. In
ministic fractal substrate and it seems that the crucial factoaddition the effects of the fractal substrates on the dynamics
regulating catalytic effects is the fractal dimension of theof the system are studied. The main conclusions of this work
substrate as well as the statistical existence of boundaries aade:
not its precise topology. It is also remarkable that in cases (1) There are indeed, as suggested2h spatial forma-
where the probabilities of the reactions were chosen close thons that act as local oscillators. We have concluded that
each other, no significant effect of the fractal substrates wathose formations have fractal boundary structure and that the
observed. fractal dimensiond; depends on the reaction probabilities.
A logical explanation for the poisoning phenomena onlLocal oscillators have a characteristic length of about 40—50
fractal substrates may be as follows, reactions take plackttice sites that is independent of the size of the lattice and
only within the border areas between clusters. The existencghows very weak dependence on the reaction probabilities.
of impurities distributed in a fractal scheme upon the cataHigh lacunarity is observed that indicates clustering of ho-
lytic surface is triggering some boundary effects that involvemologous species.
the shrinking of the clusters because of the inactive areas (2) The mean-field behavior is different from the Monte
introduced. When one of the species reaches a very low corarlo simulations due to local fluctuations that cause spatial
centration, clusters of this species may be trapped in théormations.
borders of the fractal impurities and, as they will be unable (3) The oscillations are suppressed globally but are con-

0.4

02 r R

400 600 800
t (MCS)

FIG. 7. Evolution ofX; on a 2D lattice substrat@otted ling
and on a random fractal lattiggolid line). The 2D lattice size is
512x 512 and the fractal lattice size is 72929. The reaction con-
stants arek;=0.9,k,=0.3,ks=0.1 (a;=0.692,a,=0.231).

0 200 1000

IV. CONCLUSIONS
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FIG. 8. Poisoning states fé,=0.05(a), k,=0.075(b), andk,, FIG. 9. Poisoning states fé,=0.05(a), k,=0.075(b), andky,

ks varying from 0.1 to 0.9. Black boxes represefit poisoning, kg varying from 0.1 to 0.9. Black boxes represefit poisoning,
black spheres stand fof, poisoning, and the gray spaces corre- black spheres stand fof, poisoning, and the gray spaces corre-
spond to oscillatory behavior. The simulations were performed orspond to oscillatory behavior. The simulations were performed on
random fractal substrate withs=1.893 fort=1500 MCS. 2D substrate fot=1500 MCS.

served locally. Because of the fact that the local oscillatoréhan 6% depending on the lattice size and paramgeterhe

have random phases, in large lattices no oscillations are olzoordinates of the center as calculated from the mean-field

served around the steady state. theory. This indicates that when the problem is transferred on
(4) For very large lattices the steady state demonstratethttice globally this center is transformed to an attractor.

by the Monte Carlo method is very clogmean error of less (5) Both random and deterministic fractal substrates dis-
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play catalytic action on the LLV system especially when re-
action probabilities differ significantly. This can even lead to
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The Monte Carlo simulations here produce exactly the
same results as the mean fidlthe mean-field predicts an

poisoning of the catalytic surface by a certain reactant andttractoy. This is due to the fact that in the reverse model no

could be used as a “selection filter.”

The LLV model was tested under mixing conditions. This
was performed by forcing each reacting particle to exchang
positions with another random particle of the lattice. This

local formations are supported and thus the whole lattice
retains an excellent mixingf a cluster is formed as a statis-
gcal fluctuation it is unstable and is soon destrgyed

Further studies on the LLV and on other minimal models

procedure leads the system very quickly to its steady stat@'® needed in order to clarify the mechanism under which the

and the oscillations are further reduced depending on th
mixing rates.
The reverse model was also examined, namely,
kS
2X2*>X1+ X2,

ky
2S5 X,+S,
Ko
2X1—>X1+ S

pcal oscillators are created and conserved and the influence
of their local structure on the actual kinetics of the reactions.
It is also an open problem to examine the use of fractal
substrates as filters for specific reactants.
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