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Spectral properties and synchronization in coupled map lattices
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Spectral properties of coupled map lattices are described. Conditions for the stability of spatially homoge-
neous chaotic solutions are derived using linear stability analysis. Global stability analysis results are also
presented. The analytical results are supplemented with numerical examples. The quadratic map is used for the
site dynamics with different coupling schemes such as global coupling, nearest neighbor coupling, intermediate
range coupling, random coupling, small world coupling and scale free coupling.
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I. INTRODUCTION give the conditions for the stability of synchronous solutions
and different regimes of stability. This is given in Sec. Ill.
Synchronization of large interacting systems has been olResults on the global stability analysis are given in Sec. IV.
served in several natural situations such as synchronizeld Sec. V we provide some numerical results to elucidate the
flashing of the fire flies, pace maker cells of the heart, neuanalytical results with specific examples. Here we take a qua-
rons, etc.[1-3]. Synchronization of chaos in low dimen- dratic map for the site dynamics as an example but the re-
sional systems was studied by Pecora and Cadllit has  sults are valid for any dynamical system. The results are
also been studied in coupled oscillator systems and otheétven more general in the sense that their validity is not re-
spatially extended systeni§,6]. Due to potential applica- stricted just to CMLs, but can further be applied almost di-
tions in various problems of practical interest, synchronizarectly to partial differential equations, coupled ordinary dif-
tion of chaotic elements in a coupled dynamical system haferential equations, etc. Finally, we provide a discussion on

been an active area of reseaf@h8]. related aspects of the dynamics of CMLs.
Spatially extended systems are suitably modeled by
coupled map lattice€CML). In comparison to partial differ- II. CML AND ITS SPECTRUM

ential equations, CMLs are more suitable for computational . .
studies because of the discrete nature of time and space while Ve consider a coupled map lattice of the form,
all the analytical aspects of dynamical systems theory can
also be used. CMLs were introduced as a simple model for 1
spatiotemporal chad9]. They show a variety of phenomena u(x,n+1)=e n_E fu(y,n))—f(u(x,n)) [+ f(u(x,n)),
from regular periodic behavior to very complicated spa- XXZy
tiotemporal patterns, chaos, intermittency, ef&0Q]. In Q)
CMLs, the dynamical elements are situated at discrete points
in space, time is discrete, and the state variable is continuougtheren, denotes the number of neighbors>ofHere, f:R
Each spatial unit is coupled to its neighbors. The selection of~R is some differentiable function, often chosen to be the
neighbors is determined by the structure of the network. Irquadratic(logistic) map in the literaturex is a spatial vari-
most studies diffusive couplingnearest neighbor interactipn able, its domain being some finite discrete BetThat set
is used. There are studies on CMLs with various couplingcarries a neighborhood relationship, specifying whigh
schemes, such as open network, random network, globat M are neighbors of a giver (notation:x~y). The ex-
coupling, etc.[11]. In most studies a symmetric coupling treme case is the one of a global coupling whereyadire
matrix is employed. neighbors of anx. If M has the structure of lkdimensional
Here we study the synchronization properties of systemgeriodic grid, the other extreme case is the one of nearest
formed by a large number of identical dynamical elementseighbor coupling where only thoseare neighbors of that
that are connected by identical symmetrical links. We deriveare one step away fromin one of the coordinate directions.
general conditions for the stability of spatially homogeneoudn that case, eaclk has X neighbors. Of course, we also
solutions of a CML with any symmetric interaction matrix have the trivial case where eaghs its own neighbor, but
making use of the spectral properties of the interaction mahas no other neighbors. That case of course, represents the
trix. The coupling topology can affect crucially the synchro- absence of coupling.
nizability of the system. In the sequel, the only assumption we shall need is that
In the next section we describe the properties of the spedhe neighborhood relationship is symmetric, i.e.yiis a
trum of the CML. We perform a linear stability analysis and neighbor ofx, thenx in turn is a neighbor oy. We also adopt
the—completely inessential—convention thats not con-
sidered as a neighbor of itse{fAbandoning that convention
*Electronic address: jjost@mis.mpg.de would simply amount to a redefinition of the value ef
"Electronic address: mjoy@mis.mpg.de Finally, in order to avoid trivial case distinctions, we assume
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that the neighborhood relationship is connected in the sense (Lv,v)=<0.
that for any givenx;,x,eM, we find y1=X1,Y¥>, ... ¥m
=X, such thaty;, is a neighbor ofy; for j=1,2,...m  This follows from the Cauchy-Schwarz inequality.
—1. We considen=0,1,2 . .., as thetime variable of the (iii )
evolution.
Our subsequent analysis will not depend in conceptual Lv=0<v=const.
terms on the detailed structure . Of course, the numeri- H i imolies that the ei | df LB
cal values of the bifurcation parameters below will reflect the, .. ence, (i) implies na ) € eigenvaiues @ are real. by
geometry of\. (|!), they are nonpositive; we write them as\,, and the
Our analysis is phrased in general terms and so it i;lgenvalue equation then is
straightforward to extend it to the caséa). wheref is vector LU, + N\ Uy =0.
valued;(b) whereM is a continuous space which then has to
carry a measurelu, and the averaged sum needs to be re\we order the eigenvalues ag<\;<\,<---<\y. (This
placed by an averaged integrat) to weighted neighbor- convention deviates from the one used in the literature. Our
hoods, i.e., where we are given a non-negative function  operator£ corresponds to the interaction matrix minus the
] . identity matrix, and one usually considers the eigenvalues of
h: MXM—R the former in descending ordgr.
that is symmetri¢h(x,y)=h(y,x) Vx,yeM] and consider We may then find an orthonormal basislo(M),
in place of the averaged sum in E4)

