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Phase diagram of the random field Ising model on the Bethe lattice
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The phase diagram of the random field Ising model on the Bethe lattice with a symmetric dichotomous
random field is closely investigated with respect to the transition between the ferromagnetic and paramagnetic
regimes. Refining arguments of Bleher, Ruiz, and Zagrebnov@J. Stat. Phys.93, 33 ~1998!#, an exact upper
bound for the existence of a unique paramagnetic phase is found, which considerably improves the earlier
results. Several numerical estimates of transition lines between a ferromagnetic and a paramagnetic regime are
presented. The results obtained do not coincide with the lower bound for the onset of ferromagnetism proposed
by Bruinsma@Phys. Rev. B30, 289~1984!#. If Bruinsma’s estimate proves correct, this would hint at a region
of coexistence of stable ferromagnetic phases and a stable paramagnetic phase.
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I. INTRODUCTION

The random field Ising model~RFIM! has been studied
extensively in theory@1# as well as in experiment@2#. The
one-dimensional model@5–16# can be reformulated as a ran
dom iterated function system~RIFS! for an effective field
@5,7–9#. The reformulation leads to an iteration of first ord
whereas standard transfer matrix methods lead to iter
function systems of second order. This considerable sim
fication allows deep insights into the effects of quench
random fields on local thermodynamic quantities.

Being one dimensional, the Ising chain has no phase t
sitions for finite temperature though. The RFIM on the Be
lattice, to the contrary, exhibits for not too high temperatu
at least a phase transition from ferromagnetic behavior
small random fields to paramagnetic behavior for large fie
@3,4,17#. The phase diagram is probably much richer@18#.
For T50 hysteresis effects have been found and investiga
in detail @21#.

The Bethe lattice~Cayley tree! is uniquely characterized
by the two properties that it is an infinite simple graph w
constant vertex degree and that it contains no loops. It i
order or degreek if the vertex degree isk11. The Bethe
lattice of degreek51 is the one-dimensional lattice and th
Bethe lattice of degreek52 the well known binary tree
Because the Bethe lattice contains no loops, the RFIM on
Bethe lattice can be reformulated to a~generalized! RIFS
@3,4,19# for the effective field, as in the one-dimension
model @7,9#. Therefore, the same powerful techniques as
the one-dimensional case can be applied to gain insight
the mechanisms driving the phase transition. Neverthe
the exact transition line in the~T,h! parameter plane is stil
not known. Recently, exact lower bounds for the existence
a stable ferromagnetic phase as well as exact upper bo
for the existence of a stable paramagnetic phase were pr
@3#. We present an improved upper bound for the existenc
a stable paramagnetic phase based on this approach. T
bounds are still far from the region where the transition
expected though. Therefore, we also develop several cri
to detect the phase transition line numerically. It turns
that the results obtained, while being consistent with e
other, disagree significantly with an early result by Bruins
1063-651X/2001/65~1!/016127~9!/$20.00 65 0161
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@4#, who calculated a lower bound for the onset of ferroma
netic behavior. As Bruinsma’s argument rests on the diff
entiability of the density of the invariant measure of t
RIFS, which was proved only for smallh and nearTc , there
are two possible interpretations. Either Bruinsma’s bound
not true outside the proven region of validity and the tran
tion from ferromagnetic to paramagnetic behavior tak
place at the smaller random field values found in our num
cal results, or there is a region of coexistence of stable
romagnetic phases with a stable paramagnetic phase, im
ing a phase transition of first order in this region.

The paper is organized as follows. After introducing t
model and our notation in Sec. II we present the improv
exact upper bounds for the onset of paramagnetism in S
III. In Sec. IV we give three criteria to estimate the transiti
line between the ferromagnetic and paramagnetic regim
The expectation value of the local magnetization is cal
lated directly and we extract an estimate for the region o
stable ferromagnetic phase. We then study the average
tractivity of the RIFS of the effective field. This leads to a
estimate for the appearance of a stable paramagnetic p
for increasing random field strengthh. The third criterion is
the independence of the effective field from boundary con
tions. It also provides an estimate for the stability region
the paramagnetic phase. The implications of our results
comparison to Bruinsma’s approach are discussed in deta
the concluding Sec. V.

