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Stability of the Kauffman model

Sven Bilke* and Fredrik Sjunnesson†
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Random Boolean networks, the Kauffman model, are revisited by means of a novel decimation algorithm,
which removes variables that cannot be relevant to the asymptotic dynamics of the system. The major part of
the removed variables have the same fixed state in all limit cycles. These variables are denoted as the stable
core of the network and their number grows approximately linearly withN, the number of variables in the
original network. The sensitivity of the attractors to perturbations is investigated. We find that reduced net-
works lack the well-known insensitivity observed in full Kauffman networks. We conclude that, somewhat
counterintuitive, this remarkable property of full Kauffman networks is generated by the dynamics of their
stable core. The decimation method is also used to simulate large critical Kauffman networks. For networks up
to N532 we performfull enumerationstudies. Strong evidence is provided that the number of limit cycles
grows linearly withN. This result is in sharp contrast to the often citedAN behavior.
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I. INTRODUCTION

Boolean networks were introduced by Kauffman@1,2# as
simplified models of the complex interaction in the regu
tory networks of living cells. The binary variables i encodes
the activity of the effective ‘‘gene’’i; expressed or not ex
pressed. Depending upon the initial state, the system evo
to one of possibly several limit cycles. In the biological pi
ture, the different limit cycles are interpreted as different c
types. One of Kauffman’s motivations for investigating the
networks was the idea that the structure of genetic netwo
present in nature is not only determined by selection. Rat
a good fraction of the network functionality is inherent in t
ensemble of regulatory networks as such. In fact, he found
ensemble of critical Boolean networks ‘‘on the edge
chaos’’ that captures some features observed in nature. T
Boolean networks show a remarkable stability; in most ca
small perturbations of the state of the network do not cha
the trajectory to a different limit cycle. This is desirable
the biological interpretation since stability of genetic regu
tory networks against small fluctuations is a crucial prope
Another striking observation is that the number of lim
cycles for the critical Boolean networks grows as a squ
root of the system size@1,2#. This is an analogy to multicel
lular organisms, where it is found empirically that the nu
ber of cell types also grows approximately as the square
of the genome size.

The model also exhibits analogies@3# with infinite range
spin glasses@4#. In the framework of an annealed approx
mation @5#, some of the previous numerical observatio
concerning a phase transition between afrozenand achaotic
phase in the model could be understood. The average
Hamming distancedh , the number of bitwise difference
between two random configurations, was used as an o
parameter. In the frozen phase one hasdh50 for infinite
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systems whereas in the chaotic phase one hasdhÞ0. The
parameter driving the transition is the probability that tw
different inputs to a Boolean variables i give rise to different
values. In@6# the annealed approximation was extended
provide distributions for the number and the length of t
limit cycles. Also, good agreement between the results fr
the annealed approximation and the numerical calculati
was demonstrated in the chaotic phase. An alternative o
parameters, the fraction of variables that are stable, i.e
evolve to the same fixed state independently of the ini
state, was introduced in@7#. These stable variables are said
constitute the stable core of the network. In the infinite s
limit one hass51 in the frozen phase, whereassÞ1 in the
chaotic phase. In@8# the concept of relevant variables wa
introduced. A variables i is not relevant, if it is stable and/or
no variable’s state depends ons i . The relevant variables ar
of interest since they contain all information about t
asymptotic dynamics of the network, i.e., the number of lim
cycles and their cycle lengths.

In this work we focus on the stability of the Kauffma
model and how this property is related to the stable core
the network. The probability that inversion of a single va
able will make the system end up in a different limit cycle
known to be small and approaches zero for large netwo
However, we find that if the network is reduced to its re
evant variables, this probability is drastically raised and
creases slightly with the system size.

To facilitate this study we introduce a decimation meth
that removes variables thatcannotbe relevant by inspection
of transition functions and network connectivity. The resu
ing reduced network containsall relevant variables and pos
sibly some irrelevant ones. Since all relevant variables
included it will have exactly the same asymptotic dynam
as the original network even though the total number of va
ables is drastically reduced. We find that the resulting nu
ber of variables is close to the true number of relevant v
ables. This indicates that properties of the stable core
mostly be understood by the comparatively trivial intera
tions detected in the decimation procedure.

The decimation procedure can also be used to reduce
bias in the estimate of some observables such as for exam
/
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the numbernc of limit cycles. Different from earlier works
we do not observe aAN scaling, but rather a linear growth o
nc with the system size.