(Uk=1,...k
172, h(x,y) | >, h(x,y)f(u(y,n)), of eigenvectors of..
y y By (iii) the smallest among the, is
the situation in Eq(1) corresponds to the choice Ao=0,
h(x.y)= 1, if x,y neighbors, and this is a simple eigenvalibecause we assume that the
Y 0, else; neighborhood relationship is conneckete.,
(d) replacing the last termi(u(x,n)) in (1) by g(u(x,n)) for N>0  for k>0. 3

some functiong; (e) as well as to the case of coupled ordi-
nary differential equations in place of difference equations. The numerical values of the bifurcation parameters occur-
As these extensions are rather trivial, we refrain from carry+ing below will depend onlybesides ore and the Lyapunov
ing them out. exponent off) on the eigenvalue spectrum 6f This eigen-
The following represents a generalization of the linearvalue spectrum, of course, reflects the underlying geometry
stability analysis that has been carried out in the literature fopf M and of the coupling. Some general considerations may
some special cases such as global coup[ibg], nearest be helpful for understanding this point.
neighbor coupling13], and random couplinfl4]. In the case of global couplingncluding self-coupling,
We shall need thé? product for functions o, we have

1 Ao=0 (as always,
(o)=pyr 3, MaUxIw () ° y

and
where|M| stands for the number of elementsMf We also NP Y
put||ul|:=(u,u)¥? (L? norm ofu). We consider the opera- 12 k=5
tor, since
L2 2
L LAM)—L2(M), Lo=—p,
Lv(X) ::iz v(y)—v(X). 2) for anyv that is orthogonal to the constant map, i.e., satisfies
NS
X~y 1
— v(y)=0.
L has the following properties: M| yezM )

