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Spectral properties and synchronization in coupled map lattices
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Spectral properties of coupled map lattices are described. Conditions for the stability of spatially homoge-
neous chaotic solutions are derived using linear stability analysis. Global stability analysis results are also
presented. The analytical results are supplemented with numerical examples. The quadratic map is used for the
site dynamics with different coupling schemes such as global coupling, nearest neighbor coupling, intermediate
range coupling, random coupling, small world coupling and scale free coupling.
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I. INTRODUCTION

Synchronization of large interacting systems has been
served in several natural situations such as synchron
flashing of the fire flies, pace maker cells of the heart, n
rons, etc.@1–3#. Synchronization of chaos in low dimen
sional systems was studied by Pecora and Carroll@4#. It has
also been studied in coupled oscillator systems and o
spatially extended systems@5,6#. Due to potential applica-
tions in various problems of practical interest, synchroni
tion of chaotic elements in a coupled dynamical system
been an active area of research@7,8#.

Spatially extended systems are suitably modeled
coupled map lattices~CML!. In comparison to partial differ-
ential equations, CMLs are more suitable for computatio
studies because of the discrete nature of time and space w
all the analytical aspects of dynamical systems theory
also be used. CMLs were introduced as a simple model
spatiotemporal chaos@9#. They show a variety of phenomen
from regular periodic behavior to very complicated sp
tiotemporal patterns, chaos, intermittency, etc.@10#. In
CMLs, the dynamical elements are situated at discrete po
in space, time is discrete, and the state variable is continu
Each spatial unit is coupled to its neighbors. The selection
neighbors is determined by the structure of the network
most studies diffusive coupling~nearest neighbor interaction!
is used. There are studies on CMLs with various coupl
schemes, such as open network, random network, gl
coupling, etc.@11#. In most studies a symmetric couplin
matrix is employed.

Here we study the synchronization properties of syste
formed by a large number of identical dynamical eleme
that are connected by identical symmetrical links. We der
general conditions for the stability of spatially homogeneo
solutions of a CML with any symmetric interaction matr
making use of the spectral properties of the interaction m
trix. The coupling topology can affect crucially the synchr
nizability of the system.

In the next section we describe the properties of the sp
trum of the CML. We perform a linear stability analysis an
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give the conditions for the stability of synchronous solutio
and different regimes of stability. This is given in Sec. I
Results on the global stability analysis are given in Sec.
In Sec. V we provide some numerical results to elucidate
analytical results with specific examples. Here we take a q
dratic map for the site dynamics as an example but the
sults are valid for any dynamical system. The results
even more general in the sense that their validity is not
stricted just to CMLs, but can further be applied almost
rectly to partial differential equations, coupled ordinary d
ferential equations, etc. Finally, we provide a discussion
related aspects of the dynamics of CMLs.

II. CML AND ITS SPECTRUM

We consider a coupled map lattice of the form,

u~x,n11!5eF 1

nx
(

y
x;y

f „u~y,n!…2 f „u~x,n!…G1 f „u~x,n!…,

~1!

wherenx denotes the number of neighbors ofx. Here, f :R
→R is some differentiable function, often chosen to be t
quadratic~logistic! map in the literature.x is a spatial vari-
able, its domain being some finite discrete setM. That set
carries a neighborhood relationship, specifying whichy
PM are neighbors of a givenx ~notation: x;y). The ex-
treme case is the one of a global coupling where ally are
neighbors of anyx. If M has the structure of ak-dimensional
periodic grid, the other extreme case is the one of nea
neighbor coupling where only thosey are neighbors ofx that
are one step away fromx in one of the coordinate directions
In that case, eachx has 2k neighbors. Of course, we als
have the trivial case where eachx is its own neighbor, but
has no other neighbors. That case of course, represent
absence of coupling.

In the sequel, the only assumption we shall need is t
the neighborhood relationship is symmetric, i.e., ify is a
neighbor ofx, thenx in turn is a neighbor ofy. We also adopt
the—completely inessential—convention thatx is not con-
sidered as a neighbor of itself.~Abandoning that convention
would simply amount to a redefinition of the value ofe.!
Finally, in order to avoid trivial case distinctions, we assum
©2001 The American Physical Society01-1
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that the neighborhood relationship is connected in the se
that for any givenx1 ,x2PM , we find y15x1 ,y2 , . . . ,ym
5x2, such thatyj 11 is a neighbor ofyj for j 51,2, . . . ,m
21. We considern50,1,2, . . . , as thetime variable of the
evolution.