II. THE KAUFFMAN MODEL

A random Boolean network is essentially a cellular a
tomaton withN binary state variabless i . These evolve syn-
chronously according to the transition functionsf i($s%),
which are chosen randomly at timet50 and are then kep
fixed. In the Kauffman modelf i are constrained to depend o
at mostK different randomly chosen input variables:

s i~ t !5 f i„sv i
1~ t21!, . . . ,sv i

K~ t21!…, ~1!

for every variables i . The integers$v i
1 , . . . ,v i

K% define the
input connections to variables i .

The transition functionf i maps each possible combinatio
of input signals to Boolean output values. These output v
ues are independently set totrue or falsewith probabilitiesp
and 12p, respectively. This makes some functions indep
dent of some or all of itsK input variables. Furthermore
depending onK andp, a finite fraction of the state variable
s i are not used by any of the transition functions.

The random Boolean network is a deterministic syste
Given the state variables at some time, the future trajec
of the s i is known. The volume of the state space is fini
therefore all trajectories must posses a limit cycle. Besi
the stability of the system the number of limit cycles, t
length distribution of the cycles, and transient trajectories
well-established observables for this model. In numeri
simulations it is in general not possible to probe the mod
whole state space, except for very small systems. The
ume of the$s% state space grows exponentially and the nu
ber of graphs$ f i% even superexponentially. The common
used strategy for exploring this model therefore contains
approximations.

~1! A small fraction of all possible networks is used as
representative ensemble.

~2! For each network only a subset of the state spac
probed.

Point 2 introduces a systematic bias to the number of li
cycles since not all of them will be found. In the resu
section we will reanalyze the number of cycles after decim
tion of irrelevant nodes. This allowsfull enumerationof state
space for up toN532. In this way we get an improve
estimate for the scaling of the respective observables w
the system size.

III. THE DECIMATION PROCEDURE

It is well known that some variables in a Kauffman ne
work evolve to the same steady state independently of
initial configuration. Thesestablevariables are clearly irrel-
evant for the asymptotic behavior of the network. The sa
holds for those variables that do not regulate any other v
able, i.e., no transition function is dependent on them.
fact, as pointed out in@8#, for a variable to be relevant it ha
to be unstable and regulate some unstable variables th
turn regulate others and so on.
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By definition, in the frozen phase the fraction of stab
variables goes to unity asN goes to infinity. Therefore, a
large fraction of the variables are likely to be stable even
finite N. Since the irrelevant variables includes all stab
variables, a considerable part of a network does not affect
asymptotic dynamics at all. The process of identifying t
irrelevant variables can be divided into two separate ste
First, the stable variables are identified. Second, the varia
that do not regulate any unstable variables are identified

Identifying stable variables is in principal easy, but com
putationally demanding. In@8# this was done by performing
simulations of the dynamics of the system and monitor
which variables were in the same state in all probed lim
cycles. However, finding all limit cycles essentially mea
that all 2N possible states have to be probed, which is p
sible only for very small networks. Since a variable that
stable within the probed limit cycles may change state wit
some of the unprobed limit cycles, searching a fraction
state space will in some cases overestimate the numbe
stable variables.

Here we introduce an alternative method, which by pu
inspection of the connectivity and the transition functions
a network identifies variables thatmustbe stable. The basis
for our approach is that transition functions dependent on
input variables give a constant output, i.e., the correspond
variable is stable.

As stated above, some transition functions are indep
dent of all their input variables, i.e., they are constants. T
means that the corresponding variables will be stable~after
the initial time step! and a transition function that is depen
dent on such a variable will receive a constant signal.
replacing thestable input variable with the correspondin
constantvalue, the number of input variables is reduced. F
each replaced input variable to a transition function, t
functions input state space is reduced by a factor of 1/2
within this subspace it may be independent of yet other in
variables. If in the end even this rule becomes a constant
corresponding variable is stable~after a transient time!, and
can be replaced by a constant. Therefore, we have to re
this procedure until no more stable variables are found.
summerize the method as follows:

~1! For every transition function,f i , remove all inputs it
does not depend upon.

~2! For thosef i with no inputs, clamp the variables i to
the corresponding constant value.

~3! For every f i , replace clamped inputs with the corre
sponding constants.

