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Phase diagram of the random field Ising model on the Bethe lattice
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The phase diagram of the random field Ising model on the Bethe lattice with a symmetric dichotomous
random field is closely investigated with respect to the transition between the ferromagnetic and paramagnetic
regimes. Refining arguments of Bleher, Ruiz, and ZagrejdoBtat. Phys93, 33 (1998], an exact upper
bound for the existence of a unique paramagnetic phase is found, which considerably improves the earlier
results. Several numerical estimates of transition lines between a ferromagnetic and a paramagnetic regime are
presented. The results obtained do not coincide with the lower bound for the onset of ferromagnetism proposed
by Bruinsma[Phys. Rev. B30, 289(1984)]. If Bruinsma’s estimate proves correct, this would hint at a region
of coexistence of stable ferromagnetic phases and a stable paramagnetic phase.
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I. INTRODUCTION [4], who calculated a lower bound for the onset of ferromag-
netic behavior. As Bruinsma’s argument rests on the differ-

The random field Ising moddRFIM) has been studied entiability of the density of the invariant measure of the
extensively in theonf1] as well as in experimen®]. The  RIFS, which was proved only for smdiland neaiT., there
one-dimensional mod¢b—16| can be reformulated as a ran- are two possible interpretations. Either Bruinsma’s bound is
dom iterated function systerfRIFS) for an effective field not true outside the proven region of validity and the transi-
[5,7—9. The reformulation leads to an iteration of first order tion from ferromagnetic to paramagnetic behavior takes
whereas standard transfer matrix methods lead to iteratgsiace at the smaller random field values found in our numeri-
function systems of second order. This considerable simplica| results, or there is a region of coexistence of stable fer-
fication allows deep insights into the effects of quenChermagnetic phases with a stable paramagnetic phase, |mp|y_
random fields on local thermodynamic quantities. ing a phase transition of first order in this region.

Being one dimensional, the Ising chain has no phase tran- The paper is organized as follows. After introducing the
sitions for finite temperature though. The RFIM on the Bethemodel and our notation in Sec. Il we present the improved
lattice, to the contrary, exhibits for not too high temperatureexact upper bounds for the onset of paramagnetism in Sec.
at least a phase transition from ferromagnetic behavior fofj|. |n Sec. IV we give three criteria to estimate the transition
small random fields to paramagnetic behavior for large field§ine between the ferromagnetic and paramagnetic regimes.
[3,4,17. The phase diagram is probably much rich#8].  The expectation value of the local magnetization is calcu-
For T=0 hysteresis effects have been found and investigateghted directly and we extract an estimate for the region of a
in detail [21]. stable ferromagnetic phase. We then study the average con-

The Bethe latticeCayley treg is uniquely characterized tractivity of the RIFS of the effective field. This leads to an
by the two properties that it is an infinite simple graph with estimate for the appearance of a stable paramagnetic phase
constant vertex degree and that it contains no loops. It is ofor increasing random field strength The third criterion is
order or degree if the vertex degree ik+1. The Bethe the independence of the effective field from boundary condi-
lattice of degreé&k=1 is the one-dimensional lattice and the tions. It also provides an estimate for the stability region of
Bethe lattice of degre&=2 the well known binary tree. the paramagnetic phase. The implications of our results in

Because the Bethe lattice contains no loops, the RFIM on theomparison to Bruinsma’s approach are discussed in detail in
Bethe lattice can be reformulated to(generalizef RIFS  the concluding Sec. V.

[3,4,19 for the effective field, as in the one-dimensional
model[7,9]. Therefore, the same powerful techniques as in

the one—dim(_ensiona! case can be applied to gain insight into Il. MODEL
the mechanisms driving the phase transition. Nevertheless _ _ _
the exact transition line in thérl,h) parameter plane is still The formulation of the RFIM on a Bethe lattice requires

not known. Recently, exact lower bounds for the existence o$ome notation for the underlying lattice. Bywe denote the

a stable ferromagnetic phase as well as exact upper boundst of vertices of the Bethe lattice addy,z) is the natural
for the existence of a stable paramagnetic phase were provedetric on the lattice given by the length of the unique path
[3]. We present an improved upper bound for the existence afonnectingy and z. Furthermore Vg:={y e V:d(y,Yyo) <R}

a stable paramagnetic phase based on this approach. Thelnotes the ball of radiuR around some arbitrarily chosen
bounds are still far from the region where the transition iscentral vertexy, and dVg:={y e V:d(y,yo) =R} its bound-
expected though. Therefore, we also develop several criteriary, the sphere of radiuR. In the following it will be useful

to detect the phase transition line numerically. It turns outo decompos#/ into two subtree&/" andV™~ with rootsy,
that the results obtained, while being consistent with eaclandz, in the way illustrated in Fig. 1.