II. MODEL

The formulation of the RFIM on a Bethe lattice requir
some notation for the underlying lattice. ByV we denote the
set of vertices of the Bethe lattice andd(y,z) is the natural
metric on the lattice given by the length of the unique pa
connectingy and z. Furthermore,VRª$yPV:d(y,y0)<R%
denotes the ball of radiusR around some arbitrarily chose
central vertexy0 and ]VRª$yPV:d(y,y0)5R% its bound-
ary, the sphere of radiusR. In the following it will be useful
to decomposeV into two subtreesV1 andV2 with rootsy0
andz0 in the way illustrated in Fig. 1.

Introducing the notationS(y)ª$zP]VR11 :d(y,z)51%
©2001 The American Physical Society27-1
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FIG. 1. Bethe lattice of degree
k52. The solid lines mark the par
of the lattice denoted byV1 and
the dashed lines the part denote
by V2. The roots of the two sub-
trees are denoted byy0 and z0 ,
respectively. The thick line shows
the unique path from a vertex
yP]V3 at the boundary to the
central vertexy0 to illustrate the
labeling along the path used i
Sec. III.
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for the successors ofyP]VR , the Hamiltonian of the RFIM
on the Bethe lattice reads

HR~$sy%yPVR
!52 (

yPVR21
zPS~y!

Jsysz2 (
yPVR21

hysy2 (
yP]VR

xy
bsy ,

~1!

wheresy denotes the classical spin at vertexy taking values
61, J is the coupling strength,hy is the random field at site
y, and xy

b is the field at the boundary encoding the chos
boundary conditions. We restrict ourselves to independ
identically distributed, symmetric dichotomous rando
fields, i.e.,hy56h with probability 1/2. The canonical par
tition function

ZRª (
$sy%yPVR

exp@2bHR~$sy%!#, ~2!

whereb5(kBT)21 is the inverse temperature, can be ref
mulated by a method first introduced by Ruja´n @7# for the
one-dimensional RFIM, resulting in

ZR5 (
sy0

561
expbH @xy0

~R!1A~xz0

~R!!#sy0
1 (

yPVR\$y0%
B~xy

~R!!J ,

~3!

where the effective fieldsxz
(R) are determined by the gene

alized RIFS

xy
~R!5 (

zPS~y!
A~xz

~R!!1hy , ~4!
01612
n
t,

-

with boundary conditionsxy
(R)5xy

b for yP]VR . The func-
tions A andB are given by

A~x!5~2b!21 ln@coshb~x1J!/coshb~x2J!#, ~5!

B~x!5~2b!21 ln@4 coshb~x1J!coshb~x2J!#. ~6!

Note that the upper index(R) of the effective field refers to
the radius of the sphere where the boundary conditions
fixed. The partition function in form~3! is a partition func-
tion of one spinsy0

in two effective fieldsxy0

(R) andA(xz0

(R))

which are both determined through RIFS~4!. The sum in Eq.
~4! implies that, althoughuA8u,1 for nonzeroT, the RIFS is
not necessarily contractive, in contrast to the on
dimensional case. A loss of contractivity indicates a ph
transition, as is explained in more detail below.

Since they are functions of the random fieldshy , the ef-
fective fields are random variables~RVs! on the random field
probability space and iteration~4! induces a Frobenius
Perron or Chapman-Kolmogorov equation for their probab
ity measure:

ny
~R!~X!5 (

hy56h

1

2 S ) *
zPS~y!

A#nz
~R!D ~X2hy!, ~7!

whereP* denotes the convolution product of measures,X is
some measurable set,X2hyª$x2hyuxPX%, andA# is the
induced mapping of A on measures, i.e.,A#m(X)
ªm„A21(X)…. The measures of the effective fields at t
boundary are fixed by boundary conditions, e.g., asny

(R)

5dx
y
b, the Dirac measure atxy

b . Any other choice of the RVs

xy
b is also possible, though.
7-2
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PHASE DIAGRAM OF THE RANDOM FIELD ISING . . . PHYSICAL REVIEW E65 016127
It was proved in Ref.@3# that the existence of limiting
Gibbs measures with finite restrictions compatible with E
~1! and ~2! ~cf. Ref. @20#! implies the weak convergence o
the RVs xy

(R) , i.e., the weak convergence of the measu
ny

(R) to measuresny in the limit R→`. For homogeneous
boundary conditionsxy

b[xb for all yPV, the measuresny

are all identical and will be denoted byn.
Before we can present our results on phase transition

the RFIM on the Bethe lattice some more properties of R
~4! and the functionA are necessary.A(x) is a monotonic
function in x. For a given random field configuratio
$hy%yPV