Our subsequent analysis will not depend in concep
terms on the detailed structure ofM. Of course, the numeri
cal values of the bifurcation parameters below will reflect
geometry ofM.

Our analysis is phrased in general terms and so i
straightforward to extend it to the cases:~a! wheref is vector
valued;~b! whereM is a continuous space which then has
carry a measuredm, and the averaged sum needs to be
placed by an averaged integral;~c! to weighted neighbor-
hoods, i.e., where we are given a non-negative function

h: M3M→R1

that is symmetric@h(x,y)5h(y,x) ;x,yPM # and consider
in place of the averaged sum in Eq.~1!

F1/(
y

h~x,y!G(
y

h~x,y! f „u~y,n!…,

the situation in Eq.~1! corresponds to the choice

h~x,y!5H 1, if x,y neighbors,

0, else;

~d! replacing the last termf „u(x,n)… in ~1! by g„u(x,n)… for
some functiong; ~e! as well as to the case of coupled ord
nary differential equations in place of difference equatio
As these extensions are rather trivial, we refrain from car
ing them out.

The following represents a generalization of the line
stability analysis that has been carried out in the literature
some special cases such as global coupling@12#, nearest
neighbor coupling@13#, and random coupling@14#.

We shall need theL2 product for functions onM,

~u,v !ª
1

uM u (
xPM

nxu~x!v~x!,

whereuM u stands for the number of elements ofM. We also
put uuuuuª(u,u)1/2, (L2 norm of u). We consider the opera
tor,

L: L2~M !→L2~M !,

Lv~x!ª
1

nx
(

y
x;y

v~y!2v~x!. ~2!

L has the following properties:
~i! L is self-adjoint with respect to~.,.!:

~u,Lv !5~Lu,v !,

for all u,vPL2(M ). This follows from the symmetry of the
neighborhood relation.

~ii ! L is nonpositive:
01620
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~Lv,v !<0.

This follows from the Cauchy-Schwarz inequality.
~iii !

Lv50⇔v[const.

Hence,~i! implies that the eigenvalues ofL are real. By
~ii !, they are nonpositive; we write them as2lk , and the
eigenvalue equation then is

Luk1lkuk50.

We order the eigenvalues asl0<l1<l2<•••<lK . ~This
convention deviates from the one used in the literature. O
operatorL corresponds to the interaction matrix minus t
identity matrix, and one usually considers the eigenvalue
the former in descending order.!

We may then find an orthonormal basis ofL2(M ),

~uk!k51, . . . ,K

of eigenvectors ofL.
By ~iii ! the smallest among thelk is

l050,

and this is a simple eigenvalue~because we assume that th
neighborhood relationship is connected!, i.e.,

lk.0 for k.0. ~3!

The numerical values of the bifurcation parameters occ
ring below will depend only~besides one and the Lyapunov
exponent off ) on the eigenvalue spectrum ofL. This eigen-
value spectrum, of course, reflects the underlying geom
of M and of the coupling. Some general considerations m
be helpful for understanding this point.

In the case of global coupling~including self-coupling!,
we have

l050 ~as always!,

and

l15l25•••5lk51,

since

Lv52v,

for anyv that is orthogonal to the constant map, i.e., satis

1

uM u (
yPM

v~y!50.

If we shrink the neighborhood size, then the eigenvalues
separate and grow, and in particular, the largest one,lK , will
become larger the smaller the neighborhood size is. In
ticular,

lK.1,
1-2
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as there may existvPL2(M ) with

(
xPM

(
y

x;y

v~x!v~y!,0

~e.g., M5$1,2, . . . ,m%, m even, m.2, with m having
neighborsm21 and m11, closed periodically, i.e.,m11
[1,

v~m!5H 1, m even,

21, m odd.

Conversely, if the neighborhood interaction matrix of
points is the same and kept fixed while we increase the
of M, then all eigenvalues will decrease. This is a version
Courant’s monotonicity theorem@15#. Thus, from our analy-
sis below, synchronization will require, if possible at all,
larger value of the coupling parametere.

We also have the following version of Courant’s nod
domain theorem@16#:

Lemma 1. ConsiderM as a graphGM , with an edge be-
tweenx andy precisely ifx andy are neighbors. Letuk be an
eigenfunction for the eigenvaluelk , with our above order-
ing, 05l0,l1<l2<•••<lK . Delete from the graphGM
all edges that connect points on which the values ofuk have
opposite signs. This dividesGM into connected component
G1 , . . . ,G l . Then l<k11.