other, disagree significantly with an early result by Bruinsma Introducing the notationS(y):={ze Vg, :d(y,z)=1}
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FIG. 1. Bethe lattice of degree
k=2. The solid lines mark the part
of the lattice denoted by* and
the dashed lines the part denoted
by V™. The roots of the two sub-
Yo v trees are denoted by, and z,,
respectively. The thick line shows
the unique path from a vertex
yedVs at the boundary to the
central vertexy, to illustrate the
labeling along the path used in
Sec. Il

Jeemucnmacvcnun

for the successors gfe 9V, the Hamiltonian of the RFIM  with boundary condition{?=x for y e 3Vg. The func-

on the Bethe lattice reads tions A andB are given by
A(x)=(2B) tIn[coshB(x+J)/coshB(x—J)], (5)
Hr{Sylyevy) =~ ; Js;s,— ; hys,— EN xPs, |
sy e YerR " B(x)=(28) tIn[4 coshB(x+J)coshB(x—J)].  (6)

Note that the upper inde$® of the effective field refers to
wheres, denotes the classical spin at vertetaking values  the radius of the sphere where the boundary conditions are
*1, Jis the coupling strengtty, is the random field at site fixed. The partition function in forng3) is a partition func-

y, and xtyJ is the field at the boundary encoding the chosenjon of one spins,, in two effective fie|dsx§/'§) andA(xgs))

poundary condit.ions. we restrict.ours.elves to independen(Nhich are both determined through RIES. The sum in Eq.
|Qent|cglly d|str|but9d, symmetric d|chotomous' random(4) implies that, althoughA’| <1 for nonzerdr, the RIFS is
f!glds, |.e.,hy=th with probability 1/2. The canonical par- not necessarily contractive, in contrast to the one-
tition function dimensional case. A loss of contractivity indicates a phase
transition, as is explained in more detail below.
Zg= 2 exd—BHg(s,D], 2 Since they are functions of the random fiels the ef-
{sylyevy fective fields are random variabléRVs) on the random field
probability space and iteratiofd) induces a Frobenius-
where 3= (kgT) ! is the inverse temperature, can be refor-Perron or Chapman-Kolmogorov equation for their probabil-
mulated by a method first introduced by Ruje7] for the ity measure:
one-dimensional RFIM, resulting in
1
W)= 2 5( I A#v§R>)<X—hy>, Y
Zr= 2 ) exps [X§/S)+A(X(ZOR))]SyO+ \;{ }B(X§/R)) , hy==h zeS(y)
Sy ==+ ye y
. o (3)  Wherell* denotes the convolution product of measupes
some measurable se¢t—hy:={x—h,|xe X}, andA, is the
where the effective fields{® are determined by the gener- induced mapping of A on measures, i.e.,Auu(X)
alized RIFS =u(A"Y(X)). The measures of the effective fields at the
boundary are fixed by boundary conditions, e.g.,»@@
x(yR)= S AR+ h, " 6)(3, the Dirac measure ;xe Any other choice of the RVs

2ES(y) x$ is also possible, though.
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It was proved in Ref[3] that the existence of limiting gy*0 andg, we use the shorthand notatiop$ andg~. Note
Gibbs measures with finite restrictions compatible with EQsinat the dependence of the effective fields on the random
(1) and (2) (cf. Ref. [20]) implies the weak convergence of fie|q configurations is suppressed in this notation.
the RVs X§/R), i.e., the weak convergence of the measures |nspired by the proof for the existence of a unique para-
v{? to measures, in the limit R—c. For homogeneous magnetic phase for the RFIM on the Bethe lattice of degree 2
boundary conditions®=x® for all yeV, the measureg,  for almost all random field configurations ane<k<3 in

are all identical and will be denoted by Ref. [3], we investigate the expectation value
Before we can present our results on phase transitions in
the RFIM on the Bethe lattice some more properties of RIFS Ei(lg™—g7]). 9