R
15$syh%yPV

R
1, sy56, we denote the composit

function mapping the effective fields in]VR11
1 to the effec-

tive field at y0 by f $s%R
. Here,$s%R is the tree ofkR1121

symbols6 characterizing the configuration of the rando
field andk is the degree of the Bethe lattice. These compo
functions are monotonic in the sense that ifxy

b>xy8
b for all

yP]VR11
1 then f $s%R

($xy
b%)> f $s%R

($xy8
b%). In the same way

they are monotonic with respect to the random fie
f $s%R

($xy
b%)> f $s8%R

($xy
b%) if sy>sy8 for all yPVR

1 . Further-

more, there exists an invariant intervalI 5@x2* ,x1* # with the
property that if xyPI for all yP]VR11

1 then also
f $s%R

($xy%)PI for any random field configuration$s%R .

Here,x2* andx1* are the fixed points of the composite fun
tions for homogeneous$2% and homogeneous$1% configu-
rations of the random field, respectively. SinceA(x)
52A(2x), these fixed points are symmetric,x2* 52x1* .

III. UPPER BOUNDS FOR THE EXISTENCE OF A
UNIQUE PARAMAGNETIC PHASE

In this section we present an exact upper bound for
existence of a unique paramagnetic phase in terms of
random field strengthh. This bound improves earlier resul
in Ref. @3#.

Throughout this section we will use effective fieldsgy
ªA(xy) in close analogy to the notation in Ref.@3#. This has
some advantages in the calculation, which will become c
below. Iteration~4! for gy reads

gy
~R!5H gy

b for yP]VR,

AS (
zPS~y!

gz
~R!1hyD otherwise,

~8!

and we denote the composite functions mapping the effec
fields $gy%yP]V

R11
1 to gy0

by f̃ $s%R
. They have the same

monotonicity properties as the composite functionsf $s%R
.

In order to prove the existence of a unique paramagn
phase it is sufficient to show that the RVsgy do not depend
on the boundary conditions$gy

b% in the limit R→` for any
choice of the boundary conditions. We use the notationgy

1

for the effective field atyPV for homogeneous boundar
conditionsgy

b[g1* in the limit R→` andgy
2 for the effec-

tive field resulting from the corresponding negative bound
conditionsgy

b[g2* whereg1* 5A(x1* ) andg2* 5A(x2* ). For
01612
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gy0

1 andgy0

2 we use the shorthand notationsg1 andg2. Note

that the dependence of the effective fields on the rand
field configurations is suppressed in this notation.

Inspired by the proof for the existence of a unique pa
magnetic phase for the RFIM on the Bethe lattice of degre
for almost all random field configurations and 2,h,3 in
Ref. @3#, we investigate the expectation value

E$s%~ ug12g2u!. ~9!

The monotonicity of the composite functionsf̃ $s%R
implies

that, if this expectation value is zero for the two extrem
boundary conditions chosen above, then it is zero for a
two sets of boundary conditions. This then implies that
RV gy0

is independent of the boundary conditions for almo
all random field configurations. The goal of this section
therefore to find a criterion for the random field strengthh
which implies that expectation value~9! is zero. Because o
the monotonicity of the composite functionsf̃ $s%R

we have

g1>g2 and thusug12g2u5g12g2. Therefore, we con-
sider

E$s%~g12g2!5E dh~$s%!~g12g2!

5 (
$s%R

E
$s̃%R5$s%R

dh~$s̃%!@g1~$s̃%!

2g2~$s̃%!#, ~10!

whereh is the product measure of the probability measu
of the random fieldshy5syh. In the second step the inte
gration was split up into a sum of a finite number of integr
over sets of configurations with fixed symbols$s%R in VR
and arbitrary$s̃%PV\VR . Using recursion relation~4! the
integrand can be expressed as a function of the effec
fields $gy

1%yP]VR
on the boundary ofVR :

g1~$s̃%!2g2~$s̃%!5 f̃ $s̃%R21
~$gy

1%yP]VR
!

2 f̃ $s̃%R21
~$gy

2%yP]VR
!

5 (
yP]VR

]gy
f̃ $s̃%R21

~$dz%zP]VR
%)

3~gy
12gy

2!. ~11!