III. LINEAR STABILITY ANALYSIS

We now consider a solutionū(n) of the uncoupled equa
tion,

ū~n11!5 f „ū~n!…. ~4!

Clearly, u(x,n)5ū(n) then is a solution of Eq.~1!. This
solution is spatially homogeneous, or as one says, sync
nized. The synchronization question then is whether for c
tain values of the coupling parametere, any solution of Eq.
~1! asymptotically approaches a synchronized one. A so
what weaker question is whether, when we consider a
turbation

u~x,n!5ū~n!1dak~n!uk~x!, ~5!

by an eigenmodeuk for some k>1, and small enough
d, ak(n) goes to 0 forn→`, if u(x,n) solves Eq.~1!. That
question can be investigated by linear stability analysis
we proceed to carry that out. Inserting Eq.~5! into Eq. ~1!
and expanding aboutd50 yields

ak~n11!5~12elk! f 8„ū~n!…ak~n!, ~6!

f 8 denoting the derivative off. So the sufficient local stabil
ity condition

lim
N→`

1

N
ln

ak~N!

ak~0!
5 lim

N→`

1

N
ln)

n50

N21
ak~n11!

ak~n!
,0 ~7!
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becomes

lnu12elku1 lim
N→`

1

N (
n50

N21

lnu f 8„ū~n!…u,0. ~8!

Here,

m05 lim
N→`

1

N (
n50

N21

lnu f 8„ū~n!…u,

is the Lyapunov exponent off and so the stability condition
~8! is

uemo~12elk!u,1. ~9!

We may have

mo.0, ~10!

i.e., temporal instability, but Eq.~9! for all k>1; i.e., syn-
chronization. We shall now assume Eq.~10! for the remain-
der of this section. By our ordering convention for the eige
values, Eq.~9! holds for allk>1 if

12e2mo

l1
,e,

11e2mo

lK
. ~11!

In order to satisfy that condition, we need

lK

l1
,

emo11

emo21
. ~12!

By our above discussion this hold in the globally coupl
case because therelK5l1. By way of contrast if we have
nearest neighbor coupling, this can only hold if the size ofM
is not too large.~For a one-dimensional chain, the critic
size is 5, with a large value ofe. If we have second neares
neighbor coupling, the critical size of a one-dimension
chain is 9.!

Let us now assume that Eq.~12! holds. We then predict
the following behavior of the coupled system ase increases.

For very small values ofe.0, as we assume~10!

emo~12elk!.1,

and so, all spatial modesuk , k>1, are unstable, and no syn
chronization occurs. If we are in the globally coupled ca
then there exists a single critical valueec such that

emo~12eclk!51,

for all k51,2, . . . ,K. For e.ec , the dynamics become syn
chronized. Fore slightly smaller thanec , one observes in-
termittent behavior, clustering, etc.@17#.

Let us now consider the more interesting case where
coupling is not global so that not all thelk are equal; in
particular,

l1,lK .

We then letek be the solution of
1-3
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emo~12eklk!51.

The smallest among these values iseK , the largeste1. If
now, for k1,k2,

ek2
,e,ek1

,

then the modesuk2
,uk211 , . . . ,uK are stable, while the

modesu1 ,u2 , . . . ,uk1
are unstable. Because of Lemma

we see that desynchronization can lead to utmostk211 sub-
domains on which the dynamics is either advanced
retarded.

In particular, if e increases, first the highest modes, i.
the ones with most spatial oscillations, become stabiliz
and the modeu1 becomes stabilized the last. So
e2,e,e1, then any desynchronized state consists of t
subdomains.

We then letēk be the solution of

emo~ ēklk21!51.

Again,

ēk<ēk21 .

Because of Eq.~11!,

e1, ēK .

If

e1,e, ēK ,

then all modesuk , k51,2, . . . ,K, are stable, and the dy
namics synchronizes.

If e increases beyondēK , then the highest frequenc
mode uK becomes unstable and we predict spatial osci
tions of high frequency of a solution of the dynamics. Ife
increases further then more and more spatial modes bec
destabilized.

IV. GLOBAL STABILITY ANALYSIS

The basis of the preceding analysis was a linear expan
about a synchronized stateū(n). Therefore, that analysis i
valid only for small perturbations about such a state. In t
section, we want to derive a criterion that guarantees s
chronization for arbitrary starting valuesu(x,0) of a solution
of Eq. ~1!.