(i) £ is self-adjoint with respect t@,,.): ] ) ) )
If we shrink the neighborhood size, then the eigenvalues can
(u,Lv)=(Lu,v), separate and grow, and in particular, the largest ppe,will

become larger the smaller the neighborhood size is. In par-
for all u,v e L(M). This follows from the symmetry of the ticular,

neighborhood relation.
(ii) £ is nonpositive: A1,
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as there may exist e L2(M) with becomes
1Nfl
> > v(X)v(y)<0 In|1— ex+ lim — > In|f’(u(n))|<O. ®)
xeM xxy NHOONn=O
(e.g, M={12,...m}, m even, m>2, with x having Here,
neighborsu—1 and u+1, closed periodically, i.e.n+1 N1
=1 po=lim 7 3 In|f’ (),
N— o0 n=0
1, M oeven,
v(p)=1 _ 1 x odd. is the Lyapunov exponent dfand so the stability condition
' (8) is
Conversely, if the neighborhood interaction matrix of all |eto(1—eN,)|<1. (9

points is the same and kept fixed while we increase the size
of M, then all eigenvalues will decrease. This is a version o
Courant’s monotonicity theorefid5]. Thus, from our analy-
sis below, synchronization will require, if possible at all, a wo>0, (10
larger value of the coupling parameter
We also have the following version of Courant’s nodali.€., temporal instability, but E¢(9) for all k=1; i.e., syn-
domain theorenf16]: chronization. We shall now assume Eg0) for the remain-
Lemma 1 ConsiderM as a grapH’,,, with an edge be- der of this section. By our ordering convention for the eigen-
tweenx andy precisely ifx andy are neighbors. Lat, be an  values, Eq(9) holds for allk=1 if
eigenfunction for the eigenvalug,, with our above order-

We may have

1—e Ho 1+e Fo

iNg, O=Ng<A{<A,<-.-=<\. Delete from the graph’y, e< _ (12)
all edges that connect points on which the values,ofiave N1 Ak
g??osn(,ar‘?_ggﬁézrz kdlevid.eEM into connected components In order to satisfy that condition, we need
Ak eto+1l
Ill. LINEAR STABILITY ANALYSIS —< . (12
. )\1 eHto—1
We now consider a solution(n) of the uncoupled equa-
tion, By our above discussion this hold in the globally coupled
case because thekg=\;. By way of contrast if we have
u(n+1)="f(u(n)). (4)  nearest neighbor coupling, this can only hold if the sizé&lof

is not too large.(For a one-dimensional chain, the critical
Clearly, u(x,n)=u(n) then is a solution of Eq(1). This  Siz€ is 5, with a large value af. If we have second nearest

solution is spatially homogeneous, or as one says, synchréi€ighbor coupling, the critical size of a one-dimensional
nized. The synchronization question then is whether for cerehain is 9) _
tain values of the coupling parameterany solution of Eq. Let us now assume that E¢L2) holds. We then predict
(1) asymptotically approaches a synchronized one. A somghe following behavior of the coupled systemasicreases.
what weaker question is whether, when we consider a per- For very small values 0&>0, as we assume0)

turbation efo(1—eN)>1,

u(x,n) = u(n) + dar(N)uy(x), (5)  and so, all spatial modesg , k=1, are unstable, and no syn-
chronization occurs. If we are in the globally coupled case,

by an eigenmodeuy for some k=1, and small enough hen there exists a single critical valag such that

S, ay(n) goes to 0 fom— oo, if u(x,n) solves Eq(1). That

guestion can be investigated by linear stability analysis and ero(1— e =1,
we proceed to carry that out. Inserting E§) into Eq. (1)
and expanding aboui=0 yields forallk=1,2,... K. Fore>e., the dynamics become syn-
chronized. Fore slightly smaller thare., one observes in-
a(n+1)=(1—eN ) f (u(n))ay(n), (6)  termittent behavior, clustering, efd7].

Let us now consider the more interesting case where the
f’ denoting the derivative df So the sufficient local stabil- coupling is not global so that not all the, are equal; in
ity condition particular,
1 N—1 N<Ag.
a(N) 1 a(n+1) 1>AK

lim —In——=1lm <In]] ——= 7
N " a(0) N a0 ax(n) We then lete, be the solution of
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e#o(1— ) =1. This follows from the self-adjointness af. It is not difficult
to write aA down explicitly, but our more abstract approach
The smallest among these valuesejs, the largeste;. If provides the advantage of a less cumbersome notation.

now, for k; <k, A is non-negative in the sense that
€ <e<ep, (Au,Au)=0, YueL?(M), (14)
2 1
, and we even have
then the modesukz,uk2+1, ...,Ugx are stable, while the
modesuy Uy, ... Uy, are unstable. Because of Lemma 1, Au=0<u=const. (15

we see that desynchronization can lead to utrkgstl sub-
domains on which the dynamics is either advanced o
retarded.