In the second step the mean value theorem has been use
f̃ $s̃%R

anddzP@gz
2 ,gz

1# are appropriately chosen. The parti
derivatives in Eq. ~11! are bounded from above b
P l 50

R21Azl (y)max
8(R) , where Azl (y)max

8(R) is an upper bound on the

maximum ofA8(x) for xP@gzl (y)
2 ,gzl (y)

1 #, the interval of pos-

sible values of the effective field at the verticeszl(y) along
the unique path fromy to y0 ~see Appendix subsection 1 fo
details!. This bound depends only on$s̃%R5$s%R and hence
is independent of the integration. Thus,
7-3
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FIG. 2. Exact upper bound for the existence of a stable paramagnetic phase on the Bethe lattice of degreek52 ~solid line!. The bound
was obtained as described in the text with all random field configurations atR54. The dashed line is a similar upper bound obtained
considering a sample of 104 realizations of the random field atR511 using complete sum~13!. Close toT50 the problem is numerically
unstable; results are presented only forT>0.1. The large dot was obtained forR523 using Eq.~15! and 105 random field configurations. In
the shaded region the result of Ref.@3# for the existence of a unique paramagnetic phase applies. The gray dashed lines are the ferrom
and the antiferromagnetic lines@4# ~cf. also Ref.@3#! and the gray dash-dotted line is Bruinsma’s lower bound for the existence of a s
ferromagnetic phase@4#. (J51.)
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E$s%~g12g2!< (
$s%R

(
yP]VR

)
l 50

R21

Azl ~y!max
8~R! E

$s̃%R5$s%R

dh~$s̃%!

3~gy
12gy

2!. ~12!

The remaining integral for eachy is bounded from above by
22uVRuER whereER5maxyP]VR

E$s%(gy
12gy

2) ~see Appendix
subsection 2!. We therefore obtain

E05E$s%~g12g2!< (
$s%R

22uVRu (
yP]VR

)
l 50

R2 i

Azl ~y!max
8~R! ER .

~13!

The finite sums commute and asAzl (y)max
8(R) is obtained with

homogeneous boundary conditions the sums($s%R
are iden-

tical for all yP]VR , such that the sum overy can be re-
placed by a factoru]VRu5kR, yielding

E0<KER , ~14!

where

Kª(
$s%R

22uVRukR)
l 50

R21

Azl ~y!max
8~R! . ~15!

Because of the translation invariance of the Bethe lat
these considerations can be applied recursively. This imp
E0<KrEr •R• If the factorK is less than 1 for any paramete
~T,h! we immediately obtainE05E$s%(ug

12g2u)50 asEr •R
01612
e
es

is uniformly bounded by 2g1* for all r PN and therefore

KrEr •R→0 for r→`. By translation symmetry this resu
holds for all gy with yPV. As ug12g2u>0 the vanishing
expectation even impliesug12g2u50 for almost all realiza-
tions $s% of the random field.

The reason for usinggy instead ofxy is now easily ex-
plained. If we used the effective fieldsxy instead ofgy the
product over derivatives ofA would be froml 51 up to R.
This gives a less precise estimate becausexy with yP]VR is
less restricted thanxy0

and therefore the bound forA8(xy)

with yP]VR is greater than the one forA8(xy0
).

To apply the criterion obtained above we evaluatedK on a
computer. The calculation time is proportional to the numb
of random field configurations onVR and thus grows asymp
totically for, e.g.,k52, as 22

R
. Therefore, the calculation

was restricted toR<4 ~for R55 each data point in an arra
of 20340 points would take about 3 days on a Pentium
350 MHz!. The solid line in Fig. 2 shows the upper boun
for the existence of a unique paramagnetic phase obta
for R54.

To estimate the results forR.4 we relied on statistica
methods and sampled random field configurations. When
ing so, it is saving time not to exploit the symmetry and
use Eq.~13! instead of Eq.~15!. The resulting bound forR
511 and a sample of 104 random field configurations is th
dashed line in Fig. 2.

As the bound obtained depends systematically on the
dius R it is tempting to try to extrapolate toR5`. For T
51.2 we obtained an extremely good fit for the data samp
7-4
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FIG. 3. Estimates for the transition line between para- and ferromagnetism. The dashed line separates regions where th
magnetization decreases or increases with the distance from the boundary for homogeneous boundary conditionsxb[0.01 obtained by
comparing the configurational averages over 43105 up to 643105 samples at distances 9 and 13 from the boundary. The dotted line g
the boundary of the region in which iteration~4! is contractive on the average above and noncontractive below. It was obtained by sam
105 field configurations and evaluating Eq.~18! with R513 andR154. The solid line was obtained using Eq.~23! at R54. The big dots
were obtained by evaluating Eq.~24! for R520 and between 105 and 2.43106 random field configurations. The gray lines are as in Fig
The gray shaded region marks the region in which all our numerical results~including considerably more than shown explicitly here! are
contained.~k52, J51.!
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at R55, . . . ,23usinghc(R)5a1bRc. However, the result
was a5hc(`)'0, which is not realistic. Other fits, e.g
omitting data for smallR or using different functional forms
yielded values between20.9 and 0.45. We suspect that
naive choice of the functional form ofhc(R) does not allow
realistic extrapolation results for these bounds in the cas
the Bethe lattice.

