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Stability of the Kauffman model
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Random Boolean networks, the Kauffman model, are revisited by means of a novel decimation algorithm,
which removes variables that cannot be relevant to the asymptotic dynamics of the system. The major part of
the removed variables have the same fixed state in all limit cycles. These variables are denoted as the stable
core of the network and their number grows approximately linearly Witthe number of variables in the
original network. The sensitivity of the attractors to perturbations is investigated. We find that reduced net-
works lack the well-known insensitivity observed in full Kauffman networks. We conclude that, somewhat
counterintuitive, this remarkable property of full Kauffman networks is generated by the dynamics of their
stable core. The decimation method is also used to simulate large critical Kauffman networks. For networks up
to N=32 we performfull enumerationstudies. Strong evidence is provided that the number of limit cycles
grows linearly withN. This result is in sharp contrast to the often citéd behavior.
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[. INTRODUCTION systems whereas in the chaotic phase onedyas0. The
parameter driving the transition is the probability that two
Boolean networks were introduced by Kauffmfdn2] as  different inputs to a Boolean variabig give rise to different
simplified models of the complex interaction in the regula-Vvalues. In[6] the annealed approximation was extended to
tory networks of living cells. The binary variabte encodes pro_wde distributions for the number and the length of the
the activity of the effective “gene’l; expressed or not ex- lIMit cycles. Also, good agreement between the results from
pressed. Depending upon the initial state, the system evolvé8® a:jnnealec{ atp%rc_)xmatlorr: a?d tne nurRerlcl?I calt(_:ulatlodns
to one of possibly several limit cycles. In the biological pic- was demonstrated in the chaolic phase. An aiternative order

ture, the different limit cycles are interpreted as different Ce”par?meters,h b fractflpn dOf var|a_1b(ljes th%t arle s';at;]le,.|._e_.,|
types. One of Kauffman’s motivations for investigating theseevo ve to the same fixed state independently of the initia

i ' K the idea that the struct f i i I(state, was introduced [7]. These stable variables are said to
networks was the 1dea that the structure ot genetic NetWOrkg, iy te the stable core of the network. In the infinite size
present in nature is not only determined by selection. Rathe

; . A ' [imit one hass=1 in the frozen phase, wheresg 1 in the
a good fraction of the network functionality is inherent in the .4 tic phase. Ifig] the concept of relevant variables was

ensemble of regulatory networks as such. In fact, he found afyroduced. A variabler; is not relevant, if it is stable and/or

enserrlble of critical Boolean networks “on the edge ofng yariable’s state depends on. The relevant variables are
chaos” that captures some features observed in nature. Thege interest since they contain all information about the

Boolean networks show a remarkable stability; in most casegsymptotic dynamics of the network, i.e., the number of limit
small perturbations of the state of the network do not changeycles and their cycle lengths.
the trajectory to a different limit cycle. This is desirable in  In this work we focus on the stability of the Kauffman
the biological interpretation since stability of genetic regula-model and how this property is related to the stable core of
tory networks against small fluctuations is a crucial propertythe network. The probability that inversion of a single vari-
Another striking observation is that the number of limit able will make the system end up in a different limit cycle is
cycles for the critical Boolean networks grows as a squar&nown to be small and approaches zero for large networks.
root of the system sizfL,2]. This is an analogy to multicel- However, we find that if the network is reduced to its rel-
lular organisms, where it is found empirically that the num-evant variables, this probability is drastically raised and in-
ber of cell types also grows approximately as the square roajreases slightly with the system size.
of the genome size. To facilitate this study we introduce a decimation method
The model also exhibits analogig3] with infinite range  that removes variables thaannotbe relevant by inspection
spin glasse$4]. In the framework of an annealed approxi- of transition functions and network connectivity. The result-
mation [5], some of the previous numerical observationsing reduced network contairgl relevant variables and pos-
concerning a phase transition betweefnozenand achaotic  sibly some irrelevant ones. Since all relevant variables are
phase in the model could be understood. The average limihcluded it will have exactly the same asymptotic dynamics
Hamming distancedy,, the number of bitwise differences as the original network even though the total number of vari-
between two random configurations, was used as an ordebles is drastically reduced. We find that the resulting num-
parameter. In the frozen phase one ligs=0 for infinite  ber of variables is close to the true number of relevant vari-
ables. This indicates that properties of the stable core can
mostly be understood by the comparatively trivial interac-