In particular, if e increases, first the highest modes, i.e., AL=LA, (16)
the ones with most spatial oscillations, become stabilized,
and the modeu; becomes stabilized the last. So if and so, we may assume that theare also eigenfunctions of
e,<e<eq, then any desynchronized state consists of twoA .

gThis follows from the nonpositivity properties @.)
Moreover A commutes withZ, i.e.,

subdomains. Therefore, a natural ansatz for a Lyapunov function for
We then letey be the solution of the dynamicq1) is
®(n):=[Au(.,n),Au(.,n)], (17)

eto( g A —1)=1.
and it remains to derive conditions under which

Again,

o d(n)—0 for n—oo, (18

€k=€k-1

We have
Because of Eqil1), ®d(n+1)=[Au(.,n+1),Au(.,n+1)]
€1< €. =[Au(.,n+1),A(eLf(.,n)+(1—e)f(.,n))],
If by Eq.(1).
Since theuy, are an orthogonal basis &f(M), we may
€1<e<ex, write
K

then all modesu,, k=1,2,... K, are stable, and the dy- fU(x,n)= > Br(Nuy(x),
namics synchronizes. k=0

If € increases beyondy, then the highest frequency
mode uy becomes unstable and we predict spatial oscilla
tions of high frequency of a solution of the dynamicself
increases further then more and more spatial modes become K

destabilized. ®d(n+1)=| Au(.,n+ 1),Ak20 (1— e)\k)ﬁk(n)uk} .

with Bi(n)=[f(u(.,n),uy]. Inserting this into the last
equality, we get

IV. GLOBAL STABILITY ANALYSIS (19)

ohhe important observation now is that in the last sum, we

The basis of the preceding analysis was a linear expansi : \
P g Y P can discard the summand=0, becausel, is constant, and

about a synchronized statgn). Therefore, that analysis is
valid only for small perturbations about such a state. In this

section, we want to derive a criterion that guarantees syn- Aug=0.
chronization for arbitrary starting valuegx,0) of a solution
of Eq. (2). Moreover, we observed above that, sintecommutes with

From general principles of functional analysigee, Ref. £, we may assume,

[18]), there exists an operator,
(Aug,Au)=0 fork=#l,

A:LA(M)—=LA(M)
and so

with

K
2__ 2 2
C(u.Lv)=(AuAv), Yupvel2M). (13 ATl P= 2 BrmllAudl®
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FIG. 1. Fluctuation of the meas(n) is shown as a function of the coupling strengttAt each value ok, 200 final iterates of(n) are
plotted. Herem= 1000 and the coupling is global. (@ a=2.0, and in(b) a=1.9.

Using these observations and the Cauchy-Schwarz inequaligny solutionu(x,n) of Eq. (1). This means, however, that

in Eq. (18), we may estimate

1
<I>(n+1)s§||Au(.,n+1)||2

our condition(24), while sufficient, need not be necessary
for synchronization.

V. NUMERICAL RESULTS

1
(11— 2 2
* 2(1 M) AT )% (20 In this section we demonstrate our results with different
_ _ coupling schemes or network topology. For our numerical
assumingl—ehg|<1—ehy, i.e, study we took the quadratic map for the site dynamics. The
5 guadratic map is a widely studied chaotic map, given by
< _ (21) f(x)=1—ax? [19]. Herea is a parameter and varying its
At g value the single map shows a variety of dynamical phenom-
) ena. It becomes chaotic whexrr~=1.4011, going through a
If we now use the coarse estimate period doubling bifurcation sequence. At=2 the map is
maximally chaotic, with a Lyapunov exponent=In(2).
AT <sugf[[[AuC.m]], 22 y yap poneab=In(2)
we obtain from Eq(20) A. Global coupling
®d(n+1)<(1—e\y)?sudf’|2D(n). (23 In the case of global coupling, we hawg=0 and\;

We conclude

Theorem 1The coupled dynamical systefh) asymptoti-

cally synchronizes if satisfies(21) and

(1—eNy)sugf’|<1.