IV. ESTIMATES FOR THE TRANSITION LINE

A. Direct calculation of the magnetization

Even though the bounds presented in the preceding
tion considerably improve former analytical results, they
still far away from the region where the phase transition fr
paramagnetic to ferromagnetic behavior is suspected. In
@4# Bruinsma claimed to have found a lower bound inh for
the existence of a ferromagnetic phase which is in the
evant parameter region, cf. Fig. 2. To check this bound an
get a good numerical approximation of the transition line
developed several numerical criteria for the existence o
ferromagnetic phase or the existence of a stable param
netic phase.

The most obvious criterion for the existence of a fer
magnetic phase is a nonvanishing expectation value for
magnetization for small but nonzero boundary conditio
The expectation value for the local magnetization at the s
in the center is given by

mªE$s%^sy0
&5E dn~x!dn~y!tanh@b„x1g~y!…# ~16!
01612
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where ^•& denotes the thermodynamic average,E$s% is the
expectation value with respect to all random field configu
tions, andn is the limit measure of the effective field fo
homogeneous boundary conditionsxy

b[xb for all yPV in the
limit R→`. To approximaten we generated a large numbe
of random field configurations on a finite regionVR and cal-
culated the corresponding effective fieldxy0

(R) . The values

obtained were then sorted into small boxes of length«. The
resulting histogram was used as an approximation
ny0

(bi)5..n i , wherebi is the i th box. Explicitly, this yields
for the magnetization

m'(
i

(
j

n in j tanhb„xi1g~yj !…, ~17!

where the pointsxi and yj were chosen as the centers
boxesi and j, respectively.

Assuming that the magnetization in the center var
monotonically with the radiusR of the finite volumeVR , one
would expect to observe a monotonically increasing mag
tization in the ferromagnetic regime and a monotonically d
creasing magnetization in the paramagnetic regime for
creasingR. Therefore, the dashed contour in Fig. 3, whi
divides the regions in which the numerical estimates of
magnetization are increasing or decreasing with increas
R, is a good estimate for the transition line. This type
estimates depends only slightly on the chosen boundary
dition and iteration depth but the results obtained sign
cantly disagree with Bruinsma’s bound.
7-5
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B. Average contractivity of the RIFS

For zero boundary conditions there is a paramagnetic s
for any temperatureT and random field strengthh. The sta-
bility of this state is tied to the average contractivity of RIF
~4!. If it is globally contracting the paramagnetic state
stable and unique. If it is at least contracting on the aver
for some interval around zero, the paramagnetic phas
stable but the existence of other stable phases is not excl
a priori. The investigation of the contractivity of the RIF
was first proposed in Ref.@17#.

We generated a setSR of random field configurations
$s%R on a finite ballVR and calculated the image of a sma
initial interval I b5@2xb,xb#. Because of the monotonicit
of f $s%R

the image of this interval at vertexy is I y

5@xy
(R)(2xb),xy

(R)(xb)#. To estimate the average contracti
ity of the RIFS we compared the average leng
1/kR1(yP]VR1

uI yu at the verticesyP]VR1
to the lengthuI y0

u

at the central vertexy0 . As the effective fields at ally
P]VR1

contribute to the effective field aty0 , we consider

the average interval lengths at vertices in]VR1
instead of

individual values. To minimize the influence of the som
what arbitrary choice of the initial interval the comparis
was performed forR1!R.

There are two ways of performing the comparison. Eith
one first averages over the lengthsuI yu at all yP]VR1

, then

calculates the quotient ofuI y0
u and this average length i

]VR1
, and averages over the sample(R of random field con-

figurations at the end,

K uI y0
u

1/kR1(yP]VR1
uI yu L

SR

, ~18!

or one first averagesuI yu over all yP]VR1
and all random

field configurations as well asuI y0u over the same random
field configurations, and calculates the quotient at the en

^uI y0
u&SR

1/kR1(yP]VR1
uI yu&SR

. ~19!

The two averaging procedures~18! and ~19! yield identical
results and thus obviously are equivalent.