From general principles of functional analysis~see, Ref.
@18#!, there exists an operator,

L:L2~M !→L2~M !

with

2~u,Lv !5~Lu,Lv !, ;u,vPL2~M !. ~13!
01620
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This follows from the self-adjointness ofL. It is not difficult
to write aL down explicitly, but our more abstract approac
provides the advantage of a less cumbersome notation.

L is non-negative in the sense that

~Lu,Lu!>0, ;uPL2~M !, ~14!

and we even have

Lu50⇔u[const. ~15!

~This follows from the nonpositivity properties ofL.)
MoreoverL commutes withL, i.e.,

LL5LL, ~16!

and so, we may assume that theuk are also eigenfunctions o
L.

Therefore, a natural ansatz for a Lyapunov function
the dynamics~1! is

F~n!ª@Lu~ .,n!,Lu~ .,n!#, ~17!

and it remains to derive conditions under which

F~n!→0 for n→`. ~18!

We have

F~n11!5@Lu~ .,n11!,Lu~ .,n11!#

5@Lu~ .,n11!,L„eL f ~ .,n!1~12e! f ~ .,n!…#,

by Eq. ~1!.
Since theuk are an orthogonal basis ofL2(M ), we may

write

f „u~x,n!…5 (
k50

K

bk~n!uk~x!,

with bk(n)5@ f „u(.,n),uk…#. Inserting this into the last
equality, we get

F~n11!5FLu~ .,n11!,L(
k50

K

~12elk!bk~n!ukG .

~19!

The important observation now is that in the last sum,
can discard the summandk50, becauseu0 is constant, and
so

Lu050.

Moreover, we observed above that, sinceL commutes with
L, we may assume,

~Luk ,Lul !50 for kÞ l ,

and so

uuL f „u~ .,n!…uu25 (
k50

K

bk
2~n!uuLukuu2.
1-4
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FIG. 1. Fluctuation of the means(n) is shown as a function of the coupling strengthe. At each value ofe, 200 final iterates ofs(n) are
plotted. Herem51000 and the coupling is global. In~a! a52.0, and in~b! a51.9.
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Using these observations and the Cauchy-Schwarz inequ
in Eq. ~18!, we may estimate

F~n11!<
1

2
uuLu~ .,n11!uu2

1
1

2
~12el1!2uuL f „u~ .,n!…uu2, ~20!

assumingu12elKu<12el1, i.e.,

e<
2

l11lK
. ~21!

If we now use the coarse estimate

uuL f „u~ .,n!…uu<supu f 8uuuLu~ .,n!uu, ~22!

we obtain from Eq.~20!

F~n11!<~12el1!2 supu f 8u2F~n!. ~23!

We conclude
Theorem 1. The coupled dynamical system~1! asymptoti-

cally synchronizes ife satisfies~21! and

~12el1!supu f 8u,1. ~24!

Remark. If Eq. ~21! does not hold, Eq.~24! needs to be
replaced by

~elK21!supu f 8u,1. ~25!

In the special case of global coupling, the synchronizat
condition becomes

~12e!supu f 8u,1, ~0<e,1!. ~26!

The reason why we have supu f 8u in Eq. ~24!, in place of
em0, m0 being the Lyapunov exponent off, as in Sec. III, is
that here we do not linearize about a spatially homogene
solution. Our global approach rather requires us to cons
01620
ity

n
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any solutionu(x,n) of Eq. ~1!. This means, however, tha
our condition~24!, while sufficient, need not be necessa
for synchronization.

V. NUMERICAL RESULTS

In this section we demonstrate our results with differe
coupling schemes or network topology. For our numeri
study we took the quadratic map for the site dynamics. T
quadratic map is a widely studied chaotic map, given
f (x)512ax2 @19#. Here a is a parameter and varying it
value the single map shows a variety of dynamical pheno
ena. It becomes chaotic whena'1.4011, going through a
period doubling bifurcation sequence. Ata52 the map is
maximally chaotic, with a Lyapunov exponentm05 ln(2).