*Email address: sven@thep.lu.se tions detected in the decimation procedure.
"Email address: fredriks@thep.lu.se; URL: http://www.thep.lu.se/ The decimation procedure can also be used to reduce the
complex/ bias in the estimate of some observables such as for example,
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the numbem, of limit cycles. Different from earlier works By definition, in the frozen phase the fraction of stable
we do not observe &N scaling, but rather a linear growth of variables goes to unity al goes to infinity. Therefore, a
n. with the system size. large fraction of the variables are likely to be stable even for
finite N. Since the irrelevant variables includes all stable
Il. THE KAUFFMAN MODEL variables, a considerable part of a network does not affect the
asymptotic dynamics at all. The process of identifying the
irrelevant variables can be divided into two separate steps.
First, the stable variables are identified. Second, the variables
that do not regulate any unstable variables are identified.
Identifying stable variables is in principal easy, but com-
putationally demanding. 1f8] this was done by performing
simulations of the dynamics of the system and monitoring

A random Boolean network is essentially a cellular au-
tomaton withN binary state variables; . These evolve syn-
chronously according to the transition functiofg{c}),
which are chosen randomly at tinte=0 and are then kept
fixed. In the Kauffman moddf; are constrained to depend on
at mostK different randomly chosen input variables:

o) =fi (o, (t—1), ... ok(t—1)), (1)  which variables were in the same state in all probed limit

' ' cycles. However, finding all limit cycles essentially means

for every variableo; . The integers{vil, o ’UiK} define the that all 2N possible states have to be. probed, vyhich is pos-
input connections to variable, . sible only for very small networks. Since a variable that is

stable within the probed limit cycles may change state within

The transition functiorf; maps each possible combination £ th bed limi | hi tracti f
of input signals to Boolean output values. These output va/Some of the unprobed limit cycles, searching a fraction o
state space will in some cases overestimate the number of

ues are independently setttoe or falsewith probabilitiesp bl bl
and 1- p, respectively. This makes some functions indepen-s'ta € variaples. . :
Here we introduce an alternative method, which by pure

dent of some or all of itK input variables. Furthermore, . . = o :
depending orK andp, a finite fraction of the state variables inspection of the connectivity and the transition functions of
o, are not used by a{ny of the transition functions a network identifies variables thatustbe stable. The basis

: The random Boolean network is a determinisfic systemfor our approach is that transition functions dependent on no
Given the state variables at some time, the future trajector zﬂ?&ttxzr::ti'?:b?elve a constant output, i.., the corresponding

of the o is known. The volume of the state space is finite, As stated ab t ition functi ind
therefore all trajectories must posses a limit cycle. Besidea S staled above, some ftransition functions are indepen-
ent of all their input variables, i.e., they are constants. This

the stability of the system the number of limit cycles, the . : .
y y y eans that the corresponding variables will be stéafter

length distribution of the cycles, and transient trajectories ar P o . !
well-established observables for this model. In numerical'® initial time step and a transition function that is depen-

simulations it is in general not possible to probe the model§jent on such a variable will receive a constant signal. By

whole state space, except for very small systems. The Vof_eplacing thestable input variable with the corresponding

ume of the{ o} state space grows exponentially and the num-constantvalue, the number of input variables is reduced. For
ber of graphsf;} even superexponentially. The commonly each replaced input variable to a transition function, that

used strategy for exploring this model therefore contains tw(gu'nc'tmng Input state space IS (educed by a factor of 1/ 2 and
approximations. within this subspace it may be independent of yet other input

(1) A small fraction of all possible networks is used as avariables. If in the end even this rule becomes a constant, the
representative ensemble corresponding variable is stablefter a transient time and

(2) For each network only a subset of the state space i an be replaced by a constant. Therefqre, we have to repeat
probed is procedure until no more stable variables are found. We

Point 2 introduces a systematic bias to the number of limieUmmerze the metho_d as fOIIO\.NS: . .
cycles since not all of them will be found. In the results (1) For every transition functiort; , remove all inputs it
section we will reanalyze the number of cycles after decima—doe;‘ nFot dt(ra]pen;j up_?hn. inouts. ¢l h ble. t
tion of irrelevant nodes. This allowfsll enumeratiorof state h (2) For osde_ i Wi nto Tpuls, clamp the variabie; 1o
space for up toN=32. In this way we get an improved € corresponding constant value.

estimate for the scaling of the respective observables with (3) For everyf;, replace clamped inputs with the corre-
the system size. sponding constants.
(4) If any variable has been clamped, repeat from Step 1.