If the images of the initial interval contract on the avera
for a finite iteration of Eq.~4! we expect complete contrac
tion to length zero for infinite iteration. This corresponds to
stable paramagnetic phase. Therefore, the contour in the~T,h!
parameter plane at which the average quotient of b
lengths switches from greater than 1 below to less tha
above is an estimate for the stability region of the param
netic phase. The resulting estimated transition line is sho
for R513, R154, the initial intervalI b5@20.01,0.01#, and
105 random field configurations as the dotted line in Fig.
Again, the agreement of the obtained results for vario
boundary conditions and iteration depths is satisfactory
there is a large deviation from Bruinsma’s line.
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C. Independence of the effective fields from boundary
conditions

A related criterion for the existence of a stable param
netic phase is the independence of the effective field fr
boundary conditions. As in Sec. III we use the effective fie
gy

(R) rather thanxy
(R) . We consider boundary condition

$gy
b%yP]VR

, taking values in a small interval@2gb,gb#.

Through the iteration with Eq.~4! the effective fieldsgy
(R) are

functions of the boundary conditions

gy
~R!5 f̃ $s%R2n21~y!~$gz

b%! ~20!

where the functionf̃ $s%R2n21(y) has kR2n arguments fory

P]Vn and is the identity ifR5n. For simplicity and without
loss of generality we restrict the following discussion
gy0

(R) . The boundary conditions can be written asgy
b5gbĝy

b

where ĝy
b takes values in@21,1#. To investigate how the

effective fields depend on the boundary conditions we c
sider the expectation value of the derivative ofgy0

(R) with
respect togb, thestrengthof the applied boundary condition

E$s%R21
U d

dgb gy0

~R!U<E$s%R21 (
yP]VR

]gy
f̃ $s%R21

~$gz
b%zP]VR

!uĝy
bu

< (
yP]VR

E$s%R21 )l 50

R21

A8„xzl ~y!
~R! ~xb!… ~21!

wherexzl (y)
(R) (xb) denotes the effective field along the uniqu

path from y to y0 with homogeneous boundary condition
xy

b[A21(gb). Now one can estimate, as in Appendix A 1,

A8@xzl ~y!
~R! ~xb!#<minˆA8„max$xzl ~y!

~R! ~xb!,0%…,

A8„min$xzl ~y!
~R! ~2xb!,0%…‰

5..Azl ~y!max
8~R! ~xb!. ~22!

As the boundary conditions are homogeneous this imp
that

E$s%R21
U d

dgb gy0

~R!U<kRE$s%R21 )l 50

R21

Azl ~y!max
8~R! ~xb!. ~23!

If the right-hand side vanishes forR→` the effective field
gy0

is on the average independent of boundary conditio

taking values in@2gb,gb#. By determining the paramete
region in which the right-hand side of Eq.~23! vanishes for
R→`, we therefore get an upper bound on the emergenc
a stable paramagnetic phase. As our calculations are lim
to finite R, convergence to zero is assumed if the obtain
values of Eq.~23! for R.0 are smaller than 1, which is th
value forR50.

For the Bethe lattice of degreek52, radiusR54, and
gb50.01, the right-hand side of Eq.~23! was evaluated. The
contour between values smaller than 1 above and gre
than 1 below is shown as the solid line in Fig. 3. ForR.4
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we again relied on sampling random field configurations
stead. The resulting transition lines for various iterati
depths and boundary conditions are comparable to the re
of the preceding two sections and are all contained in
gray region in Fig. 3.

If we consider the derivative of the effective field aty0 in
the case of boundary conditionsgb[0 we have

E$s%R21

dgy0

~R!

dgb ~$0%!5E$s%R21 (
yP]VR

)
l 50

R21

A8„xzl ~y!
~R! ~$0%!….

~24!

If this derivative does not tend to zero for some parame
~T,h! and R→` there is no stable paramagnetic phase.
determination of the parameter region in which this is
case we get a lower bound on the emergence of a st
paramagnetic phase. The numerical results are the large
in Fig. 3.

V. DISCUSSION

In order to interpret the discrepancies between Bruinsm
result and our numerical investigations we briefly revie
Bruinsma’s argument@4# in our language.

The probability measuresny of the effective fieldsxy are
fixed points of the Frobenius-Perron equation, Eq.~7!. They
can be approximated by finite iterations of some initial pro
ability densities~boundary conditions! ny

b for yP]VR . If the
support ofny

b is a subset of the invariant intervalI, the sup-
port of ny0

is a subset of the images ofI by functionsf $s%R
.