A. Global coupling

In the case of global coupling, we havel050 and l1
5l25•••5lm2151. ~The self-coupling term is also in
cluded here.! This case has been studied in various conte
When exp(m0)(12e),1, the spatially homogeneous solutio
is stable, as shown in Ref.@12#. For the quadratic map with
a52, it becomes stable whene.0.5. Just below this value
the system shows spatiotemporal intermittency, cluster
phenomena, etc.@10#. In Fig. 1~a!, we displays(n), the fluc-
tuation of the state variable from the mean, defined
s2(n)5(1/m)( i 51

m @xi(n)2 x̄(n)#2, @ x̄(n) is the average of
all xi(n)#, for different values ofe, for the case witha
52.0. It can be seen that whene.ec50.5, the value ofs
becomes zero~within the numerical accuracy! indicating that
the system is synchronized. Though the linear stability d
not guarantee the synchronization from arbitrary initial co
ditions, in this case it happens. We started with random
tial conditions for the individual sites, and after a few iter
tions the system synchronizes, indicating the stability of
spatially homogeneous solutions in these parameter regim
For a51.9, the system synchronizes for a smaller value oe,
since the Lyapunov exponent at that parameter value
1-5
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FIG. 2. Same as in Fig. 1 with nearest neighbor coupling, form55, in ~a! a52.0, and in~b! a51.9.
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0.5490. Here the critical value isec50.4225. Figure 1~b!
gives details of this case. We tookm51000 for our simula-
tions.

B. Nearest neighbor coupling

Here the eigenvalues are given byl050 and l i51
2cos(2pi/m), i51,2,3, . . . ,m21. The first nonzero eigen
value is

l1512cosS 2p

m D ,

and the largest eigenvalue is

lK5H 2 for even m,

11cosS p

mD for odd m.

Using this one can calculate the maximum value ofm at
which the spatially homogeneous solution can be stable
ing the condition for linear stability. It will occur when
01620
s-

lK

l1
,

exp~m0!11

exp~m0!21
,

and the value ofe lying between

12exp~2m0!

l1
,e,

11exp~2m0!

lK
.

For a CML with a fully chaotic quadratic map the max
mum value of the system size that can sustain a stable
chronous solution ism55, whene is between 0.7236 and
0.8292. In the case ofm56, the first mode becomes stable
e51, but the last mode becomes unstable for a value oe
above 0.75. Hence, there is no synchronization. The sec
mode is stable whene is between 0.333 and 1. In Figs. 2–
we give the plot of the fluctuation of the mean field f
different values ofe, for m55 andm56, whena52.0 ~a!
anda51.9 ~b!. Whenm56, betweene50.33 and 0.75 only
one mode is unstable. From the spectrum one can see tha
largest value ofm for which only the first mode is unstable i
m59 when 0.72,e,0.75. For higher values ofm more
than one mode will be unstable for any value ofe. So there
cannot be synchronization in large systems with nea
neighbor coupling.
FIG. 3. Same as in Fig. 2 with nearest neighbor coupling, form56.
1-6
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FIG. 4. Same as in Fig. 2 with two nearest neighbors coupling, form59.
(

is

s

-

FIG. 5. Heres(n) is plotted for different values ofk ~denoted
inside the grid! with intermediate range coupling, form51000, a
52.0, ande51.0. Between two grid lines 1000 iterates ofs(n) are
plotted.
en
um-

01620
C. Intermediate range coupling

If we consider k nearest neighbors~there will be 2k
neighbors for each site! the eigenvalues are given byl050
and

l i512
1

2k (
j 51

k

cosS 2p i j

m D , i 51,2, . . . ,m21.

Let us consider the case of two nearest neighborsk
52). As in the case of nearest neighbor~NN! coupling one
can find the maximum value ofm at which the CML can
sustain stable synchronous chaotic oscillations. Fork52, it
is m59 with 0.33,e,1. The maximum value ofm at
which the second largest mode also becomes unstablem
518. Figure 4 gives the plot form59 for a52.0 ~a! and
a51.9 ~b!. For three nearest neighbors (k53), it is at m
512, and fork54,m515.

One can see that fork/m.0.301 the system synchronize
when the coupling is strong, i.e.,e51. In Fig. 5, s(n) is
shown as a function ofk for m51000 near the synchroniza
tion transition region. In each grid corresponding to ak
value, 1000 final iterates ofs(n) are plotted after discarding
initial transients. The system shows synchronization wh
k5301. As the system size increases we need a higher n
FIG. 6. Same as in Fig. 5 with random coupling for differentk values, form51000 ande51.0. In ~a! a52.0 and in~b! a51.9.
1-7
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J. JOST AND M. P. JOY PHYSICAL REVIEW E65 016201
ber of neighbors for synchronization. For a fixed number
neighbors the behavior is like that of the NN case; there is
synchronization when the system size increases.