(4) and the functionA are necessanA(x) is a monotonic

function in x. For a g|ve2 random field configuration e monotonicity of the composite functioﬂrﬁg,}R implies
{hy}yev;—{(fyh}yev;, oy==*, we denote the composite that, if this expectation value is zero for the two extremal
function mapping the effective fields Vg, ; to the effec-  poundary conditions chosen above, then it is zero for any
tive field atyo by f,, . Here,{o}r is the tree of®"*—1  two sets of boundary conditions. This then implies that the
symbols = characterizing the configuration of the randomRV g, is independent of the boundary conditions for almost
field andk is the degree of the Bethe lattice. These compositeill random field configurations. The goal of this section is
functions are monotonic in the sense thaxiif;x)’,b for all  therefore to find a criterion for the random field strenbth
yedVi, thenf{U}R({xg’})Bf{U}R({xg,b}). In the same way which implies that expectation valy®) is zero. Because of
they are monotonic with respect to the random field,the monotonicity of the composite functioﬁg,}R we have
froy (9D = (X)) if oy=0, for all ye V. Further-  g+=g~ and thus|g* —g~|=g* —g~. Therefore, we con-
more, there exists an invariant interat[x* ,x* ] with the  sider

property that if x,el for all ye dVg., then also
fio({Xy}) el for any random field configuratiofo}g.
Here,x* andx’ are the fixed points of the composite func-
tions for homogeneous-} and homogeneoust+} configu-

E{a}(g+—g‘)=J dnp({oe})(g"—9")

rations of the random field, respectively. Sin@&(x) => ~ dp({ahHlg"({a})
=—A(—X), these fixed points are symmetric; = —x7 . {o}r J{olr={0}r
-9 ({obl, (10

I1l. UPPER BOUNDS FOR THE EXISTENCE OF A
UNIQUE PARAMAGNETIC PHASE where 7 is the product measure of the probability measures
) ) of the random field$,=oyh. In the second step the inte-
In this section we present an exact upper bound for theation was split up into a sum of a finite number of integrals
existence of a unique paramagnetic phase in terms of th& er sets of configurations with fixed symbdls} in Vg
random field strength. This bound improves earlier results and arbitrary{@} e V\Vg. Using recursion relatiorid) the

in Ref. [3]. . ) ) L integrand can be expressed as a function of the effective
Throughout this section we will use effective fields fields {g: 1, . »v. on the boundary o¥/g:
y JyedVg )

:=A(X,) in close analogy to the notation in R¢8]. This has
some advantages in the calculation, which will become clear

below. lteration(4) for g, reads o {Th -9 ({ThH =Tz, {9y lycav,)
gy for ye dVg, T .9y byeavy)
0)"'= Al Y gR+n otherwise ® ¥
ze S(y) gz y ! :)/EEBVR agyf{}}R_l({éz}Ze HVR})
and we denote the composite functions mapping the effective X (g; —0y). (11)

fields {gy}ycov: . to gy by 7{0} . They have the same
S TR+l 70 R . . In the second step the mean value theorem has been used for
monotonicity properties as the composite functidpg _. ~ _ . .
. . R -t andé,e[g, ,g, | are appropriately chosen. The partial
In order to prove the existence of a unique paramagnetl((:j R in Eq. (11 bounded f b b
phase it is sufficient to show that the Ryg do not depend eg')’f‘t',\fs)s in Eq. ( 2(R)are bounded from above by
on the boundary condition@?} in the limit R—o for any HI=0AZ|(y)max’ where Az(Y)max 1S AN UPPET bound on the
choice of the boundary conditions. We use the notagipn ~maximum ofA’(x) for xe[g, .g;l(y)], the interval of pos-
for the effective field atyeV for homogeneous boundary sible values of the effective field at the verticgéy) along
conditionsg?zgj in the limit R—c andg, for the effec- the unique path frony to y, (see Appendix subsection 1 for
tive field resulting from the corresponding negative boundarydetaily. This bound depends only di&}r={c}g and hence
conditionsg?zg’i whereg} =A(x}) andg* =A(x*). For is independent of the integration. Thus,
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1 kpT. 2
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temperature kgT'