These images are calledbands. The left and right boundarie
of the bands are the effective fields corresponding to ho
geneous boundary conditionsxy

b[x1* and xy
b[x2* for y

P]VR , respectively. The investigation of the structure of t
set of bands has proved to be a powerful tool in the treatm
of the one-dimensional random field Ising model@8–16#. In
contrast to the one-dimensional case, the bands are hi
degenerate here, i.e., different configurations of the rand
field result in the same band. This is due to the invariance
the model with respect to permutations of subtrees for ho
geneous boundary conditions. The most degenerate b
correspond to the twochessboardconfigurations~see Fig. 4!
of the random field with1h or 2h at y0 , respectively.
There are 22

R2121 equivalent random field configurations
the case of the Bethe lattice of degreek52 and radiusR. As
the total number of configurations isN522R21 the most de-
generate bands have a weight of 22R2121/22R215222R21

;1/AN. The bands with the least weight are the bands c
responding to homogeneous1h or 2h random field con-
figurations. They have the weight 1/N. The weights of all
other bands are distributed between these values.

Bruinsma used boundary conditionsny
b[dxb for somexb

PR and iterated Eq.~7!. He considered only the lowest an
highest weight terms corresponding to the least and the m
degenerate bands. The highest weight terms obey a recu
relation. The fixed points of this relation can be calcula
and it is straightforward to determine for which temperatu
T and random field strengthsh they are symmetric about th
01612
-

lts
e

rs
y
e
le

ots

’s

-

o-

nt

ly
m
of
o-
ds

r-

st
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d
s

origin. Proving differentiability of the densityr of the invari-
ant measuren in a neighborhood ofT5Tc andh50, Bruin-
sma concluded that an asymmetric position correspond
asymmetric maxima ofr of nonzero weight and therefore t
the existence of a ferromagnetic phase.

The symmetric position corresponds to complete contr
tion of the most degenerate bands such that the asymm
boundary condition has no effect in the limit of infinite iter
tion. The asymmetric position, on the other hand, occur
the most degenerate bands do not completely contract. S
this way the argument above is our criterion of average c
tractivity of the RIFS in Sec. IV B except that it is restricte
to the contractivity of one specific band instead of the av
age contractivity.

There are two problematic points in the reasoning abo
First, it is not clear whether the location of local maxima
a differentiable measure density really is given by the m
degenerate bands. For smallh this actually seems not to b
the case; see Fig. 5~a!. As the maxima are at6h and there-
fore close to zero for smallh, it is difficult to argue based on
numerical data though. The example in Fig. 5~b! shows,
however, that the maximaare present for sufficiently largeh.

Secondly, the differentiability of the invariant measu
density has been proved only in a neighborhood ofT5Tc
andh50 whereas for largeh or smallT the measure density
r is clearlynot differentiable. It is unclear whether it is dif
ferentiable in the region of the lower bound; see Fig. 5~b!.

The disagreement of our numerical work with Bruinsma
lower bound therefore allows two interpretations. Either B
insma’s bound is not true outside the proven region of va
ity because the most degenerate bands are not a suffi
indicator for the symmetry ofr when the measure density
not differentiable; or in the region between our upper boun
for the existence of a stable paramagnetic phase and Br
sma’s lower bound for the onset of ferromagnetism a sta
paramagnetic phase coexists with the~also stable! ferromag-
netic phases. This would imply the existence of a first or
phase transition and hysteresis loops depending on
strength of the random field, in contrast to the hysteresi

FIG. 4. Four equivalent chessboard configurations atR54. The
second configuration is obtained from the first by permutation
two subtrees of a vertex in the sphere]V2 , the third one by per-
mutation of two subtrees of a vertex in the sphere]V1 , and the last
one by permutation of the two subtrees of the root itself.
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FIG. 5. Approximations of the invariant measure densityr obtained from fourfold application of Eq.~7! to the equipartitionrb

5uI u211I on the invariant intervalI. There are no maxima at6h in ~a! whereas the two maxima at6h in ~b! are already so pronounced th
differentiability of r is questionable. The random field strength in~b! was chosen such that the point~T,h! is very close to Bruinsma’s bound
~k52, b5J51.!
th

th
ic
a
w
fo

th
th
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er
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u-
T50 @21#, which depends on the homogeneous offset of
random field.