It is clear that our method sometimes does not find all
stable variables. We see an example of such a situation in

It is well known that some variables in a Kauffman net- Fig. 1. Here the inputs to a function are coupled logically and
work evolve to the same steady state independently of thbereby confined to a subspace of possibilities. Within this
initial configuration. Thesastablevariables are clearly irrel- subspace the otherwise unstable variable is stable. The figure
evant for the asymptotic behavior of the network. The samdllustrates just one of the possible couplings between inputs.
holds for those variables that do not regulate any other vari- Once the stable variables are identified and removed from
able, i.e., no transition function is dependent on them. Irthe network the nonregulating variables can be removed it-
fact, as pointed out if8], for a variable to be relevant it has eratively. Since our method keeps all relevant variables the
to be unstable and regulate some unstable variables that iesulting network will have exactly the same asymptotic dy-
turn regulate others and so on. namics as the original network.

Ill. THE DECIMATION PROCEDURE
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A K K
FF: f s(t+1)= 2 s(t)“[l—s(t)]k( k)pk, (2)
= k=0

XOr — where p, is the probability that a transition function for

B |_> given values oK —k of its input variables is independent of

f its otherk inputs. This equation describes the growth of the
stable core with the time. At=0 only nodes which happen
to have a constant transition function are stable. At later
times nonconstant transition functions, which receive inputs
from stable nodes, can acquire a constant valu¢7]rEq.
(2) was used as a self-consistency equation for infinite sys-
tems, i.e., lettingd—<<. In a finite system, the iteration has to
stop at some timd, which reflects a characteristic length in
the network, the maximal distance a signal can flow before it
reaches all nodes. The length scale is set by the average
IV. RESULTS distance(in number of linkg a signal can travel. The signal

Let us start by analyzing the size of the stable core as Rathway in a sparse directed random graph with only a few
function of the system sizBl. In Fig. 2 the the size of the :z)ops IS approxgnatily ah branched g_olymer, where :t IS
stable coreN*, identified by the decimation procedure de- nown (see e.g.[9)) that the average distance grows alge-

. . L aically, i.e.,T~cN”. We have fitted the constantsand y
scribed above, is shown. Each data point is averaged OV‘%{Jmerically to our data fok=2 and findy=0.33).

10* instances of networks. For comparison the size of the . ) o
stable coreN™ as estimated by the method used8ihis also After removing thes(T) stable variables, the deqmaﬂon

: . rocedure eliminates the leaves of the network, i.e., those
plotted. The latter procedure is based on observations of the 1o\ ith out degreg(t=0)=0. This changes the out de-
dynamics of the full network and identification of nodes ac-greq of the remaining variables. Therefore, this procedure is
quiring the same constant value independently of the star peated until no more variables wigt) =0 are found. The

configuration. Since only a small part of the state space cafacion P, of leafs, direct and indirect, can be estimated by
be probed in practice, the numbif is biased to overesti- the self-consistent equation

mate the true size of the stable core. On the other hand, our

FIG. 1. A andB have arbitrary but identical transition functions
and C implementsxor. SinceA and B also have the same inputs
their outputs will be identical. ThusZ will always outputfalse,
i.e.,Cis stable and can be removedlandB are now nonregulating
and can be removed too.

decimation procedure underestimatedecause some con- ” =

figurations, like the one depicted in Fig. 1, which may lead to P|=q§1 P(alN,K)P}, (©)
stable variables, are not identified. Therefore, we have

N™<n<N*. where N=Nx (1—s) is the number of variables after re-

It is somewhat surprising to obseri&” ~N*, which in- : o .
dicates that properties of the stable core, at leasKfer2, mOV|Dg~the7; St?blg orlesK 's the average |n.degr.ee, and
mostly can be understood by the comparatively trivial inter-P(d/N.K) the distribution of the out degreg given in the
actions detected in the decimation procedure. The probabilitPPendix. We solved Eq2) and(3) numerically, the result-

sfor a node to belong to the stable core can be estimated B9 9raph is also shown in Fig. 2, which is in very good
using Eq.(2) in [7] greement with our numerical results.

One of the important features of Kauffman’s model is the
intrinsic stability of critical Boolean networks. How does
decimation affect this behavior? While the network decima-
* Decimated tion does not change the number and the length of limit
10000 el ] cycles, the size of the basins of attraction has to be reduced

because the state space is shrunken by orders of magnitude.

To get a quantitative picture, we analyze the network stabil-
ity with respect to the inversion of one randomly chosen
variable, after the state trajectory has reached a limit cycle.
] The error probability, i.e., the probability to end up in a
¥ differentlimit cycle compared to the undisturbed system, is
‘ ‘ ‘ , shown in Fig. 3. If a limit cycle has not been found within
1 10 100 1000 10000 100000 10° steps, the network is discarded. For the full network we