FIG. 2. Exact upper bound for the existence of a stable paramagnetic phase on the Bethe lattice df=d2dgsdid line). The bound
was obtained as described in the text with all random field configuratioRs=dt The dashed line is a similar upper bound obtained by
considering a sample of {0ealizations of the random field &=11 using complete surfi3). Close toT=0 the problem is numerically
unstable; results are presented onlyTer0.1. The large dot was obtained fr=23 using Eq(15) and 16 random field configurations. In

the shaded region the result of RES] for the existence of a unique paramagnetic phase applies. The gray dashed lines are the ferromagnetic

and the antiferromagnetic lin¢4] (cf. also Ref[3]) and the gray dash-dotted line is Bruinsma’s lower bound for the existence of a stable

ferromagnetic phasgt]. (J=1.)
R-1
Eagt-g)=> >

{o1g yeavg =0

X(dy —0y)-

AR f dn({3})
L PN A
(12

The remaining integral for eachis bounded from above by
27 VRl wherelig=max, v t,(gy —0,) (see Appendix
subsection 2 We therefore obtain

R—

Eo=Eiy(g"—g7)= > 27Vl > H

{o}r yedVg 1=0

1(R)
Z|(y)

(13
The finite sums commute and &g, _ is obtained with

homogeneous boundary conditions the suigs,, are iden-
tical for all ye Vg, such that the sum over can be re-

placed by a factofgVg| =kR, yielding
Eo=KEg, (14
where
R-1
K=, 2~ |VR||<RH AZI o (15)

{o}r

is uniformly bounded by g% for all reN and therefore

K'E,.g—0 for r—o. By translation symmetry this result
holds for allg, with yeV. As [g"—g~|=0 the vanishing
expectation even impligg™* —g~|=0 for almost all realiza-
tions{o} of the random field.

The reason for using, instead ofx, is now easily ex-
plained. If we used the effective fields instead ofg, the
product over derivatives oA would be froml=1 up toR.
This gives a less precise estimate becayseith y e 3Vg is
less restricted tham, and therefore the bound fdk’(x,)

with y € ¢V is greater than the one faﬁr’(xyo).

To apply the criterion obtained above we evaludteah a
computer. The calculation time is proportional to the number
of random field configurations oviz and thus grows asymp-

totically for, e.g., k=2, as 2" Therefore, the calculation
was restricted t&R<4 (for R=5 each data point in an array

of 20X 40 points would take about 3 days on a Pentium I
350 MH2). The solid line in Fig. 2 shows the upper bound
for the existence of a unique paramagnetic phase obtained
for R=4.

To estimate the results fdR>4 we relied on statistical
methods and sampled random field configurations. When do-
ing so, it is saving time not to exploit the symmetry and to
use Eq.(13) instead of Eq(15). The resulting bound foR
=11 and a sample of faandom field configurations is the

Because of the translation invariance of the Bethe latticalashed line in Fig. 2.
these considerations can be applied recursively. This implies As the bound obtained depends systematically on the ra-
Fo<K"E,.g. If the factorK is less than 1 for any parameters dius R it is tempting to try to extrapolate tR=. For T

(T,h) we immediately obtaitky=E;,,(|]g" —g~|)=0 ask, .5

=1.2 we obtained an extremely good fit for the data sampled
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0 1 kpTe 2
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0 1 kpTe 2

temperature kgT

FIG. 3. Estimates for the transition line between para- and ferromagnetism. The dashed line separates regions where the average
magnetization decreases or increases with the distance from the boundary for homogeneous boundary oeeiti®hsobtained by
comparing the configurational averages over4P up to 64x 10° samples at distances 9 and 13 from the boundary. The dotted line gives
the boundary of the region in which iterati¢4) is contractive on the average above and noncontractive below. It was obtained by sampling
10° field configurations and evaluating E@.8) with R=13 andR,;=4. The solid line was obtained using E&3) at R=4. The big dots
were obtained by evaluating E24) for R=20 and between P0and 2.4< 1P random field configurations. The gray lines are as in Fig. 2.