~4! If any variable has been clamped, repeat from Step
It is clear that our method sometimes does not find

stable variables. We see an example of such a situatio
Fig. 1. Here the inputs to a function are coupled logically a
hereby confined to a subspace of possibilities. Within t
subspace the otherwise unstable variable is stable. The fi
illustrates just one of the possible couplings between inp

Once the stable variables are identified and removed f
the network the nonregulating variables can be removed
eratively. Since our method keeps all relevant variables
resulting network will have exactly the same asymptotic d
namics as the original network.
9-2
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IV. RESULTS

Let us start by analyzing the size of the stable core a
function of the system sizeN. In Fig. 2 the the size of the
stable coreN* , identified by the decimation procedure d
scribed above, is shown. Each data point is averaged
104 instances of networks. For comparison the size of
stable coreN1 as estimated by the method used in@8# is also
plotted. The latter procedure is based on observations o
dynamics of the full network and identification of nodes a
quiring the same constant value independently of the s
configuration. Since only a small part of the state space
be probed in practice, the numberN1 is biased to overesti
mate the true sizeh of the stable core. On the other hand, o
decimation procedure underestimatesh because some con
figurations, like the one depicted in Fig. 1, which may lead
stable variables, are not identified. Therefore, we h
N1<h<N* .

It is somewhat surprising to observeN1'N* , which in-
dicates that properties of the stable core, at least forK52,
mostly can be understood by the comparatively trivial int
actions detected in the decimation procedure. The probab
s for a node to belong to the stable core can be estimate
using Eq.~2! in @7#

FIG. 1. A andB have arbitrary but identical transition function
and C implementsXOR. SinceA and B also have the same input
their outputs will be identical. Thus,C will always output f alse,
i.e.,C is stable and can be removed.A andB are now nonregulating
and can be removed too.

FIG. 2. The size of the stable core–the number of variab
going to the same constant value independently of the s
configuration–as a function of the network size forK52. The num-
ber of relevant variables estimated with our decimation proced
~circles!, the observation of the dynamics@8# ~squares! and Eqs.~2!
and ~3! ~full line! are in very good agreement.
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k50

K

s~ t !K2k@12s~ t !#kS K
k D pk , ~2!

where pk is the probability that a transition function fo
given values ofK2k of its input variables is independent o
its otherk inputs. This equation describes the growth of t
stable core with the time. Att50 only nodes which happen
to have a constant transition function are stable. At la
times nonconstant transition functions, which receive inp
from stable nodes, can acquire a constant value. In@7# Eq.
~2! was used as a self-consistency equation for infinite s
tems, i.e., lettingt→`. In a finite system, the iteration has t
stop at some timeT, which reflects a characteristic length
the network, the maximal distance a signal can flow befor
reaches all nodes. The length scale is set by the ave
distance~in number of links! a signal can travel. The signa
pathway in a sparse directed random graph with only a
loops is approximately a branched polymer, where it
known ~see e.g.,@9#! that the average distance grows alg
braically, i.e.,T;cNg. We have fitted the constantsc andg
numerically to our data forK52 and findg50.32(3).

After removing thes(T) stable variables, the decimatio
procedure eliminates the leaves of the network, i.e., th
nodes with out degreeq(t50)50. This changes the out de
gree of the remaining variables. Therefore, this procedur
repeated until no more variables withq(t)50 are found. The
fraction Pl of leafs, direct and indirect, can be estimated
the self-consistent equation

Pl5 (
q51

`

P~quÑ,K̃ !Pl
q , ~3!

where Ñ5N3(12s) is the number of variables after re
moving theh stable ones,K̃ is the average in degree, an
P(quÑ,K̃) the distribution of the out degreeq given in the
Appendix. We solved Eq.~2! and~3! numerically, the result-
ing graph is also shown in Fig. 2, which is in very goo
agreement with our numerical results.

One of the important features of Kauffman’s model is t
intrinsic stability of critical Boolean networks. How doe
decimation affect this behavior? While the network decim
tion does not change the number and the length of li
cycles, the size of the basins of attraction has to be redu
because the state space is shrunken by orders of magni
To get a quantitative picture, we analyze the network sta
ity with respect to the inversion of one randomly chos
variable, after the state trajectory has reached a limit cy
The error probability, i.e., the probability to end up in a
different limit cycle compared to the undisturbed system,
shown in Fig. 3. If a limit cycle has not been found with
105 steps, the network is discarded. For the full network
observe the well-known stability, the probability to end up
a different limit cycle asymptotically approaches zero f
large lattices. By contrast, for the reduced network the e
probability grows slowly with the network size and the st
bility is essentially lost. This means, the tolerance aga
perturbations observed for Kauffman networks is mos
generated by the stable core; in most cases the pertu
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SVEN BILKE AND FREDRIK SJUNNESSON PHYSICAL REVIEW E65 016129
signal is ‘‘lost’’ in the stable core and the full network re
mains unaffected. It has recently been argued@10# that the
in-homogeneous, for example, scale-free,geometryof real
world networks is underlying the stability of these system
Here we find the opposite; stability is primarily generat
dynamically by the propagation@Eq. ~2!# of the stable core in
the networklogic. The homogeneous geometry plays only
secondary role; if just a geometric reduction of the netw
is performed, i.e., the leafs are removed@see the discussion
of of Eq. ~3!#, the error sensitivity is almost unchanged co
pared to the full network.