Remark If Eq. (21) does not hold, Eq(24) needs to be

replaced by

(enk—1)sudf’|<1.

(24

(25

=Ny=+--=Apy_1=1. (The self-coupling term is also in-
cluded here.This case has been studied in various contexts.
When expf)(1—e€)<1, the spatially homogeneous solution
is stable, as shown in R€f12]. For the quadratic map with
a=2, it becomes stable whes>0.5. Just below this value
the system shows spatiotemporal intermittency, clustering
phenomena, et¢10]. In Fig. 1(a), we displayo(n), the fluc-
tuation of the state variable from the mean, defined by
a?(n)=(1/m)=",[x;(n)—x(n)]?, [x(n) is the average of
all x;(n)], for different values ofe, for the case witha
=2.0. It can be seen that when>¢.=0.5, the value ofr

In the special case of global coupling, the synchronizatiorPecomes zergwithin the numerical accuragyndicating that

condition becomes

the system is synchronized. Though the linear stability does
not guarantee the synchronization from arbitrary initial con-
ditions, in this case it happens. We started with random ini-

(1—e)sudf’|<1, (0se<l). (26)
tial conditions for the individual sites, and after a few itera-
The reason why we have ddip| in Eq. (24), in place of tions the system synchronizes, indicating the stability of the
ero, ug being the Lyapunov exponent &fas in Sec. lll, is  spatially homogeneous solutions in these parameter regimes.
that here we do not linearize about a spatially homogeneousor a=1.9, the system synchronizes for a smaller value, of

solution. Our global approach rather requires us to considesince the Lyapunov exponent at that parameter value is

016201-5



J. JOST AND M. P. JOY

0.4

PHYSICAL REVIEW B5 016201

. © m=5a=2.0

0.3

©0.2

0.1

i

(a)

Hi
it

(b)

0.4 0.6
€

0 0.2 0.4 0.6 0.8 1
€

FIG. 2. Same as in Fig. 1 with nearest neighbor couplingnier5, in (a) a=2.0, and in(b) a=1.9.

0.5490. Here the critical value ie.=0.4225. Figure (b)
gives details of this case. We took= 1000 for our simula-

tions.

B. Nearest neighbor coupling

Here the eigenvalues are given by=0 and \;=1

—cos(2ri/m),i=1,2,3 ... m—1. The first nonzero eigen-

value is
2w
AN=1-cos —|,
m

and the largest eigenvalue is

2 for even m,

A= 1+cos<%) for odd m.

Using this one can calculate the maximum valueroét
which the spatially homogeneous solution can be stable ussannot be synchronization in large systems with nearest
ing the condition for linear stability. It will occur when

m=8§, a=2.0
0.4

(@)

0.6

€

)\K<eXF(,U~0)+1
Ny explug) =1’

and the value ot lying between

1—exp(—uo) 1+exp(— uo)
M ¢ N

For a CML with a fully chaotic quadratic map the maxi-
mum value of the system size that can sustain a stable syn-
chronous solution isn=5, whene is between 0.7236 and
0.8292. In the case ah=6, the first mode becomes stable at
e=1, but the last mode becomes unstable for a value of
above 0.75. Hence, there is no synchronization. The second
mode is stable whea is between 0.333 and 1. In Figs. 2-3
we give the plot of the fluctuation of the mean field for
different values ofe, for m=5 andm=6, whena=2.0 (a)
anda=1.9 (b). Whenm=6, betweene=0.33 and 0.75 only
one mode is unstable. From the spectrum one can see that the
largest value o for which only the first mode is unstable is
m=9 when 0.72¢<0.75. For higher values afin more
than one mode will be unstable for any valueeofSo there

neighbor coupling.