D. Random coupling

Now we consider a case where there is coupling betw
random sites. For every site we randomly selectk other dis-
tinct sites and connect them with each other under the c
straint that self and multiple coupling is prohibited. The a
erage degree of a node in such a graph obtained is 2k. For
the quadratic map witha52.0 ande51, the system syn-
chronizes for largem, if k.8, in contrast to the unsymmetri
case where it does so fork.4 @14#.

We plot the fluctuation of the mean field,s, for different
values ofk for m51000, e51.0, a52.0 @Fig. 6~a!#, and
a51.9 @Fig. 6~b!#. It can be seen that the system synch
nizes when the average degree of a vertex is eight or m
for the completely chaotic quadratic map. This is indep
dent of the system sizem. From random matrix theory on
can see that the value ofl1 depends only onk @20#. For
smallerm, synchronization can occur belowk58 because of
the finite system size effects. So unlike in the case of nea
neighbor or intermediate range interactions, in the case
random coupling, one can have chaotic synchronization
any arbitrarily large value ofm, if the number of neighbors
~k! is larger than some threshold determined by the value
the maximal Lyapunov exponent of the chaotic map.

E. Small-world networks

Small-world~SW! networks have an intermediate conne
tivity between regular and random networks. They are ch
acterized by a very small mean path length as in rand
networks while at the same time having a high cluster
coefficient as in regular networks. SW coupling is done as
the Watts and Strogatz algorithm@21#. We start with a lattice
of m vertices each connected to itsk neighbors. With a prob-
ability p we reconnect each edge to a vertex chosen
formly at random over the entire lattice. Duplicate edges

FIG. 7. Same as in Fig. 1 with small-world coupling, form
51000, k510, a52.0, andp50.1.
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avoided. It has been shown in Ref.@21# that even for a very
small random rewiring probabilityp there is a transition to
the small-world regime.

Here we tookp50.1 at which there is small-world effec
on the structural properties of the graph. Figure 7 gives
fluctuation s(n) for different values ofe, k510 and m
51000. One can see that there is no synchronization at
value of p, l1'0.08. Whenp50.8, there is synchroniza
tion for e51.0. At this value the number of random conne
tions per vertex reaches the value needed for synchron
tion. In Fig. 8,s(n) is plotted forp values from 0.0001 to 1
ande51.0. Between two grid lines 1000 iterates ofs(n) are
plotted and the corresponding log10(p) values are also de
noted. From this figure we can easily see that there is
synchronization for smallerp values.

F. Scale-free networks

Another widely studied class of networks are the sca
free networks, where the degree distribution obeys a po
law that is observed in many real networks. We studied
synchronization of a scale-free network constructed by
Barabasi-Albert algorithm@22#. We start withk0 vertices and
at every time a new node is introduced. The new node
connected tok already existing nodes and they are selec
with a probability proportional to the degree of that nod
The process is continued for a long time and then the deg
distribution is described by the power law,P(k);k2g,
whereg53. It is independent ofk0. For this study we took
k05k and a network of sizem51000. Figure 9 shows thes
versuse plot for k56, anda51.9. In Fig. 10,s(n) is plot-
ted for different values ofk, for the casea51.9. The syn-
chronization behavior is comparable to that of a random n
work. Whenk.8 there is synchronization fora52.0. We
checked our results with higher values ofm also. The results
seem to converge for large system sizes and to be inde
dent of the time of evolution~size! of the network.

FIG. 8. s(n) for different values ofp with small-world cou-
pling, for m51000, k510, a52.0, ande51. Between two grid
lines, corresponding to ap value, 1000 iterates ofs(n) are plotted
and the corresponding log10(p) is denoted at the bottom.
1-8
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VI. CONCLUSION

We studied the spectrum of coupled map lattices and
relation to the stability properties of the spatially homog
neous solutions. We derived conditions for the existence
such solutions using linear stability analysis. Conditions
tained from a global stability analysis are also provided. O
results are supplemented with numerical examples. For
numerical study the quadratic~logistic! map is used for the
site dynamics. We studied the synchronization propertie
coupled map lattices with different coupling topologies su

FIG. 9. Same as in Fig. 1 with scale free coupling, form
51000, k56, anda51.9.
nd

s
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as global coupling, nearest neighbor coupling, intermed
range coupling, random coupling, small-world coupling, a
real-world coupling. The coupling topology can crucially in
fluence the synchronizability of the CML. Our study can
generalized almost directly to other spatially extend
systems.
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FIG. 10. Same as in Fig. 5 with scale free coupling, form
51000, a51.9, ande51.0.
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