The gray shaded region marks the region in which all our numerical rgguttsiding considerably more than shown explicitly heaee
contained(k=2,J=1)

atR=5, ... ,23usingh,(R)=a+bR°. However, the result where(-) denotes the thermodynamic averadg,, is the
was a=h¢(«)~0, which is not realistic. Other fits, e.g., expectation value with respect to all random field configura-
omitting data for smalR or using different functional forms, tions, andv is the limit measure of the effective field for
yielded values betweer-0.9 and 0.45. We suspect that a homogeneous boundary conditioﬁi%xb forallyeV in the
naive choice of the functional form &f;(R) does not allow limit R—c. To approximater we generated a large number
realistic extrapolation results for these bounds in the case af random field configurations on a finite regivig and cal-

the Bethe lattice. culated the corresponding effective fiek@?. The values

obtained were then sorted into small boxes of lengtfihe
resulting histogram was used as an approximation of
A. Direct calculation of the magnetization vy (b)) =i, whereb; is theith box. Explicitly, this yields

Even though the bounds presented in the preceding sefe" the magnetization
tion considerably improve former analytical results, they are
still far away from the region where the phase transition from m%z E viv; tanhB(x+g(y))), (17)
paramagnetic to ferromagnetic behavior is suspected. In Ref. i
[4] Bruinsma claimed to have found a lower bounchifor
the existence of a ferromagnetic phase which is in the relwhere the pointsi; andy; were chosen as the centers of
evant parameter region, cf. Fig. 2. To check this bound and t§oxesi andj, respectively.
get a good numerical approximation of the transition line we Assuming that the magnetization in the center varies
developed several numerical criteria for the existence of &nonotonically with the radiuR of the finite volumeVg, one
ferromagnetic phase or the existence of a stable paramayould expect to observe a monotonically increasing magne-
netic phase. tization in the ferromagnetic regime and a monotonically de-
The most obvious criterion for the existence of a ferro-Creasing magnetization in the paramagnetic regime for in-
magnetic phase is a nonvanishing expectation value for thereasingR. Therefore, the dashed contour in Fig. 3, which
magnetization for small but nonzero boundary conditionsdivides the regions in which the numerical estimates of the
The expectation value for the local magnetization at the spifinagnetization are increasing or decreasing with increasing
in the center is given by R, is a good estimate for the transition line. This type of
estimates depends only slightly on the chosen boundary con-
dition and iteration depth but the results obtained signifi-
cantly disagree with Bruinsma’s bound.

IV. ESTIMATES FOR THE TRANSITION LINE

m==E{o}<Syo>=f dv(x)dv(y)tant B(x+g(y))] (16)
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B. Average contractivity of the RIFS C. Independence of the effective fields from boundary

For zero boundary conditions there is a paramagnetic state conditions

for any temperaturd and random field strength The sta- A related criterion for the existence of a stable paramag-
bility of this state is tied to the average contractivity of RIFS netic phase is the independence of the effective field from
(4). If it is globally contracting the paramagnetic state isboundary conditions. As in Sec. Il we use the effective fields
stable and unique. If it is at least contracting on the averagg{® rather thanx{®. We consider boundary conditions
for some interval around zero, the paramagnetic phase @S}yeﬁVRv taking values in a small intervdl—g® g®].

stable but the existence of other stable phases is not exclud%q1rough the iteration with Eq4) the effective ﬁeld@(R) are
a priori. The investigation of the contractivity of the RIFS functions of the boundary co.nditions Y

was first proposed in Ref17].

We generated a s&ir of random field configurations g R =7 ({gb}) (20)
{o}r on a finite ballVg and calculated the image of a small y o Hodrona RS2
initial interval 1°=[ —xP xP]. Because of the monotonicity
of f{U}R the image of this interval at vertey is I,

=[x{P(=x") x{P(x?)]. To estimate the average contractiv-
ity of the RIFS we compared the average length
KRS, Ve, |1y at the verticeg/ e 9V, to the lengthlly |

where the functiorﬁ{g}Hfl(y) haskR~" arguments fory

e dV, and is the identity iR=n. For simplicity and without

loss of generality we restrict the following discussion to

g%). The boundary conditions can be Writteng{’sgbgg

) ] where g§ takes values i —1,1]. To investigate how the

at the central vertey,. As the effective fields at ally  gffective fields depend on the boundary conditions we con-

< JVg, contribute to the effective field aty, we consider  gjger the expectation value of the derivative offy with

the average interval lengths at verticesavir, instead of  respect tay®, thestrengthof the applied boundary condition,

individual values. To minimize the influence of the some-

what arbitrary choice of the initial interval the comparison

was performed foR;<R. {otr-1
There are two ways of performing the comparison. Either e1