0.4

m=6, a=1.9

®)

O prremrm————

0.2 0.4 0.6
€

FIG. 3. Same as in Fig. 2 with nearest neighbor couplinger6.
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0.3

(a) (b)

m=9, a=2.0

0 0.2 0.4 0.6
€

FIG. 4. Same as in Fig. 2 with two nearest neighbors couplingmfe.

C. Intermediate range coupling

If we considerk nearest neighborsgthere will be X
neighbors for each site¢he eigenvalues are given by=0

10° and
k / ..
1 2] )
1051 ] )\i_l_ﬂjzl cos(m>, i=1,2,...m—1.
Let us consider the case of two nearest neighbdrs (
010" . =2). As in the case of nearest neighl{diN) coupling one

can find the maximum value ah at which the CML can
sustain stable synchronous chaotic oscillations. k=e@, it
j078t is m=9 with 0.33<e<1. The maximum value ofm at
which the second largest mode also becomes unstalie is
=18. Figure 4 gives the plot fom=9 for a=2.0 (a) and
420295 | 296 | 207 | 208 | 299 | 300 | 301 | 302 | 303 | 304 a=1.9 (b). For three nearest neighbork=3), it is atm

n =12, and fork=4,m=15.

FIG. 5. Hereo(n) is plotted for different values df (denoted One can see .that. fdn/m>0.301 the Syste.m Synchronlzes
inside the gridl with intermediate range coupling, fon=1000, a  When the coupling is strong, i.e=1. In Fig. 5, o(n) is
=2.0, ande=1.0. Between two grid lines 1000 iteratesa(fn) are ~ Shown as a function df for m=1000 near the synchroniza-
plotted. tion transition region. In each grid corresponding toka
value, 1000 final iterates @f(n) are plotted after discarding
initial transients. The system shows synchronization when
k=301. As the system size increases we need a higher num-

0 0

" @ 10 WWW ®
10° ; 10°
v 10" | ——l
. k=5 k=6 k=n7 k=8 k=9 . k=4 k=5 k=ne k=7 k=8

FIG. 6. Same as in Fig. 5 with random coupling for differ&ntalues, form=1000 ande=1.0. In(a) a=2.0 and in(b) a=1.9.

016201-7



J. JOST AND M. P. JOY PHYSICAL REVIEW B5 016201

10° ; , ; . 10 —

0

h I

.n.,l...........:|...n|||||||IIIIIIIII!IIIIIIIHH!\ |||||!|| I
L

]

-10|

o107t 010
. _ao|-4.0 |-3.6 |-3.2 |-28 |-2.4 |-2.0 |-1.6 |-1.2|-0.8 |-04 | 0
10" . ) . . 10

0 0.2 0.4 0.6 0.8 1 n
€

FIG. 8. a(n) for different values ofp with small-world cou-

FIG. 7. Same as in Fig. 1 with small-world coupling, for  pling, for m=1000, k=10, a=2.0, ande=1. Between two grid

=1000, k=10, a=2.0, andp=0.1. lines, corresponding to pvalue, 1000 iterates af(n) are plotted
and the corresponding lggp) is denoted at the bottom.

ber of neighbors for synchronization. For a fixed number of
neighbors the behavior is like that of the NN case; there is n@voided. It has been shown in RE21] that even for a very
synchronization when the system size increases. small random rewiring probabilitp there is a transition to
the small-world regime.