Network Size observe the well-known stability, the probability to end up in

FIG. 2. The size of the stable core—the number of variableg® different limit cycle asymptotically approaches zero for
going to the same constant value independently of the staf@rge lattices. By contrast, for the reduced network the error
configuration—as a function of the network size for 2. The num-  probability grows slowly with the network size and the sta-
ber of relevant variables estimated with our decimation procedur®ility is essentially lost. This means, the tolerance against
(circles, the observation of the dynamif8] (squaresand Eqs(2)  perturbations observed for Kauffman networks is mostly
and (3) (full line) are in very good agreement. generated by the stable core; in most cases the perturbed

100000

1000 ¢

100 ¢

Stable Core
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FIG. 3. The probability to be pushed out from a limit cycle by Network Size

the inversion of a randomly chosen variable. For thal) Kauff-
man network(dashed ling the error probability scales to zero for FIG. 4. The number of limit cycles as a function of the network
large lattices. This behavior is not changed if one only does a gecsize for critical Boolean networks witk=2,3,4 inputs. The solid
metric reduction of leaf¢dotted ling. If the network is reduced to lines connecting the data points arbnear interpolations
its relevant variablegfull line) the tolerance against small fluctua- with x*/degrees of freedofDOFR)=1.5 (K=2),1.6 K=3), and
tions in the state space is completely lost. 1.4 (K=4). A YN behavior fits the data much worse with
X2 (DOF=115 K=2), 8.6 (K=3), and 85 K=4). The
signal is “lost” in the stable core and the full network re- dotted line represents the beghl fit for K=2.
mains unaffected. It has recently been arg{®d| that the
in-homogeneous, for example, scale-frgeometryof real  quite nicely describes the percolationlike process, which un-
world networks is underlying the stability of these systemseriies the propagation of the “stability” signal. Starting
Here we find the opposite; stability is primarily generatedsom the relatively few nodes with transition functions which
dynamically by the propagatidiEq. (2)] of the stable core in 4, ot at all depend on their inputs, the islands of frozen
the networklog|.c._ The homogenepus geometry plays only states grow in time by the interaction with the already stable
secondary role; if just a geometric reduction of the network, , je.q “This process is only limited by the finite size of the
is performed, i.e., the Ieafs_gr_e rgmo»{s@e the discussion system. A small fluctuation in the state of the system will
of of Eq. (3)], the error sensitivity is almost unchanged com-
most probably not propagate through the stable core and

pared to the full network. ) |
The decimation of constant variables from the netWorktherefore in most cases has no effect. We demonstrate this by

enables us to probe a much larger fraction of the state spac&Udying reduced networks, where most of the stable, irrel-
for a given network. Therefore one may expect to get a bettefVant variables have been removed. The stability against
estimate for the number of limit cyclas., which with the small 'fluctuatlons' for these networks is redugeq by orders of
commonly used method tends to be underestimated, becaugnitude and will probably go to zero for infinite networks.
some limit cycles may have been missed due to the hugg is interesting to observe that these effects are mostly driven
state space. By decimating the networks we can fully enuby the networkogic and not by the network geometry.
merate the state space fd<32 and hereby get an unbiased ~ For the identification of the relevant variables we have
estimate. For larger systems we use the standard method wigleveloped a decimation procedure, which is based on inspec-
1000 restarts on each of the reduced networks. Not unexpedion of the networks connectivity and logic. The relatively
edly we observe a small discontinuity in the curve at thesimple procedure works surprisingly well. The results for the
point were the simulation scheme is changed. In Fig. 4 wesize of the stable core are in very good agreement with the
plot n. as a function of the network siZd. We do not find values obtained by observing the dynamics of state-space
the quite often cited/N behavior for this observable. Rather, trajectories in the full network8].
we find a linear growth withN. A possible explanation for As a by-product we use the reduced networks to get an
the different results obtained in some earlier works may bémproved estimate for the number of limit cycles as a func-
the bias introduced by the standard method in combinatiotion of the network size. We find that the number of limit
with lower computational power. cycles grows linearly withN, which is in sharp contrast to
the square-root behavior reported by other groups. Even
though this\/N behavior was an interesting analogy with
multicellular organisms(with approximately N different
The source of the remarkable error tolerance of criticalcell types for genomes with genome sidg, our result does
Kauffman model is identified as the “dynamics of the stablein no way reduce the importance of Kauffman networks as
core.” While this seems to be a contradiction in terms, itan example of self-organized order.

V. SUMMARY
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can be understood by enumerating the number of ways the

NK links can be distributed over this node and the-1

remaining nodes, weighted by the corresponding probabili-
The reduced numbé€ of inputs after the decimation de- ties to choose the nodes

scribed in Eq(2) is the expectation value of the in degree for

APPENDIX: IN- AND OUT-DEGREE DISTRIBUTION

the number of inputs from a nonstable variable. For two _ i 9N=1)NE7aINK
. . L P(g|N,K)= —_ . (A2)
inputs in the original network we get N N q
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