Zzliljllr;tezv;rjges Qver the lengthg Z-it allye dVg,, then_ . B I A’(x(zFf>)(xb)) 21

quotient df, | and this average length in yeavg ' R1i=p 1y
dVr,, and averages over the samplg of random field con-

figurations at the end,

d
(R) F b ab
agP o | = E{U}R,ly ;ﬂ:VR dg,Hotn ,({92}zc av) By

Wherexgﬁ)y)(xb) denotes the effective field along the unique

path fromy to y, with homogeneous boundary conditions
< ||y0| > 18 xngfl(gb). Now one can estimate, as in Appendix A1,

1/KkRE, oy |l , o
yeve 1y s A’ x5, (X J=minfA’ (max{x;}, (x"),0}),

R (y

or one first averagell,| over allye #Vg and all random A" (min{xiTy, (—x°),01)}
y 1 |
field configurations as well a,,| over the same random .
field configurations, and calculates the quotient at the end, ::Aél((y))max(Xb). (22)
<||y s As the boundary conditions are homogeneous this implies
0 R
) (19) that
llleEyedVRl||y|>2R Ro1
d
Bpoto s 3m 9| <K B TT ALS (xP). (23

The two averaging proceduré8) and (19) yield identical tlr-1]dgP Yo tlr-1 A0 max

results and thus obviously are equivalent. ] ) ) S

If the images of the initial interval contract on the averagelf the right-hand side vanishes fét— the effective field
for a finite iteration of Eq(4) we expect complete contrac- 9y, 1S on the average independent of boundary conditions,
tion to length zero for infinite iteration. This corresponds to ataking values in[—g®,g°]. By determining the parameter
stable paramagnetic phase. Therefore, the contour ifTthe  region in which the right-hand side of E(23) vanishes for
parameter plane at which the average quotient of ban&—o°, we therefore get an upper bound on the emergence of
lengths switches from greater than 1 below to less than & stable paramagnetic phase. As our calculations are limited
above is an estimate for the stability region of the paramagto finite R, convergence to zero is assumed if the obtained
netic phase. The resulting estimated transition line is shownalues of Eq(23) for R>0 are smaller than 1, which is the
for R=13, R; =4, the initial intervall>=[ —0.01,0.0], and  value forR=0.
10° random field configurations as the dotted line in Fig. 3. For the Bethe lattice of degrde=2, radiusR=4, and
Again, the agreement of the obtained results for varioug)®=0.01, the right-hand side of E(23) was evaluated. The
boundary conditions and iteration depths is satisfactory butontour between values smaller than 1 above and greater
there is a large deviation from Bruinsma’s line. than 1 below is shown as the solid line in Fig. 3. Ror4

016127-6



PHASE DIAGRAM OF THE RANDOM FIELD ISING . .. PHYSICAL REVIEW B55 016127

we again relied on sampling random field configurations in- 1. + - + - + - + - 2. + - -+ + -+ -
stead. The resulting transition lines for various iteration
depths and boundary conditions are comparable to the results
of the preceding two sections and are all contained in the
gray region in Fig. 3.

If we consider the derivative of the effective fieldyatin + +
the case of boundary conditiog8=0 we have

+ -+ - + -+ -

dgy R-1 ® 3. + -+ -4 -+ - 4, + -+ -+ -+ -
E{“}R—ld_gb_({o})ZE{”}Rfly;avR ,HO A’ (%) (101))- . . . -
(24
+ - - +

If this derivative does not tend to zero for some parameters

(T,h) and R—co there is no stable paramagnetic phase. By + +

determination of the parameter region in which this is the . , .
FIG. 4. Four equivalent chesshoard configurationRa#4. The

case we ge_t a lower_bound on_the emergence of a Stableécond configuration is obtained from the first by permutation of

_paramagnetlc phase. The numerical results are the large dc{v?o subtrees of a vertex in the spheré¥,, the third one by per-

in Fig. 3. mutation of two subtrees of a vertex in the sph&vi, and the last

one by permutation of the two subtrees of the root itself.
V. DISCUSSION
In order to interoret the di ies bet Brui Jorigin. Proving differentiability of the density of the invari-
| - . R
pretthe discrepancies between bruinSma 3yt measure in a neighborhood of =T, andh=0, Bruin-
result and our numerical investigations we briefly reviewg.,- -qncluded that an asymmetric position corresponds to