The decimation of constant variables from the netwo
enables us to probe a much larger fraction of the state s
for a given network. Therefore one may expect to get a be
estimate for the number of limit cyclesnc , which with the
commonly used method tends to be underestimated, bec
some limit cycles may have been missed due to the h
state space. By decimating the networks we can fully e
merate the state space forN<32 and hereby get an unbiase
estimate. For larger systems we use the standard method
1000 restarts on each of the reduced networks. Not unexp
edly we observe a small discontinuity in the curve at
point were the simulation scheme is changed. In Fig. 4
plot nc as a function of the network sizeN. We do not find
the quite often citedAN behavior for this observable. Rathe
we find a linear growth withN. A possible explanation for
the different results obtained in some earlier works may
the bias introduced by the standard method in combina
with lower computational power.

V. SUMMARY

The source of the remarkable error tolerance of criti
Kauffman model is identified as the ‘‘dynamics of the stab
core.’’ While this seems to be a contradiction in terms,

FIG. 3. The probability to be pushed out from a limit cycle b
the inversion of a randomly chosen variable. For the~full ! Kauff-
man network~dashed line! the error probability scales to zero fo
large lattices. This behavior is not changed if one only does a g
metric reduction of leafs~dotted line!. If the network is reduced to
its relevant variables~full line! the tolerance against small fluctua
tions in the state space is completely lost.
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quite nicely describes the percolationlike process, which
derlies the propagation of the ‘‘stability’’ signal. Startin
from the relatively few nodes with transition functions whic
do not at all depend on their inputs, the islands of froz
states grow in time by the interaction with the already sta
nodes. This process is only limited by the finite size of t
system. A small fluctuation in the state of the system w
most probably not propagate through the stable core
therefore in most cases has no effect. We demonstrate th
studying reduced networks, where most of the stable, ir
evant variables have been removed. The stability aga
small fluctuations for these networks is reduced by orders
magnitude and will probably go to zero for infinite network
It is interesting to observe that these effects are mostly dri
by the networklogic and not by the network geometry.

For the identification of the relevant variables we ha
developed a decimation procedure, which is based on ins
tion of the networks connectivity and logic. The relative
simple procedure works surprisingly well. The results for t
size of the stable core are in very good agreement with
values obtained by observing the dynamics of state-sp
trajectories in the full network@8#.

As a by-product we use the reduced networks to get
improved estimate for the number of limit cycles as a fun
tion of the network size. We find that the number of lim
cycles grows linearly withN, which is in sharp contrast to
the square-root behavior reported by other groups. E
though thisAN behavior was an interesting analogy wi
multicellular organisms~with approximatelyAN different
cell types for genomes with genome sizeN), our result does
in no way reduce the importance of Kauffman networks
an example of self-organized order.

o-
FIG. 4. The number of limit cycles as a function of the netwo

size for critical Boolean networks withK52,3,4 inputs. The solid
lines connecting the data points arelinear interpolations
with x2/degrees of freedom~DOF!51.5 (K52),1.6 (K53), and
1.4 (K54). A AN behavior fits the data much worse wit
x2/~DOF!511.5 (K52), 8.6 (K53), and 8.5 (K54). The
dotted line represents the bestAN fit for K52.
9-4
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APPENDIX: IN- AND OUT-DEGREE DISTRIBUTION

The reduced numberK̃ of inputs after the decimation de
scribed in Eq.~2! is the expectation value of the in degree f
the number of inputs from a nonstable variable. For t
inputs in the original network we get
01612
n.
n
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K̃5
1@12s~T!#12@12s~T!#2

12s~T!
5112@12s~T!#.

~A1!

The out-degree distribution for a node in the random netw
can be understood by enumerating the number of ways
NK links can be distributed over this node and theN21
remaining nodes, weighted by the corresponding probab
ties to choose the nodes

P~quN,K !5S 1

ND qS N21

N D NK2qS NK
q D . ~A2!
ure
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