Here we tookp=0.1 at which there is small-world effect
on the structural properties of the graph. Figure 7 gives the

Now we consider a case where there is coupling betweeflyctuation o(n) for different values ofe, k=10 andm
random sites. For every site we randomly seleother dis-  —1000. One can see that there is no synchronization at this
tinct sites and connect them with each other under the conyye of p, \;~0.08. Whenp=0.8, there is synchroniza-
straint that self and multiple coupling is prohib_ited. _The aV-tion for e=1.0. At this value the number of random connec-
erage degree of a node in such a graph obtainekis=@r  jons per vertex reaches the value needed for synchroniza-
the quadratic map wita=2.0 ande=1, the system syn- o, 1 Fig 8 #(n) is plotted forp values from 0.0001 to 1,
chronizes for_ largen, if k>8, in contrast to the unsymmetric ande=1.0. Between two grid lines 1000 iteratescefin) are
case where it does so fr>4 [14] plotted and the corresponding lgfp) values are also de-

We plot the fluctuation of the mean fiela, for different o : .
values ofk for m=1000, e=1.0, a=2.0 [Fig. 6a)], and noted. From this figure we can easily see that there is no
' ’ ' synchronization for smallep values.

a=1.9[Fig. 6b)]. It can be seen that the system synchro-
nizes when the average degree of a vertex is eight or more,

D. Random coupling

for the completely chaotic quadratic map. This is indepen- F. Scale-free networks
dent of the system sizen. From random matrix theory one
can see that the value of; depends only ork [20]. For Another widely studied class of networks are the scale-

smallerm, synchronization can occur beldw-8 because of  free networks, where the degree distribution obeys a power
the finite system size effects. So unlike in the case of nearesl,, that is observed in many real networks. We studied the
neighbor or intermediate range interactions, in the case of,,chronization of a scale-free network constructed by the
randonl;_ COL_'Ipl'Ing’ one Ican rrf:]a‘(]? ﬁhaOt'C sync?ron_lzr?gon f0Barabasi-Albert algorithmi22]. We start withk, vertices and
<(":lkr;yisa|rarltrarly arge vajue ofn, If the number ot neignbors ?t every time a new node is introduced. The new node is
ger than some threshold determined by the value o e
the maximal Lyapunov exponent of the chaotic map. co_nnected tdk _allready existing nodes and they are selected
with a probability proportional to the degree of that node.
The process is continued for a long time and then the degree
distribution is described by the power law(k)~k™7?,
Small-world(SW) networks have an intermediate connec-wherey=3. It is independent ok,. For this study we took
tivity between regular and random networks. They are charky=k and a network of sizen=1000. Figure 9 shows the
acterized by a very small mean path length as in randorwersuse plot for k=6, anda=1.9. In Fig. 10,0(n) is plot-
networks while at the same time having a high clusteringed for different values ok, for the casea=1.9. The syn-
coefficient as in regular networks. SW coupling is done as irchronization behavior is comparable to that of a random net-
the Watts and Strogatz algorithi21]. We start with a lattice work. Whenk>8 there is synchronization faa=2.0. We
of mvertices each connected to k$ieighbors. With a prob- checked our results with higher valuesmfalso. The results
ability p we reconnect each edge to a vertex chosen uniseem to converge for large system sizes and to be indepen-
formly at random over the entire lattice. Duplicate edges arelent of the time of evolutiorisize) of the network.

E. Small-world networks

016201-8
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FIG. 10. Same as in Fig. 5 with scale free coupling, for

FIG. 9. Same as in Fig. 1 with scale free coupling, faor —1000, a=1.9, ande=1.0.

=1000, k=6, anda=1.9.

as global coupling, nearest neighbor coupling, intermediate
VI. CONCLUSION range coupling, random coupling, small-world coupling, and

We studied the spectrum of coupled map lattices and it§€al-world coupling. The coupling topology can crucially in-
relation to the stability properties of the spatially homoge-fluence the synchronizability of the CML. Our study can be
neous solutions. We derived conditions for the existence ofeneralized almost directly to other spatially extended
such solutions using linear stability analysis. Conditions obSYyStems.
tained from a global stability analysis are also provided. Our
results are supplemented with numerical examples. For the
numerical study the quadratifogistic) map is used for the
site dynamics. We studied the synchronization properties of We thank Thomas Wennekers for a critical reading of the
coupled map lattices with different coupling topologies suchmanusript.
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