Bruinsma’s argumeri#4] in our language. asymmetric maxima of of nonzero weight and therefore to
The probability measures, of the effective field, are 14 existence of a ferromagnetic phase.

fixed points of the Frobenius-Perron equation, &9. They The symmetric position corresponds to complete contrac-
can be approximated by finite iterations of some initial prob-jon of the most degenerate bands such that the asymmetric
ability denswes(boundary conditionswy forye dVg. Ifthe  poundary condition has no effect in the limit of infinite itera-
support ofvy is a subset of the invariant intervilthe sup-  tion. The asymmetric position, on the other hand, occurs if
port of vy is a subset of the images bby functionsf,, . the most degenerate bands do not completely contract. Seen
These images are calld@nds The left and right boundaries this way the argument above is our criterion of average con-
of the bands are the effective fields corresponding to homatractivity of the RIFS in Sec. IV B except that it is restricted
geneous boundary conditioné}zxﬁ and x?zxi for y  to the contractivity of one specific band instead of the aver-
e dVg, respectively. The investigation of the structure of theage contractivity.

set of bands has proved to be a powerful tool in the treatment There are two problematic points in the reasoning above.
of the one-dimensional random field Ising mof@l-16]. In  First, it is not clear whether the location of local maxima in
contrast to the one-dimensional case, the bands are high® differentiable measure density really is given by the most
degenerate here, i.e., different configurations of the randorflegenerate bands. For smhlthis actually seems not to be
field result in the same band. This is due to the invariance othe case; see Fig(&. As the maxima are at h and there-

the model with respect to permutations of subtrees for homofore close to zero for smal, it is difficult to argue based on
geneous boundary conditions. The most degenerate banfigmerical data though. The example in Figb)5shows,
correspond to the twohessboaraonfigurationgsee Fig. 4  however, that the maximare present for sufficiently largh.

of the random field with+h or —h at y,, respectively. Secondly, the differentiability of the invariant measure
There are 8 '~ equivalent random field configurations in density has been proved only in a neighborhoodTefT

the case of the Bethe lattice of degiee2 and radiusR. As andh=0 whereas for largé or smallT the measure density

) .  ooR_q _pis clearlynot differentiable. It is unclear whether it is dif-
the total number of configurations =2 the most de ferentiable in the region of the lower bound; see Fign)5

. RAl_1,m2R—1_ ~—oR-1
generate bands have a weight of 2~%/2°""*=2 The disagreement of our numerical work with Bruinsma’s
~1/yN. The bands with the least weight are the bands corfower bound therefore allows two interpretations. Either Bru-
responding to homogeneoush or —h random field con- insma’s bound is not true outside the proven region of valid-
figurations. They have the weightNl/ The weights of all jty because the most degenerate bands are not a sufficient
other bands are distributed between these values. indicator for the symmetry o when the measure density is

Bruinsma used boundary condition§= &,» for somex®  not differentiable; or in the region between our upper bounds
e R and iterated Eq(7). He considered only the lowest and for the existence of a stable paramagnetic phase and Bruin-
highest weight terms corresponding to the least and the mosima’s lower bound for the onset of ferromagnetism a stable
degenerate bands. The highest weight terms obey a recursiparamagnetic phase coexists with théso stablgferromag-
relation. The fixed points of this relation can be calculatedhetic phases. This would imply the existence of a first order
and it is straightforward to determine for which temperaturephase transition and hysteresis loops depending on the
T and random field strengthsthey are symmetric about the strength of the random field, in contrast to the hysteresis at

016127-7



THOMAS NOWOTNY, HEIKO PATZLAFF, AND ULRICH BEHN PHYSICAL REVIEW E65 016127

a) h=103 b) h = 0.961159
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FIG. 5. Approximations of the invariant measure dengitpbtained from fourfold application of Eq7) to the equipartitionp®
=|1|711, on the invariant interval. There are no maxima ath in (a) whereas the two maxima ath in (b) are already so pronounced that
differentiability of p is questionable. The random field strengttibihwas chosen such that the poiifith) is very close to Bruinsma’s bound.
(k=2,8=3=1)