In this paper we improved exact upper bounds for
existence of a unique paramagnetic phase in Sec. III, wh
is a further step toward the exact determination of the ph
diagram of the RFIM on the Bethe lattice. Furthermore,
presented numerical work leading to various estimates
the actual phase transition line. The direct calculation of
expectation value of the local magnetization in Sec. IV A,
investigation of the average contractivity of RIFS~4! at large
iteration depths in Sec. IV B, and the numerical calculat
of the derivative of the effective field with respect to th
strength of the boundary condition in Sec. IV C provid
estimates for the stability region of the paramagnetic pha
All results are in good agreement while all disagree with
earlier result of Bruinsma@4#. This disagreement motivate
further investigations into whether the bound for the onse
ferromagnetism given in Ref.@4# needs to be reconsidered
whether there really is a coexistence region for stable fe
magnetic and a stable paramagnetic phase.
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APPENDIX

1. Bound on the partial derivatives in Eq. „11…

The partial derivatives in Eq.~11! are given by

]gy
f̃ $s̃%R21

~$dz%zP]VR
%)5 )

l 50

R21

A8„f $s̃%R212 l @zl ~y!#

3~$«z%zP]VR
!…, ~A1!
01612
e

e
h

se
e
r

e
e

n

e.
e

f

-

k

where «z5A21(dz), zl(y)P]Vl are the vertices along th
unique path from y to y0 ~cf. also Fig. 1!, and
$s̃%R212 l@zl(y)# are the signs of the random field config
ration on the subtree of depthR212 l with root zl(y). The
termsf $s̃%R212 l @zl (y)#

($«z%zP]VR
) are effective fieldsxzl (y)

(R) cor-

responding to boundary conditions$xz
b5«z%zP]VR

. We write

xzl (y)
(R) («) for these fields andxzl (y)

(R) (x1) andxzl (y)
(R) (x2) for the

corresponding effective fields with boundary conditionsxz
b

5xz
1 andxz

b5xz
2 for zP]VR . We can then estimate

A8„xzl ~y!
~R! ~«!…

<max$A8„xzl ~y!
~R! ~«8!…u«z8P@xz

2 ,xz
1#,zP]VR%

5max$A8~x!uxP@xzl ~y!
~R! ~x2!,xzl ~y!

~R! ~x1!#%

5min$A8„max$xzl ~y!
~R! ~x2!,0%…,A8„min$xzl ~y!

~R! ~x1!,0%…%.

~A2!

In the last step we used that the maximum ofA8 in an inter-
val @a,b# is ata if a>0, atb if b<0, and at zero in all other
cases. As the effective fields can never be larger thanx1* and
never smaller thanx2* we can for zP]VR estimate
xz

2>hz1kA(x2* )5xz
(R11)(x2* ) and xz

1<hz1kA(x1* )
5xz

(R11)(x1* ). This allows us to replacex1 and x2 in the
argument of xzl (y)

(R) in Eq. ~A2! and with

xzl (y)
(R) @xy

(R11)(x6* )#5xzl (y)
(R11)(x6* ) we get

A8„xzl ~y!
~R! ~«!…<min$A8„max$xzl ~y!

~R11!~x2* !,0%…,

A8„min$xzl ~y!
~R11!~x1* !,0%…%

5..Azl ~y!max
8~R! . ~A3!
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Inserting Eq.~A3! into Eq. ~A1! then yields

]gy
f̃ $s̃%R21

~$dz%zP]VR
!< )

l 50

R21

Azl ~y!max
8~R! . ~A4!

2. Bounds on the integrals in Eq.„12…

Using the independence of the RVsgy of the signs
$sz%zPVR\(y) and denoting the number of vertices inVR by

uVRu, i.e., uVRu5(kR1121)/(k21), one obtains

E
$s̃%R5$s%R

dh~$s̃%!~gy
12gy

2!

522uVRu11E
s̃y5sy

dh~$s̃%!~gy
12gy

2!

522uVRuE$s%~gy
12gy

2us̃y5sy!. ~A5!

The functionA is antisymmetric, which impliesgy
1($2s%)

52gy
2($s%) and therefore
38

01612
E~gy
12gy

2usy51 !5E~gy
12gy

2usy52 !, ~A6!

implying

E~gy
12gy

2!5 1
2 E~gy

12gy
2usy51 !1 1

2 E~gy
12gy

2usy52 !

5E~gy
12gy

2usy5s! ~A7!

for any sP$2,1%. Setting

ERª max
yP]VR

E$s%~gy
12gy

2us̃y5sy!

5 max
yP]VR

E$s%~gy
12gy

2!, ~A8!

this finally yields

E
$s̃%R5$s%R

dh~$s̃%!~gy
12gy

2!<22uVRuER . ~A9!
J.
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