T=0 [21], which depends on the homogeneous offset of thavhere e,=A"1(5,), z(y) e dV, are the vertices along the

random field. uniqgue path fromy to y, (cf. also Fig. 3, and
In this paper we improved exact upper bounds for the{a}r_, |[z(y)] are the signs of the random field configu-
existence of a unique paramagnetic phase in Sec. lll, whickation on the subtree of depf—1—1 with root z,(y). The

is a further step toward the exact determination of the phasgrmsf ({e2}2eav,) are effective fields(?) | cor-
diagram of the RFIM on the Bethe lattice. Furthermore, we, @1l U2l ze v 2t

g responding to boundary conditiofis® =&2zc vy We write
presented numerical work leading to various estimates for (R) 1ot R)
the actual phase transition line. The direct calculation of thé(z|(y)(8) for these fields and; (,)(x™) andx; ) (x") for the
expectation value of the local magnetization in Sec. IV A, thecorresponding effective fields with boundary conditiods
investigation of the average contractivity of RIS at large :X; and x’z’:x; for ze V. We can then estimate
iteration depths in Sec. IV B, and the numerical calculation

of the derivative of the effective field with respect to the  A’(x R()y)(g))

strength of the boundary condition in Sec. IV C provided

estimates for the stability region of the paramagnetic phase. <maxA’ (xZ i (e"))|eselX, Xy 1,ze IVR}

All results are in good agreement while all disagree with the !

earlier result of Bruinsm§4]. This disagreement motivates =maxA’(x)|xe[x}) (X~ )XY (y)(x+)]}

further investigations into whether the bound for the onset of

ferromagnetism given in Reff4] needs to be reconsidered or =min{A’ (ma>{x<R) LH(X7),00),A (min{x{} (y)(x+),0})}.
whether there really is a coexistence region for stable ferro-

magnetic and a stable paramagnetic phase. (A2)

In the last step we used that the maximumAdfin an inter-
ACKNOWLEDGMENTS val[a,b] is ataif a=0, atb if b<0, and at zero in all other
cases. As the effective fields can never be larger #faand
The work was partially supported by the Cusanuswerkyever smaller thanx* we can for ze JVg estimate
and the DFG(Graduiertenkolleg “Quantenfeldtheorig” x; =h,+kKA(X*) :X§R+1)(Xt) and x;shz+ KA(X")
=x{F*1(x*). This allows us to replace” andx~ in the

argument of x®. in Eq. (A2) and with

APPENDIX z(y)

(R) [ (R+L)ryx\7 (RT1) %
1. Bound on the partial derivatives in Eq. (11) le(Y)[Xy (x3)] Xz (x) we get
The partial derivatives in Eq11) are given by A’ (Xz(y>(a))<m|n{A (ma)({x(zliz;-)l)(xt),o})’
R-1
T ’ (R+1)
(9gyf{"&}R_l({5z}ZEavR}): |=1_[o A (Fzyn 1 [z A’ (minx; () (x}),0n}
X ({SZ}ZE (NR))v (A1) = ’A;I(&;max. (A3)

016127-8



PHASE DIAGRAM OF THE RANDOM FIELD ISING . ..

Inserting Eq.(A3) into Eqg. (A1) then yields
R-1
F 1(R)
9 f o1 (0dzea) =< I AL

(A4)

2. Bounds on the integrals in Eq.(12)

Using the independence of the RWg of the signs
{o2}2evq(y and denoting the number of vertices Wy by

[VRl, i.e.,|Vg|=(kR*1=1)/(k—1), one obtains

dr({a)) (gl —go
[, e g)

:zf\vwlﬁ dn({ah)(gy —g,)
oy=oy

=27 VRl 9y — 0, 5, =0y). (A5)

The functionA is antisymmetric, which implieg;({—g})
=—9y ({o}) and therefore

PHYSICAL REVIEW B5 016127
E(gy —0yoy=+)=F(g, —g,|oy="),  (A6)
implying

E(gy —g9,)=3k(gy —g, loy=+)+3E(g, —9, |oy=—)

~E(g; ~ gy |oy=0) (A7)
for anyoe{—,+}. Setting
Er:= maxliy,,(gy — 9, [5,=0y)
yedVR
= maxl,,(gy — 9, ), (A8)

yedVR

this finally yields

[ an@he;-g)=2 M. 89
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